Cerebral Microbleeds and Amyloid Pathology Estimates From the Amyloid Biomarker Study
Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 AG027161
NIA NIH HHS - United States
PubMed
39841474
PubMed Central
PMC11755193
DOI
10.1001/jamanetworkopen.2024.55571
PII: 2829451
Knihovny.cz E-zdroje
- MeSH
- Alzheimerova nemoc * genetika patologie epidemiologie MeSH
- amyloidní beta-protein * mozkomíšní mok MeSH
- apolipoprotein E4 genetika MeSH
- biologické markery mozkomíšní mok MeSH
- cerebrální krvácení * epidemiologie patologie genetika diagnostické zobrazování MeSH
- lidé středního věku MeSH
- lidé MeSH
- pozitronová emisní tomografie MeSH
- prevalence MeSH
- průřezové studie MeSH
- rizikové faktory MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- amyloidní beta-protein * MeSH
- apolipoprotein E4 MeSH
- biologické markery MeSH
IMPORTANCE: Baseline cerebral microbleeds (CMBs) and APOE ε4 allele copy number are important risk factors for amyloid-related imaging abnormalities in patients with Alzheimer disease (AD) receiving therapies to lower amyloid-β plaque levels. OBJECTIVE: To provide prevalence estimates of any, no more than 4, or fewer than 2 CMBs in association with amyloid status, APOE ε4 copy number, and age. DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional study used data included in the Amyloid Biomarker Study data pooling initiative (January 1, 2012, to the present [data collection is ongoing]). Data from 15 research and memory clinic studies were pooled and harmonized. Participants included individuals for whom data on age, cognitive status, amyloid status, and presence of CMBs were available. Data were analyzed from October 22, 2023, to April 26, 2024. MAIN OUTCOMES AND MEASURES: The main outcomes were age, cognitive status, amyloid status and presence, location, and number of CMBs. Presence of amyloid pathology was determined based on 42 amino acid-long form of amyloid-β peptide (Aβ42) levels in cerebrospinal fluid or on amyloid-positron emission tomography. Presence and, in a subset, location (lobar vs deep) and number of CMBs were determined on magnetic resonance imaging (locally with visual rating). RESULTS: Among 4080 participants included in the analysis, the mean (SD) age was 66.5 (8.9) years, and 2241 (54.9%) were female. A total of 2973 participants had no cognitive impairment (cognitive unimpairment [CU]), and 1107 had mild cognitive impairment (MCI) or AD dementia (ADD). One thousand five hundred and thirteen participants (37.1%) had amyloid pathology, 1368 of 3599 (38.0%) with data available were APOE ε4 carriers, and 648 (15.9%) had CMBs. In the CU group, amyloid pathology and APOE ε4 copy number were not associated with presence of any, no more than 4, or fewer than 2 CMBs but were associated with increased odds of lobar CMBs (odds ratio [OR] for amyloid, 1.42 [95% CI, 1.20-1.69], P < .001; OR for 2 vs 0 alleles, 1.81 [95% CI, 1.19-2.74], P = .006; OR for 1 vs 0 alleles, 1.10 [95% CI, 0.83-1.46], P = .49; and OR for 2 vs 1 allele, 1.64 [95% CI, 0.90-2.97], P = .11; overall P = .02). In the MCI-ADD group, amyloid pathology was associated with presence of any CMBs (OR, 1.51 [95% CI, 1.17-1.96], P = .002), no more than 4 CMBs (OR, 1.44 [95% CI, 1.18-1.82], P = .002), and fewer than 2 CMBs (OR 1.34 [95% CI, 1.03-1.74], P = .03) but not lobar CMBs. APOE ε4 copy number was associated with presence of any (OR for 2 vs 0 alleles, 1.72 [95% CI, 0.88-3.35], P = .11; OR for 1 vs 0 alleles, 0.78 [95% CI, 0.59-1.04], P = .09; and OR for 2 vs 1 allele, 2.20 [95% CI, 1.32-3.67], P = .002; overall P < .001) and no more than 4 CMBs (OR for 2 vs 0 alleles, 1.31 [95% CI, 0.64-2.68], P = .45; OR for 1 vs 0 alleles, 0.75 [95% CI, 0.54-1.04], P = .08; and OR for 2 vs 1 allele, 1.76 [95% CI, 0.97-3.19], P = .06; overall P = .03) but not with fewer than 2 or lobar CMBs. Prevalence estimates of CMBs ranged from 6% at 50 years of age in a non-APOE ε4 allele carrier with no amyloid pathology and no cognitive impairment to 52% at 90 years of age in an APOE ε4 homozygote carrier with amyloid pathology and cognitive impairment. CONCLUSIONS AND RELEVANCE: In this cross-sectional study of 4080 participants, prevalence estimates of CMBs were associated with amyloid status, APOE ε4 copy number, and age. CMB prevalence estimates may help inform safety evaluations for antiamyloid clinical trials.
Ace Alzheimer Center Barcelona Universitat Internacional de Catalunya Barcelona Spain
Amsterdam Neuroscience Brain Imaging Amsterdam the Netherlands
Banner Alzheimer's Institute Phoenix Arizona
Center for Vital Longevity School of Behavioral and Brain Sciences University of Texas at Dallas
Cerebriu A S Copenhagen Denmark
Clinical Neurochemistry Laboratory Sahlgrenska University Hospital Mölndal Sweden
Department of Diagnostic Radiology Copenhagen University Hospital Rigshospitalet Copenhagen Denmark
Department of Medicine and Psychiatry University of Cantabria Santander Santander Spain
Department of Neurobiology Care Sciences and Society Karolinska Institutet Stockholm Sweden
Department of Neurology Columbia University New York New York
Department of Neurology Marqués de Valdecilla University Hospital and IDIVAL Santander Spain
Department of Nuclear Medicine Marqués de Valdecilla University Hospital and IDIVAL Santander Spain
Department of Radiology Leiden University Medical Center Leiden the Netherlands
Hong Kong Center for Neurodegenerative Diseases Hong Kong China
Memory Unit Neurology Department Hospital de la Santa Creu i Sant Pau Barcelona Spain
Research and Development Biogen Inc Cambridge Massachusetts
UK Dementia Research Institute London United Kingdom
Wisconsin Alzheimer's Institute School of Medicine and Public Health University of Wisconsin Madison
Zobrazit více v PubMed
Sperling RA, Jack CR Jr, Black SE, et al. . Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: recommendations from the Alzheimer’s Association Research Roundtable Workgroup. Alzheimers Dement. 2011;7(4):367-385. doi:10.1016/j.jalz.2011.05.2351 PubMed DOI PMC
Solopova E, Romero-Fernandez W, Harmsen H, et al. . Fatal iatrogenic cerebral β-amyloid-related arteritis in a woman treated with lecanemab for Alzheimer’s disease. Nat Commun. 2023;14(1):8220. doi:10.1038/s41467-023-43933-5 PubMed DOI PMC
Jansen WJ, Janssen O, Tijms BM, et al. ; Amyloid Biomarker Study Group . Prevalence estimates of amyloid abnormality across the Alzheimer disease clinical spectrum. JAMA Neurol. 2022;79(3):228-243. doi:10.1001/jamaneurol.2021.5216 PubMed DOI
Jansen WJ, Ossenkoppele R, Knol DL, et al. ; Amyloid Biomarker Study Group . Prevalence of cerebral amyloid pathology in persons without dementia: a meta-analysis. JAMA. 2015;313(19):1924-1938. doi:10.1001/jama.2015.4668 PubMed DOI PMC
Ossenkoppele R, Jansen WJ, Rabinovici GD, et al. ; Amyloid PET Study Group . Prevalence of amyloid PET positivity in dementia syndromes: a meta-analysis. JAMA. 2015;313(19):1939-1949. doi:10.1001/jama.2015.4669 PubMed DOI PMC
Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256(3):183-194. doi:10.1111/j.1365-2796.2004.01388.x PubMed DOI
Winblad B, Palmer K, Kivipelto M, et al. . Mild cognitive impairment–beyond controversies, towards a consensus: report of the International Working Group on Mild Cognitive Impairment. J Intern Med. 2004;256(3):240-246. doi:10.1111/j.1365-2796.2004.01380.x PubMed DOI
Kim YJ, Kim HJ, Park JH, et al. . Synergistic effects of longitudinal amyloid and vascular changes on lobar microbleeds. Neurology. 2016;87(15):1575-1582. doi:10.1212/WNL.0000000000003220 PubMed DOI
Chiang GC, Cruz Hernandez JC, Kantarci K, Jack CR Jr, Weiner MW; Alzheimer’s Disease Neuroimaging Initiative . Cerebral microbleeds, CSF p-tau, and cognitive decline: significance of anatomic distribution. AJNR Am J Neuroradiol. 2015;36(9):1635-1641. doi:10.3174/ajnr.A4351 PubMed DOI PMC
Benedictus MR, Goos JD, Binnewijzend MA, et al. . Specific risk factors for microbleeds and white matter hyperintensities in Alzheimer’s disease. Neurobiol Aging. 2013;34(11):2488-2494. doi:10.1016/j.neurobiolaging.2013.04.023 PubMed DOI
Coomans EM, van Westen D, Binette AP, et al. . The role of cerebrovascular pathology in the association between amyloid-β and tau in cognitively unimpaired and impaired individuals. Alzheimers Dement. 2023;19(S14). doi:10.1002/alz.079060 DOI
Goos JD, Kester MI, Barkhof F, et al. . Patients with Alzheimer disease with multiple microbleeds: relation with cerebrospinal fluid biomarkers and cognition. Stroke. 2009;40(11):3455-3460. doi:10.1161/STROKEAHA.109.558197 PubMed DOI
Graff-Radford J, Botha H, Rabinstein AA, et al. . Cerebral microbleeds: prevalence and relationship to amyloid burden. Neurology. 2019;92(3):e253-e262. doi:10.1212/WNL.0000000000006780 PubMed DOI PMC
McCarter SJ, Lesnick TG, Lowe VJ, et al. . Association between plasma biomarkers of amyloid, tau, and neurodegeneration with cerebral microbleeds. J Alzheimers Dis. 2022;87(4):1537-1547. doi:10.3233/JAD-220158 PubMed DOI PMC
Noguchi-Shinohara M, Komatsu J, Samuraki M, et al. . Cerebral amyloid angiopathy-related microbleeds and cerebrospinal fluid biomarkers in Alzheimer’s disease. J Alzheimers Dis. 2017;55(3):905-913. doi:10.3233/JAD-160651 PubMed DOI
Sparacia G, Agnello F, La Tona G, Iaia A, Midiri F, Sparacia B. Assessment of cerebral microbleeds by susceptibility-weighted imaging in Alzheimer’s disease patients: a neuroimaging biomarker of the disease. Neuroradiol J. 2017;30(4):330-335. doi:10.1177/1971400916689483 PubMed DOI PMC
Poels MM, Vernooij MW, Ikram MA, et al. . Prevalence and risk factors of cerebral microbleeds: an update of the Rotterdam scan study. Stroke. 2010;41(10)(suppl):S103-S106. doi:10.1161/STROKEAHA.110.595181 PubMed DOI