Physiology and Pathobiology of Perivascular Adipose Tissue: Inflammation-based Atherogenesis
Language English Country Czech Republic Media print
Document type Journal Article, Review
PubMed
39903884
PubMed Central
PMC11835208
DOI
10.33549/physiolres.935384
PII: 935384
Knihovny.cz E-resources
- MeSH
- Atherosclerosis * pathology metabolism physiopathology MeSH
- Blood Vessels pathology physiopathology MeSH
- Humans MeSH
- Adipose Tissue * pathology metabolism physiopathology physiology MeSH
- Inflammation * pathology metabolism physiopathology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Perivascular adipose tissue (PVAT) envelops the majority of systemic vessels, providing crucial mechanical support and vessel protection. In physiological conditions, PVAT releases various bioactive molecules, contributing to the anti-inflammatory environment around neighboring vessels. However, in conditions like obesity, PVAT can exacerbate cardiovascular issues such as atherosclerosis. Communication between PVAT and nearby vessels is bidirectional, with PVAT responding dynamically to signals from the vasculature. This responsiveness positions PVAT as a promising indicator of vascular inflammation. Recently, the role of PVAT in the CVD risk prediction is also greatly discussed. The objective of this review is to summarize the current state of knowledge about the PVAT function, its role in physiologic and pathophysiologic processes and its potential in CVD risk prediction. Keywords: Perivascular adipose tissue, inflammation, atherogenesis, Fat attenuation index.
See more in PubMed
Lehman SJ, Massaro JM, Schlett CL, O’Donnell CJ, Hoffmann U, Fox CS. Peri-aortic fat, cardiovascular disease risk factors, and aortic calcification: the Framingham Heart Study. Atherosclerosis. 2010;210:656–661. doi: 10.1016/j.atherosclerosis.2010.01.007. PubMed DOI PMC
Jéquier E, Gygax P-H, Pittet P, Vannotti A. Increased thermal body insulation: relationship to the development of obesity. J Appl Physiol. 1974;36:674–678. doi: 10.1152/jappl.1974.36.6.674. PubMed DOI
Sethi JK, Vidal-Puig AJ. Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 2007;48:1253–1262. doi: 10.1194/jlr.R700005-JLR200. PubMed DOI PMC
Pogodziński D, Ostrowska L, Smarkusz-Zarzecka J, Zyśk B. Secretome of adipose tissue as the key to understanding the endocrine function of adipose tissue. Int J Mol Sci. 2022;23:2309. doi: 10.3390/ijms23042309. PubMed DOI PMC
Poledne R, Lesna IK, Čejková S. Adipose tissue and atherosclerosis. Physiol Res. 2015:64. doi: 10.33549/physiolres.933152. PubMed DOI
Gao Y-J. Dual modulation of vascular function by perivascular adipose tissue and its potential correlation with adiposity/lipoatrophy-related vascular dysfunction. Curr Pharm Des. 2007;13:2185–2192. doi: 10.2174/138161207781039634. PubMed DOI
Szasz T, Webb RC. Perivascular adipose tissue: more than just structural support. Clin Sci. 2012;122:1–12. doi: 10.1042/CS20110151. PubMed DOI PMC
Siegel-Axel D, Häring H. Perivascular adipose tissue: an unique fat compartment relevant for the cardiometabolic syndrome. Rev Endocr Metab Disord. 2016;17:51–60. doi: 10.1007/s11154-016-9346-3. PubMed DOI
Chaldakov GN, Beltowsky J, Ghenev PI, Fiore M, Panayotov P, Rančič G, Aloe L. Adipoparacrinology-vascular periadventitial adipose tissue (tunica adiposa) as an example. Cell Biol Int. 2012;36:327–330. doi: 10.1042/CBI20110422. PubMed DOI
Antonopoulos AS, Sanna F, Sabharwal N, Thomas S, Oikonomou EK, Herdman L, Margaritis M, Shirodaria C, Kampoli A-M, Akoumianakis I.Detecting human coronary inflammation by imaging perivascular fat Sci Transl Med 20179eaal265810.1126/scitranslmed.aal2658 PubMed DOI
Oikonomou EK, Marwan M, Desai MY, Mancio J, Alashi A, Centeno EH, Thomas S, Herdman L, Kotanidis CP, Thomas KE. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data. The Lancet. 2018;392:929–939. doi: 10.1016/S0140-6736(18)31114-0. PubMed DOI PMC
Calcaterra V, Cena H, Garella V, Loperfido F, Chillemi C, Manuelli M, Mannarino S, Zuccotti G. Assessment of epicardial fat in children: its role as a cardiovascular risk factor and how it is influenced by lifestyle habits. Nutrients. 2024;16:420. doi: 10.3390/nu16030420. PubMed DOI PMC
Li X, Ma Z, Zhu YZ. Regional heterogeneity of perivascular adipose tissue: morphology, origin, and secretome. Front Pharmacol. 2021;12:697720. doi: 10.3389/fphar.2021.697720. PubMed DOI PMC
Sanchez-Gurmaches J, Guertin DA. Adipocyte lineages: tracing back the origins of fat. Biochim Biophys Acta Mol Basis Dis. 2014;1842:340–351. doi: 10.1016/j.bbadis.2013.05.027. PubMed DOI PMC
Angueira AR, Sakers AP, Holman CD, Cheng L, Arbocco MN, Shamsi F, Lynes MD, Shrestha R, Okada C, Batmanov K. Defining the lineage of thermogenic perivascular adipose tissue. Nat Metab. 2021;3:469–484. doi: 10.1038/s42255-021-00380-0. PubMed DOI PMC
Ye M, Ruan C-C, Fu M, Xu L, Chen D, Zhu M, Zhu D, Gao P. Developmental and functional characteristics of the thoracic aorta perivascular adipocyte. Cell Mol Life Sci. 2019;76:777–789. doi: 10.1007/s00018-018-2970-1. PubMed DOI PMC
Chang L, Villacorta L, Li R, Hamblin M, Xu W, Dou C, Zhang J, Wu J, Zeng R, Chen YE. Loss of perivascular adipose tissue on peroxisome proliferator-activated receptor-γ deletion in smooth muscle cells impairs intravascular thermoregulation and enhances atherosclerosis. Circulation. 2012;126:1067–1078. doi: 10.1161/CIRCULATIONAHA.112.104489. PubMed DOI PMC
Shi K, Anmin R, Cai J, Qi Y, Han W, Li M, Zhang G, Zhang S, Fu L, Han W. Ascending aortic perivascular adipose tissue inflammation associates with aortic valve disease. J Cardiol. 2022;80:240–248. doi: 10.1016/j.jjcc.2022.04.004. PubMed DOI
Gruzdeva O, Borodkina D, Uchasova E, Dyleva Y, Barbarash O. Localization of fat depots and cardiovascular risk. Lipids Health Dis. 2018;17:1–9. doi: 10.1186/s12944-018-0856-8. PubMed DOI PMC
Chatterjee TK, Stoll LL, Denning GM, Harrelson A, Blomkalns AL, Idelman G, Rothenberg FG, Neltner B, Romig-Martin SA, Dickson EW. Proinflammatory phenotype of perivascular adipocytes: influence of high-fat feeding. Circ Res. 2009;104:541–549. doi: 10.1161/CIRCRESAHA.108.182998. PubMed DOI PMC
Sacks HS, Fain JN, Bahouth SW, Ojha S, Frontini A, Budge H, Cinti S, Symonds ME. Adult epicardial fat exhibits beige features. J Clin Endocrinol Metab. 2013;98:E1448–E1455. doi: 10.1210/jc.2013-1265. PubMed DOI
Sacks H, Symonds ME. Anatomical locations of human brown adipose tissue: functional relevance and implications in obesity and type 2 diabetes. Diabetes. 2013;62:1783–1790. doi: 10.2337/db12-1430. PubMed DOI PMC
Chechi K, Voisine P, Mathieu P, Laplante M, Bonnet S, Picard F, Joubert P, Richard D. Functional characterization of the Ucp1-associated oxidative phenotype of human epicardial adipose tissue. Sci Rep. 2017;7:15566. doi: 10.1038/s41598-017-15501-7. PubMed DOI PMC
Padilla J, Jenkins NT, Vieira-Potter VJ, Laughlin MH. Divergent phenotype of rat thoracic and abdominal perivascular adipose tissues. Am J Physiol Regul Integr Comp Physiol. 2013;304:R543–R552. doi: 10.1152/ajpregu.00567.2012. PubMed DOI PMC
Police SB, Thatcher SE, Charnigo R, Daugherty A, Cassis LA. Obesity promotes inflammation in periaortic adipose tissue and angiotensin II-induced abdominal aortic aneurysm formation. Arterioscler Thromb Vasc Biol. 2009;29:1458–1464. doi: 10.1161/ATVBAHA.109.192658. PubMed DOI PMC
Watts SW, Shaw S, Burnett R, Dorrance AM. Indoleamine 2, 3-diooxygenase in periaortic fat: mechanisms of inhibition of contraction. Am J Physiol Heart Circ Physiol. 2011;301:H1236–H1247. doi: 10.1152/ajpheart.00384.2011. PubMed DOI PMC
Kumar RK, Jin Y, Watts SW, Rockwell CE. Naïve, regulatory, activated, and memory immune cells Co-exist in PVATs that are comparable in density to non-PVAT fats in health. Front Physiol. 2020;11:58. doi: 10.3389/fphys.2020.00058. PubMed DOI PMC
Nosalski R, Guzik TJ. Perivascular adipose tissue inflammation in vascular disease. Br J of Pharmacol. 2017;174:3496–3513. doi: 10.1111/bph.13705. PubMed DOI PMC
Engelbertsen D, Foks AC, Alberts-Grill N, Kuperwaser F, Chen T, Lederer JA, Jarolim P, Grabie N, Lichtman AH. Expansion of CD25+ innate lymphoid cells reduces atherosclerosis. Arterioscler Thromb Vasc Biol. 2015;35:2526–2535. doi: 10.1161/ATVBAHA.115.306048. PubMed DOI PMC
Guzik TJ, Skiba DS, Touyz RM, Harrison DG. The role of infiltrating immune cells in dysfunctional adipose tissue. Cardiovasc Res. 2017;113:1009–1023. doi: 10.1093/cvr/cvx108. PubMed DOI PMC
Kralova Lesna I, Petras M, Cejkova S, Kralova A, Fronek J, Janousek L, Thieme F, Tyll T, Poledne R. Cardiovascular disease predictors and adipose tissue macrophage polarization: Is there a link? Eur J Prev Cardiol. 2018;25:328–334. doi: 10.1177/2047487317743355. PubMed DOI
Kralova Lesna I, Kralova A, Cejkova S, Fronek J, Petras M, Sekerkova A, Thieme F, Janousek L, Poledne R. Characterisation and comparison of adipose tissue macrophages from human subcutaneous, visceral and perivascular adipose tissue. J Transl Med. 2016;14:1–9. doi: 10.1186/s12967-016-0962-1. PubMed DOI PMC
Farias-Itao DS, Pasqualucci CA, Nishizawa A, da Silva LFF, Campos FM, Bittencourt MS, da Silva KCS, Leite REP, Grinberg LT, Ferretti-Rebustini REdL. B lymphocytes and macrophages in the perivascular adipose tissue are associated with coronary atherosclerosis: an autopsy study. J Am Heart Assoc. 2019;8:e013793. doi: 10.1161/JAHA.119.013793. PubMed DOI PMC
Fu M, Shu S, Peng Z, Liu X, Chen X, Zeng Z, Yang Y, Cui H, Zhao R, Wang X. Single-Cell RNA sequencing of coronary perivascular adipose tissue from end-stage heart failure patients identifies SPP1+ macrophage subpopulation as a target for alleviating fibrosis. Arterioscler Thromb Vasc Biol. 2023;43:2143–2164. doi: 10.1161/ATVBAHA.123.319828. PubMed DOI PMC
Čejková S, Lesná IK, Froněk J, Janoušek L, Králová A, Ždychová J, Poledne R. Pro-inflammatory gene expression in adipose tissue of patients with atherosclerosis. Physiol Res. 2017;66:633–640. doi: 10.33549/physiolres.933352. PubMed DOI
Hillock-Watling C, Gotlieb AI. The pathobiology of perivascular adipose tissue (PVAT), the fourth layer of the blood vessel wall. Cardiovasc Pathol. 2022:107459. doi: 10.1016/j.carpath.2022.107459. PubMed DOI
Withers SB, Forman R, Meza-Perez S, Sorobetea D, Sitnik K, Hopwood T, Lawrence CB, Agace WW, Else KJ, Heagerty AM. Eosinophils are key regulators of perivascular adipose tissue and vascular functionality. Sci Rep. 2017;7:44571. doi: 10.1038/srep44571. PubMed DOI PMC
Saxton SN, Withers SB, Heagerty AM. Emerging roles of sympathetic nerves and inflammation in perivascular adipose tissue. Cardiovasc Drugs Ther. 2019;33:245–259. doi: 10.1007/s10557-019-06862-4. PubMed DOI PMC
Costa RM, Neves K, Lopes R, Alves J, Fedoce A, Silva J, Rodrigues D, Prado D, Schnaider A, Cunha F. Neutrophil extracellular traps contribute to perivascular adipose tissue dysfunction in high-fat diet obese mice. FASEB J. 2022:36. doi: 10.1096/fasebj.2022.36.S1.R4984. DOI
Shah K, Ignacio A, McCoy KD, Harris NL. The emerging roles of eosinophils in mucosal homeostasis. Mucosal immunol. 2020;13:574–583. doi: 10.1038/s41385-020-0281-y. PubMed DOI
Vohralik EJ, Psaila AM, Knights AJ, Quinlan KG. EoTHINophils: eosinophils as key players in adipose tissue homeostasis. Clin Exp Pharmacol Physiol. 2020;47:1495–1505. doi: 10.1111/1440-1681.13304. PubMed DOI
Kirabo A, Fontana V, De Faria AP, Loperena R, Galindo CL, Wu J, Bikineyeva AT, Dikalov S, Xiao L, Chen W. DC isoketal-modified proteins activate T cells and promote hypertension. J Clin Invest. 2014;124:4642–4656. doi: 10.1172/JCI74084. PubMed DOI PMC
Qiu T, Li M, Tanner MA, Yang Y, Sowers JR, Korthuis RJ, Hill MA. Depletion of dendritic cells in perivascular adipose tissue improves arterial relaxation responses in type 2 diabetic mice. Metabolism. 2018;85:76–89. doi: 10.1016/j.metabol.2018.03.002. PubMed DOI PMC
Nosalski R, Mikolajczyk T, Siedlinski M, Saju B, Koziol J, Maffia P, Guzik T. Nox1/4 inhibition exacerbates age dependent perivascular inflammation and fibrosis in a model of spontaneous hypertension. Pharmacol Res. 2020;161:105235. doi: 10.1016/j.phrs.2020.105235. PubMed DOI PMC
Wensveen FM, Jelenčić V, Valentić S, Šestan M, Wensveen TT, Theurich S, Glasner A, Mendrila D, Štimac D, Wunderlich FT. NK cells link obesity-induced adipose stress to inflammation and insulin resistance. Nat immunol. 2015;16:376–385. doi: 10.1038/ni.3120. PubMed DOI
Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie AN, Mebius RE. Innate lymphoid cells: 10 years on. Cell. 2018;174:1054–1066. doi: 10.1016/j.cell.2018.07.017. PubMed DOI
Kral M, van der Vorst EP, Surnov A, Weber C, Döring Y. ILC2-mediated immune crosstalk in chronic (vascular) inflammation. Front Immunol. 2023;14:1326440. doi: 10.3389/fimmu.2023.1326440. PubMed DOI PMC
Piacentini L, Vavassori C, Werba PJe, Saccu C, Spirito R, Colombo GI. Deciphering abdominal aortic diseases through T-cell clonal repertoire of perivascular adipose tissue. bioRxiv. 2023 doi: 10.1101/2023.12.05.570098. 2023.2012. 2005.570098. PubMed DOI PMC
Sagan A, Mikolajczyk TP, Mrowiecki W, MacRitchie N, Daly K, Meldrum A, Migliarino S, Delles C, Urbanski K, Filip G. T cells are dominant population in human abdominal aortic aneurysms and their infiltration in the perivascular tissue correlates with disease severity. Front Immunol. 2019;10:1979. doi: 10.3389/fimmu.2019.01979. PubMed DOI PMC
Srikakulapu P, McNamara CA. B lymphocytes and adipose tissue inflammation. Arterioscler Thromb Vasc Biol. 2020;40:1110–1122. doi: 10.1161/ATVBAHA.119.312467. PubMed DOI PMC
Srikakulapu P, Upadhye A, Rosenfeld SM, Marshall MA, McSkimming C, Hickman AW, Mauldin IS, Ailawadi G, Lopes MBS, Taylor AM. Perivascular adipose tissue harbors atheroprotective IgM-producing B cells. Front Physiol. 2017;8:719. doi: 10.3389/fphys.2017.00719. PubMed DOI PMC
Farias-Itao DS, Pasqualucci CA, Andrade RA, Da Silva LFF, Estevam MY, Campo AB, Suemoto CK. Increased Ratio of B2/B1-like Lymphocytes in the Perivascular Adipose Tissue Could Contribute to Plaque Destabilization in Human Coronary Arteries: Preliminary Results. Circulation. 2021;144:A9162–A9162. doi: 10.1161/circ.144.suppl_1.9162. DOI
Cattaneo P, Mukherjee D, Spinozzi S, Zhang L, Larcher V, Stallcup WB, Kataoka H, Chen J, Dimmeler S, Evans SM. Parallel lineage-tracing studies establish fibroblasts as the prevailing in vivo adipocyte progenitor. Cell Rep. 2020;30:571–582. e572. doi: 10.1016/j.celrep.2019.12.046. PubMed DOI
Attwell D, Mishra A, Hall CN, O’Farrell FM, Dalkara T. What is a pericyte? J Cereb Blood Flow Metab. 2016;36:451–455. doi: 10.1177/0271678X15610340. PubMed DOI PMC
Shi N, Xia J, Wang C, Zhou J, Huang J, Hu M, Liao J. Aerobic exercise prevents arterial stiffness and attenuates hyperexcitation of sympathetic nerves in perivascular adipose tissue of mice after transverse aortic constriction. Int J Mol Sci. 2022;23:11189. doi: 10.3390/ijms231911189. PubMed DOI PMC
Fiet MD, Azouz B, Robbers LF, Niessen HW, Krijnen PA. Increased epicardial nerves and decreased intramyocardial PVAT in acute myocardial infarction. Eur J Clin Invest. 2023;53:e14057. doi: 10.1111/eci.14057. PubMed DOI
Leandro A, Queiroz M, Azul L, Seiça R, Sena CM. Omentin: A novel therapeutic approach for the treatment of endothelial dysfunction in type 2 diabetes. Free Radic Biol Med. 2021;162:233–242. doi: 10.1016/j.freeradbiomed.2020.10.021. PubMed DOI
Gruzdeva OV, Dyleva YA, Belik EV, Sinitsky MY, Stasev AN, Kokov AN, Brel NK, Krivkina EO, Bychkova EE, Tarasov RS. Relationship between epicardial and coronary adipose tissue and the expression of adiponectin, leptin, and interleukin 6 in patients with coronary artery disease. J Pers Med. 2022;12:129. doi: 10.3390/jpm12020129. PubMed DOI PMC
Souza DS, Dashwood MR, Tsui JC, Filbey D, Bodin L, Johansson B, Borowiec J. Improved patency in vein grafts harvested with surrounding tissue: results of a randomized study using three harvesting techniques. Ann Thorac Surg. 2002;73:1189–1195. doi: 10.1016/S0003-4975(02)03425-2. PubMed DOI
Samano N, Geijer H, Liden M, Fremes S, Bodin L, Souza D. The no-touch saphenous vein for coronary artery bypass grafting maintains a patency, after 16 years, comparable to the left internal thoracic artery: a randomized trial. J Thorac Cardiovasc Surg. 2015;150:880–888. doi: 10.1016/j.jtcvs.2015.07.027. PubMed DOI
Fernandez-Alfonso MS, Souza DS, Dreifaldt M, Dashwood RM. Commentary: perivascular fat and improved vein graft patency in patients undergoing coronary artery bypass surgery. Curr Vasc Pharmacol. 2016;14:308–312. doi: 10.2174/1570161114666160513150444. PubMed DOI
Szasz T, Bomfim GF, Webb RC. The influence of perivascular adipose tissue on vascular homeostasis. Vasc Health Risk Manag. 2013:105–116. doi: 10.2147/VHRM.S33760. PubMed DOI PMC
Kotzbeck P, Giordano A, Mondini E, Murano I, Severi I, Venema W, Cecchini MP, Kershaw EE, Barbatelli G, Haemmerle G. Brown adipose tissue whitening leads to brown adipocyte death and adipose tissue inflammation [S] J Lipid Res. 2018;59:784–794. doi: 10.1194/jlr.M079665. PubMed DOI PMC
Xiong W, Zhao X, Villacorta L, Rom O, Garcia-Barrio MT, Guo Y, Fan Y, Zhu T, Zhang J, Zeng R. Brown adipocyte specific PPARγ deletion impairs PVAT development and enhances atherosclerosis in mice. Arterioscler Thromb Vasc Biol. 2018;38:1738. doi: 10.1161/ATVBAHA.118.311367. PubMed DOI PMC
Zhang W-C, Qin F, Wang X-J, Liu Z-F, Zhu L, Zeng A, Zhang M-Z, Yu N-Z, Long X. Adipose-derived stromal cells attenuate adipose inflammation in obesity through adipocyte browning and polarization of M2 macrophages. Mediators Inflamm. 2019:2019. doi: 10.1155/2019/1731540. PubMed DOI PMC
Adachi Y, Ueda K, Nomura S, Ito K, Katoh M, Katagiri M, Yamada S, Hashimoto M, Zhai B, Numata G. Beiging of perivascular adipose tissue regulates its inflammation and vascular remodeling. Nat Commun. 2022;13:5117. doi: 10.1038/s41467-022-32658-6. PubMed DOI PMC
Numaguchi R, Furuhashi M, Matsumoto M, Sato H, Yanase Y, Kuroda Y, Harada R, Ito T, Higashiura Y, Koyama M. Differential phenotypes in perivascular adipose tissue surrounding the internal thoracic artery and diseased coronary artery. J Am Heart Assoc. 2019;8:e011147. doi: 10.1161/JAHA.118.011147. PubMed DOI PMC
Sowka A, Dobrzyn P. Role of perivascular adipose tissue-derived adiponectin in vascular homeostasis. Cells. 2021;10:1485. doi: 10.3390/cells10061485. PubMed DOI PMC
Turaihi AH, Serné EH, Molthoff CF, Koning JJ, Knol J, Niessen HW, Goumans MJT, van Poelgeest EM, Yudkin JS, Smulders YM. Perivascular adipose tissue controls insulin-stimulated perfusion, mitochondrial protein expression, and glucose uptake in muscle through adipomuscular arterioles. Diabetes. 2020;69:603–613. doi: 10.2337/db18-1066. PubMed DOI
Nóbrega N, Araújo NF, Reis D, Facine LM, Miranda CAS, Mota GC, Aires RD, Capettini LdSA, dos Santos Cruz J, Bonaventura D. Hydrogen peroxide and nitric oxide induce anticontractile effect of perivascular adipose tissue via renin angiotensin system activation. Nitric Oxide. 2019;84:50–59. doi: 10.1016/j.niox.2018.12.011. PubMed DOI
Ajuwon KM, Spurlock ME. Adiponectin inhibits LPS-induced NF-κB activation and IL-6 production and increases PPARγ2 expression in adipocytes. Am J Physiol Regul Integr Comp Physiol. 2005;288:R1220–R1225. doi: 10.1152/ajpregu.00397.2004. PubMed DOI
Febriza A, Ridwan R, As’ ad S, Kasim VN, Idrus HH. Adiponectin and its role in inflammatory process of obesity. Mol Cell Biomed Sci. 2019;3:60–66. doi: 10.21705/mcbs.v3i2.66. DOI
Bushra S, Al-Sadeq DW, Bari R, Sahara A, Fadel A, Rizk N. Adiponectin ameliorates hyperglycemia-induced retinal endothelial dysfunction, highlighting pathways, regulators, and networks. J Inflamm Res. 2022:3135–3166. doi: 10.2147/JIR.S358594. PubMed DOI PMC
Wolf AM, Wolf D, Rumpold H, Enrich B, Tilg H. Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem Biophys Res Commun. 2004;323:630–635. doi: 10.1016/j.bbrc.2004.08.145. PubMed DOI
Gruzdeva O, Akbasheva O, Dyleva YA, Antonova L, Matveeva V, Uchasova E, Fanaskova E, Karetnikova V, Ivanov S, Barbarash O. Adipokine and cytokine profiles of epicardial and subcutaneous adipose tissue in patients with coronary heart disease. Bull Exp Biol Med. 2017;163:608–611. doi: 10.1007/s10517-017-3860-5. PubMed DOI
Mandal P, Pratt BT, Barnes M, McMullen MR, Nagy LE. Molecular mechanism for adiponectin-dependent M2 macrophage polarization: link between the metabolic and innate immune activity of full-length adiponectin. J Biol Chem. 2011;286:13460–13469. doi: 10.1074/jbc.M110.204644. PubMed DOI PMC
Moe KT, Naylynn TM, Yin NO, Khairunnisa K, Allen JC, Wong MC, Chin-Dusting J, Wong P. Tumor necrosis factor-α induces aortic intima-media thickening via perivascular adipose tissue inflammation. J Vasc Res. 2013;50:228–237. doi: 10.1159/000350542. PubMed DOI
Davis R, Pillai S, Lawrence N, Chellappan SP. TNF-α-mediated proliferation of vascular smooth muscle cells involves Raf-1-mediated inactivation of Rb and transcription of E2F1-regulated genes. Cell Cycle. 2012;11:109–118. doi: 10.4161/cc.11.1.18473. PubMed DOI PMC
Selzman CH, Shames BD, McIntyre RC, Jr, Banerjee A, Harken AH. The NFκB inhibitory peptide, IκBα, prevents human vascular smooth muscle proliferation. Ann Thorac Surg. 1999;67:1227–1231. doi: 10.1016/S0003-4975(99)00252-0. PubMed DOI
Cejkova S, Kubatova H, Thieme F, Janousek L, Fronek J, Poledne R, Kralova Lesna I. The effect of cytokines produced by human adipose tissue on monocyte adhesion to the endothelium. Cell Adh Migr. 2019;13:292–301. doi: 10.1080/19336918.2019.1644856. PubMed DOI PMC
Lavie CJ, Milani RV, Ventura HO. Obesity and cardiovascular disease: risk factor, paradox, and impact of weight loss. J Am Coll Cardiol. 2009;53:1925–1932. doi: 10.1016/j.jacc.2008.12.068. PubMed DOI
Bakhtiyari M, Kazemian E, Kabir K, Hadaegh F, Aghajanian S, Mardi P, Ghahfarokhi NT, Ghanbari A, Mansournia MA, Azizi F. Contribution of obesity and cardiometabolic risk factors in developing cardiovascular disease: A population-based cohort study. Sci Rep. 2022;12:1544. doi: 10.1038/s41598-022-05536-w. PubMed DOI PMC
Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, Wang S, Fortier M, Greenberg AS, Obin MS. Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res. 2005;46:2347–2355. doi: 10.1194/jlr.M500294-JLR200. PubMed DOI
Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest. 2007;117:175–184. doi: 10.1172/JCI29881. PubMed DOI PMC
Garaulet M, Hernandez-Morante J, Lujan J, Tebar F, Zamora S. Relationship between fat cell size and number and fatty acid composition in adipose tissue from different fat depots in overweight/obese humans. Int J Obes. 2006;30:899–905. doi: 10.1038/sj.ijo.0803219. PubMed DOI
Majka Z, Czamara K, Janus J, Kępczyński M, Kaczor A. Prominent hypertrophy of perivascular adipocytes due to short-term high fat diet. Biochim Biophys Acta Mol Basis Dis. 2022;1868:166315. doi: 10.1016/j.bbadis.2021.166315. PubMed DOI
Schusterova I, Leenen F, Jurko A, Sabol F, Takacova J. Epicardial adipose tissue and cardiometabolic risk factors in overweight and obese children and adolescents. Pediatr Obes. 2014;9:63–70. doi: 10.1111/j.2047-6310.2012.00134.x. PubMed DOI
Margaritis M, Antonopoulos AS, Digby J, Lee R, Reilly S, Coutinho P, Shirodaria C, Sayeed R, Petrou M, De Silva R. Interactions between vascular wall and perivascular adipose tissue reveal novel roles for adiponectin in the regulation of endothelial nitric oxide synthase function in human vessels. Circulation. 2013;127:2209–2221. doi: 10.1161/CIRCULATIONAHA.112.001133. PubMed DOI
Simons PJ, van den Pangaart PS, Aerts JM, Boon L. Pro-inflammatory delipidizing cytokines reduce adiponectin secretion from human adipocytes without affecting adiponectin oligomerization. J Endocrinol. 2007;192:289–299. doi: 10.1677/JOE-06-0047. PubMed DOI
Brooks RA. A quantitative theory of the Hounsfield unit and its application to dual energy scanning. J Comput Assist Tomogr. 1977;1:487–493. doi: 10.1097/00004728-197710000-00016. PubMed DOI
Tu Y-B, Gu M, Zhou S-Q, Xie G, Liu L-L, Deng F-B, Li K. Pericoronary adipose tissue attenuation in patients with acute aortic dissection based on coronary computed tomography angiography. Quant Imaging Med Surg. 2024;14:31. doi: 10.21037/qims-23-253. PubMed DOI PMC
Goeller M, Achenbach S, Cadet S, Kwan AC, Commandeur F, Slomka PJ, Gransar H, Albrecht MH, Tamarappoo BK, Berman DS. Pericoronary adipose tissue computed tomography attenuation and high-risk plaque characteristics in acute coronary syndrome compared with stable coronary artery disease. JAMA cardiol. 2018;3:858–863. doi: 10.1001/jamacardio.2018.1997. PubMed DOI PMC
Niccoli G, Scalone G, Crea F. Acute myocardial infarction with no obstructive coronary atherosclerosis: mechanisms and management. Eur Heart J. 2015;36:475–481. doi: 10.1093/eurheartj/ehu469. PubMed DOI
Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis C, Moreno P, Pasterkamp G. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation. 2003;108:1664–1672. https://doi.org/10.1161/01.CIR.0000087480.94275.97, https://doi.org/10.1161/01.CIR.0000087481.55887.C9. PubMed DOI
Klüner LV, Oikonomou EK, Antoniades C. Assessing cardiovascular risk by using the fat attenuation index in coronary CT angiography. Radiol Cardiothorac Imaging. 2021;3:e200563. doi: 10.1148/ryct.2021200563. PubMed DOI PMC
Oikonomou EK, Antonopoulos AS, Schottlander D, Marwan M, Mathers C, Tomlins P, Siddique M, Klüner LV, Shirodaria C, Mavrogiannis MC. Standardized measurement of coronary inflammation using cardiovascular computed tomography: integration in clinical care as a prognostic medical device. Cardiovasc Res. 2021;117:2677–2690. doi: 10.1093/cvr/cvab286. PubMed DOI
Graby J, Sellek J, Khavandi A, Loughborough W, Hudson B, Shirodaria C, Downie P, Antoniades C, Rodrigues J.Coronary CT angiography derived pericoronary inflammation and bespoke cardiovascular risk prediction in the lipid clinic: beyond the calcium score Eur Heart J 202243ehac544. 231510.1093/eurheartj/ehac544.2315 DOI
Dai X, Deng J, Yu M, Lu Z, Shen C, Zhang J. Perivascular fat attenuation index and high-risk plaque features evaluated by coronary CT angiography: relationship with serum inflammatory marker level. Int J Cardiovasc Imaging. 2020;36:723–730. doi: 10.1007/s10554-019-01758-8. PubMed DOI
Kato S, Horita N, Hoshino M, Kakuta T, Utsunomiya D. Prognostic Significance of the Perivascular Fat Attenuation Index derived by Coronary Computed Tomography: A Meta-analysis. Hellenic J Cardiol. 2022 doi: 10.1016/j.hjc.2022.07.004. S1109–9666 (1122) 00097. PubMed DOI
Antoniades C, Patel P, Antonopoulos AS. Using artificial intelligence to study atherosclerosis, predict risk and guide treatments in clinical practice. Eur Heart J. 2023;44:437–439. doi: 10.1093/eurheartj/ehac751. PubMed DOI
The Perivascular Fat Attenuation Index: Bridging Inflammation and Cardiovascular Disease Risk