Implementation of Sensitive Method for Determination of Benzophenone and Camphor UV Filters in Human Urine
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
A1_2021_001 and A2_2020_057
Specific university research
PubMed
39771052
PubMed Central
PMC11679341
DOI
10.3390/toxics12120837
PII: toxics12120837
Knihovny.cz E-zdroje
- Klíčová slova
- UHPLC-MS/MS, UV filters, biomonitoring, urine analysis,
- Publikační typ
- časopisecké články MeSH
The level of the human body's burden of benzophenone and camphor ultraviolet (UV) filters can be estimated from their urinary levels. The present study describes the implementations and validation of the sensitive analytical method for the analysis of seven benzophenone and two camphor UV filters in urine. Sample preparation includes overnight enzymatic hydrolysis and ethyl acetate extraction followed by purification by dispersive solid-phase extraction using a sorbent Z-Sep. For the analysis, ultra-high performance liquid chromatography coupled with tandem mass spectrometry was used. Validation was performed using a Standard Reference Material® 3673 and an artificially contaminated urine sample. Target analyte recoveries ranged from 79-113% with repeatability expressed as a relative standard deviation of 2-15%. The limits of quantification were between 0.001 and 0.100 ng/mL in urine. This method was subsequently applied to examine the urine samples collected from Czech women. The analytes benzophenone-1 and 4-hydroxy-benzophenone were the most common analytes present in 100% of the samples, whereas benzophenone-3 was quantified in only 90% of the urine samples. The other four determined benzophenone derivatives were quantified in ≤33% of the samples. The derivatives of camphor were not detected in any samples. This method could be applied in biomonitoring studies.
Zobrazit více v PubMed
HBM4EU Priority Substances [Internet]. HBM4EU. [(accessed on 20 May 2022)]. Available online: https://www.hbm4eu.eu/hbm4eu-substances/hbm4eu-priority-substances/
Berman T., Barnett-Itzhaki Z. Prioritised Substance Group: UV Filers [Internet]. HBM4EU. 2021. [(accessed on 20 May 2022)]. Available online: https://www.hbm4eu.eu/wp-content/uploads/2021/02/HBM4EU_D4.9_Scoping_Documents_HBM4EU_priority_substances_v1.0-UF-filters.pdf.
Giokas D.L., Salvador A., Chisvert A. UV filters: From sunscreens to human body and the environment. Trends Anal. Chem. 2007;26:360–374. doi: 10.1016/j.trac.2007.02.012. DOI
Bradley E.L., Stratton J.S., Leak J., Lister L., Castle L. Printing ink compounds in foods: UK survey results. Food Addit. Contam. Part B. 2013;6:73–83. doi: 10.1080/19393210.2012.725774. PubMed DOI
Hu L., Tian M., Feng W., He H., Wang Y., Yang L. Sensitive detection of benzophenone-type ultraviolet filters in plastic food packaging materials by sheathless capillary electrophoresis–electrospray ionization–tandem mass spectrometry. J. Chromatogr. A. 2019;1604:460–469. doi: 10.1016/j.chroma.2019.460469. PubMed DOI
Mikkelsen S.H., Lassen C., Warming M., Hansen E., Brinch A., Brooke D., Crookes M., Nielsen E., Bredsdorff L., Food D.T.U. The Danish Environmental Protection Agency: Denmark. Surv. Health Assess. UV Filters. 2015;142:81–113.
Morrison G.C., Bekö G., Weschler C.J., Schripp T., Salthammer T., Hill J., Andersson A.-M., Toftum J., Clausen G., Frederiksen H. Dermal Uptake of Benzophenone-3 from Clothing. Environ. Sci. Technol. 2017;51:11371–11379. doi: 10.1021/acs.est.7b02623. PubMed DOI
Ko A., Kang H.-S., Park J.-H., Kwon J.-E., Moon G.I., Hwang M.-S., Hwang I.G. The Association Between Urinary Benzophenone Concentrations and Personal Care Product Use in Korean Adults. Arch. Environ. Contam. Toxicol. 2016;70:640–646. doi: 10.1007/s00244-015-0240-x. PubMed DOI
Lu S., Long F., Lu P., Lei B., Jiang Z., Liu G., Zhang J., Ma S., Yu Y. Benzophenone-UV filters in personal care products and urine of schoolchildren from Shenzhen, China: Exposure assessment and possible source. Sci. Total Environ. 2018;640–641:1214–1220. doi: 10.1016/j.scitotenv.2018.06.015. PubMed DOI
Kim B., Kwon B., Jang S., Kim P.G., Kyunghee J. Major benzophenone concentrations and influence of food consumption among the general population in Korea, and the association with oxidative stress biomarker. Sci. Total Environ. 2016;565:649–655. doi: 10.1016/j.scitotenv.2016.05.009. PubMed DOI
Li N., Ho W., Wu R.S.S., Tsang E.P.K., Ying G.G., Deng W.J. Ultraviolet filters in the urine of preschool children and drinking water. Environ. Int. 2019;133:105246. doi: 10.1016/j.envint.2019.105246. PubMed DOI
Zhang H., Li J., Chen Y., Wang D., Xu W., Gao Y. Profiles of parabens, benzophenone-type ultraviolet filters, triclosan, and triclocarban in paired urine and indoor dust samples from Chinese university students: Implications for human exposure. Sci. Total Environ. 2021;798:149275. doi: 10.1016/j.scitotenv.2021.149275. PubMed DOI
Maerkel K., Durre S., Henseler M., Schlumpf M., Lichtensteiger W. Sexually dimorphic gene regulation in brain as a target for endocrine disrupters: Developmental exposure of rats to 4-methylbenzylidene camphor. Toxicol. Appl. Pharmacol. 2007;218:152–165. doi: 10.1016/j.taap.2006.10.026. PubMed DOI
Suzuki T., Kitamura S., Khota R., Sugihara K., Fujimoto N., Ohta S. Estrogenic and antiandrogenic activities of 17 benzophenone derivatives used as UV stabilizers and sunscreens. Toxicol. Appl. Pharmacol. 2005;203:9–17. doi: 10.1016/j.taap.2004.07.005. PubMed DOI
Watanabe Y., Kojima H., Takeuchi S., Uramaru N., Sanoh S., Sugihara K., Kitamura S., Ohta S. Metabolism of UV filter benzophenone-3 by rat and human liver microsomes and its effect on endocrine-disrupting activity. Toxicol. Appl. Pharmacol. 2015;282:119–128. doi: 10.1016/j.taap.2014.12.002. PubMed DOI
IARC Working Group Benzophenone. IARC Monogr. Eval. Carcinog. Risk Hum. 2013;101:285–304.
Jeon H.K., Sarma S.N., Kim Y.J., Ryu J.C. Toxicokinetics and metabolisms of benzophenone-type UV filters in rats. Toxicology. 2008;248:89–95. doi: 10.1016/j.tox.2008.02.009. PubMed DOI
Schlecht C., Klammer H., Frauendorf H., Wuttke W., Jarry H. Pharmacokinetics and metabolism of benzophenone 2 in the rat. Toxicology. 2008;245:11–17. doi: 10.1016/j.tox.2007.12.015. PubMed DOI
Schauer U.M., Völkel W., Heusener A., Colnot T., Broschard T.H., von Landenberg F., Dekant W. Kinetics of 3-(4-methylbenzylidene) camphor in rats and humans after dermal application. Toxicol. Appl. Pharmacol. 2006;216:339–346. doi: 10.1016/j.taap.2006.05.011. PubMed DOI
Chisvert A., León-González Z., Tarazona I., Salvador A., Giokas D. An overview of the analytical methods for the determination of organic ultraviolet filters in biological fluids and tissues. Anal. Chim. Acta. 2012;752:11–29. doi: 10.1016/j.aca.2012.08.051. PubMed DOI
Lopardo L., Adams D., Cummins A., Kasprzyk-Hordern B. Verifying community-wide exposure to endocrine disruptors in personal care products—In quest for metabolic biomarkers of exposure via in vitro studies and wastewater-based epidemiology. Water Res. 2018;143:117–126. doi: 10.1016/j.watres.2018.06.028. PubMed DOI
Kadry A.M., Okereke C.S., Abdel-Rahman M.S., Friedman M.A., Davis R.A. Pharmacokinetics of benzophenone-3 after oral exposure in male rats. J. Appl. Toxicol. 1995;15:97–102. doi: 10.1002/jat.2550150207. PubMed DOI
Völkel W., Colnot T., Schauer U.M.D., Broschard T.H., Dekant W. Toxicokinetics and biotransformation of 3-(4-methylbenzylidene)camphor in rats after oral administration. Toxicol. Appl. Pharmacol. 2006;216:331–338. doi: 10.1016/j.taap.2006.05.012. PubMed DOI
Wang L., Kannan K. Characteristic Profiles of Benzonphenone-3 and its Derivatives in Urine of Children and Adults from the United States and China. Environ. Sci. Technol. 2013;47:12532–12538. doi: 10.1021/es4032908. PubMed DOI
Ye X., Kuklenyik Z., Needham L.L., Calafat A.M. Quantification of urinary conjugates of bisphenol A, 2,5-dichlorophenol, and 2-hydroxy-4-methoxybenzophenone in humans by online solid phase extraction–high performance liquid chromatography–tandem mass spectrometry. Anal. Bioanal. Chem. 2005;383:638–644. doi: 10.1007/s00216-005-0019-4. PubMed DOI
Asimakopoulos A.G., Wang L., Thomaidis N.S., Kannan K. A multi-class bioanalytical methodology for the determination of bisphenol A diglycidyl ethers, p-hydroxybenzoic acid esters, benzophenone-type ultraviolet filters, triclosan, and triclocarban in human urine by liquid chromatography–tandem mass spectrometry. J. Chromatogr. A. 2014;1324:141–148. doi: 10.1016/j.chroma.2013.11.031. PubMed DOI
Song S., He Y., Huang Y., Huang X., Guo Y., Zhu H., Kannan K., Zhang T. Occurrence and transfer of benzophenone-type ultraviolet filters from the pregnant women to fetuses. Sci. Total Environ. 2020;726:138503. doi: 10.1016/j.scitotenv.2020.138503. PubMed DOI
Wang S., Huo Z., Shi W., Wang H., Xu G. Urinary benzophenones and synthetic progestin in Chinese adults and children: Concentration, source and exposure. Environ. Sci. Pollut. Res. 2021;28:50245–50254. doi: 10.1007/s11356-021-13943-1. PubMed DOI
Kunisue T., Wu Q., Tanabe S., Aldous K.M., Kannan K. Analysis of five benzophenone-type UV filters in human urine by liquid chromatography-tandem mass spectrometry. Anal. Methods. 2010;2:707–713. doi: 10.1039/b9ay00324j. DOI
Zhao H., Li J., Ma X., Huo W., Xu S., Cai Z. Simultaneous determination of bisphenols, benzophenones and parabens in human urine by using UHPLC-TQMS. Chin. Chem. Lett. 2018;29:102–106. doi: 10.1016/j.cclet.2017.06.013. DOI
Chen M., Zhu P., Xu B., Zhao R., Qiao S., Chen X., Tang R., Wu D., Song L., Wang S., et al. Determination of Nine Environmental Phenols in Urine by Ultra-High-Performance Liquid Chromatography–Tandem Mass Spectrometry. J. Anal. Toxicol. 2012;36:608–615. doi: 10.1093/jat/bks072. PubMed DOI
Gavin Q.W., Ramage R.T., Waldman J.M., She J. Development of HPLC-MS/MS method for the simultaneous determination of environmental phenols in human urine. Int. J. Environ. Anal. Chem. 2014;94:168–182. doi: 10.1080/03067319.2013.814123. DOI
Gu J., Yuan T., Ni N., Ma Y., Shen Z., Yu X., Shi R., Tian Y., Zhou W., Zhang J. Urinary concentration of personal care products and polycystic ovary syndrome: A case-control study. Environ. Res. 2019;168:48–53. doi: 10.1016/j.envres.2018.09.014. PubMed DOI
Dewalque L., Pirard C., Dubois N., Charlier C. Simultaneous determination of some phthalate metabolites, parabens and benzophenone-3 in urine by ultra-high pressure liquid chromatography tandem mass spectrometry. J. Chromatogr. B. 2014;949–950:37–47. doi: 10.1016/j.jchromb.2014.01.002. PubMed DOI
Moos R.K., Angerer J., Wittsiepe J., Wilhelm M., Brüning T., Koch H.M. Rapid determination of nine parabens and seven other environmental phenols in urine samples of German children and adults. Int. J. Hyg. Environ. Health. 2014;217:845–853. doi: 10.1016/j.ijheh.2014.06.003. PubMed DOI
Vela-Soria F., Ballesteros O., Zafra-Gómez A., Ballesteros L., Navalón A. UHPLC–MS/MS method for the determination of bisphenol A and its chlorinated derivatives, bisphenol S, parabens, and benzophenones in human urine samples. Anal. Bioanal. Chem. 2014;406:3773–3785. doi: 10.1007/s00216-014-7785-9. PubMed DOI
Frederiksen H., Nielsen O., Skakkebaek N., Juul A., Andersson A.M. UV filters analyzed by isotope diluted TurboFlow-LC–MS/MS in urine from Danish children and adolescents. Int. J. Hyg. Environ. Health. 2017;220:244–253. doi: 10.1016/j.ijheh.2016.08.005. PubMed DOI
Adoamnei E., Mendiola J., Moñino-García M., Vela-Soria F., Iribarne-Durán L.M., Fernández M.F., Olea N., Jørgensen N., Swan S.H., Torres-Cantero A.M. Urinary concentrations of benzophenone-type ultraviolet light filters and reproductive parameters in young men. Int. J. Hyg. Environ. Health. 2018;221:531–540. doi: 10.1016/j.ijheh.2018.02.002. PubMed DOI
Gao C.-J., Liu L.-Y., Ma W.-L., Zhu N.-Z., Jiang L., Li Y.-F., Kannan K. Benzonphenone-type UV filters in urine of Chinese young adults: Concentration, source and exposure. Environ. Pollut. 2015;203:1–6. doi: 10.1016/j.envpol.2015.03.036. PubMed DOI
Kang H.-S., Ko A., Kwon J.-E., Kyung M.-S., Moon G.I., Park J.-H., Lee H.-S., Suh J.-H., Lee J.-M., Hwang M.-S., et al. Urinary benzophenone concentrations and their association with demographic factors in a South Korean population. Environ. Res. 2016;149:1–7. doi: 10.1016/j.envres.2016.04.036. PubMed DOI
Rocha B.A., Moraes de Oliveira A.R., Barbosa F., Jr. A fast and simple air-assisted liquid-liquid microextraction procedure for the simultaneous determination of bisphenols, parabens, benzophenones, triclosan, and triclocarban in human urine by liquid chromatography tandem mass spectrometry. Talanta. 2018;183:94–101. doi: 10.1016/j.talanta.2018.02.052. PubMed DOI
Silveira R.S., Rocha B.A., Rodrigues J.L., Barbosa F., Jr. Rapid, sensitive and simultaneous determination of 16 endocrine disrupting chemicals (parabens, benzophenones, bisphenols, and triclocarban) in human urine based on microextraction by packed sorbent combined with liquid chromatography tandem mass spectrometry (MEPS-LC-MS/MS) Chemosphere. 2020;240:124951. doi: 10.1016/j.chemosphere.2019.124951. PubMed DOI
Jiménez-Díaz I., Artacho-Cordón F., Vela-Soria F., Belhassen H., Arrebola J., Fernández M., Ghali R., Hedhili A., Olea N. Urinary levels of bisphenol A, benzophenones and parabens in Tunisian women: A pilot study. Sci. Total Environ. 2016;562:81–88. doi: 10.1016/j.scitotenv.2016.03.203. PubMed DOI
Krause M., Andersson A.M., Skakkebaek N.E., Frederiksen H. Exposure to UV filters during summer and winter in Danish kindergarten children. Environ. Int. 2017;99:177–184. doi: 10.1016/j.envint.2016.11.011. PubMed DOI
Huang Y., Wang P., Law J.C.-F., Zhao Y., Wei Q., Zhou Y., Zhang Y., Shi H., Leung K.S.-Y. Organic UV filter exposure and pubertal development: A prospective follow up study of urban Chinese adolescents. Environ. Int. 2020;143:105961. doi: 10.1016/j.envint.2020.105961. PubMed DOI
Lankova D., Urbancova K., Sram R.J., Hajslova J., Pulkrabova J. A novel strategy for the determination of polycyclic aromatic hydrocarbon monohydroxylated metabolites in urine using ultra-high-performance liquid chromatography with tandem mass spectrometry. Anal. Bioanal. Chem. 2016;408:2515–2525. doi: 10.1007/s00216-016-9350-1. PubMed DOI
Urbancova K., Lankova D., Sram R.J., Hajslova J., Pulkrabova J. Urinary metabolites of phthalates and di-iso-nonyl cyclohexane-1, 2-dicarboxylate (DINCH)–Czech mothers’ and newborns’ exposure biomarkers. Environ. Res. 2019;173:342–348. doi: 10.1016/j.envres.2019.03.067. PubMed DOI
SANTE Document. SANTE/11312/2021. Analytical Quality Control and Method Validation Procedures for Pesticide Residues Analysis in Food and Feed [Internet] 2022. [(accessed on 25 May 2022)]. Available online: https://www.eurl-pesticides.eu/userfiles/file/EurlALL/SANTE_11312_2021.pdf.
Casas L., Fernández M.F., Llop S., Guxens M., Ballester F., Olea N., Irurzun M.B., Rodríguez L.S.M., Riaño I., Tardón A., et al. Urinary concentrations of phthalates and phenols in a population of Spanish pregnant women and children. Environ. Int. 2011;37:858–866. doi: 10.1016/j.envint.2011.02.012. PubMed DOI
Frederiksen H., Nielsen J.K.S., Mørck T.A., Hansen P.W., Jensen J.F., Nielsen O., Andersson A.-M., Knudsen L.E. Urinary excretion of phthalate metabolites, phenols and parabens in rural and urban Danish mother–child pairs. Int. J. Hyg. Environ. Health. 2013;216:772–783. doi: 10.1016/j.ijheh.2013.02.006. PubMed DOI
Krause M., Frederiksen H., Sundberg K., Jørgensen F., Jensen L., Nørgaard P., Jørgensen C., Ertberg P., Juul A., Drzewiecki K., et al. Presence of benzophenones commonly used as UV filters and absorbers in paired maternal and fetal samples. Environ. Int. 2018;110:51–60. doi: 10.1016/j.envint.2017.10.005. PubMed DOI