Museomics and morphological analyses of historical and contemporary peninsular Italian wolf (Canis lupus italicus) samples
Language English Country England, Great Britain Media electronic
Document type Journal Article
PubMed
39905114
PubMed Central
PMC11794570
DOI
10.1038/s41598-024-84319-x
PII: 10.1038/s41598-024-84319-x
Knihovny.cz E-resources
- Keywords
- Canis lupus italicus, Apennine Italian wolves, Conservation management, Genetic variability patterns, Historical biological samples, Multilocus genetic profiles, Museomics, Museum collections, Population genetics,
- MeSH
- DNA genetics MeSH
- Genetic Variation MeSH
- Genotype MeSH
- Museums MeSH
- Petrous Bone chemistry MeSH
- Wolves * genetics anatomy & histology classification MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Italy MeSH
- Names of Substances
- DNA MeSH
After centuries of decline and protracted bottlenecks, the peninsular Italian wolf population has naturally recovered. However, an exhaustive comprehension of the effects of such a conservation success is still limited by the reduced availability of historical data. Therefore, in this study, we morphologically and genetically analyzed historical and contemporary wolf samples, also exploiting the optimization of an innovative bone DNA extraction method, to describe the morphological variability of the subspecies and its genetic diversity during the last 30 years. We obtained high amplification and genotyping success rates for tissue, blood and also petrous bone DNA samples. Multivariate, clustering and variability analyses confirmed that the Apennine wolf population is genetically and morphologically well-distinguishable from both European wolves and dogs, with no natural immigration from other populations, while its genetic variability has remained low across the last three decades, without significant changes between historical and contemporary specimens. This study highlights the scientific value of well-maintained museum collections, demonstrates that petrous bones represent reliable DNA sources, and emphasizes the need to genetically long-term monitor the dynamics of peculiar wolf populations to ensure appropriate conservation management actions.
Department of Zoology Faculty of Science Charles University Viničná 7 Prague 2 128 43 Czech Republic
Unit for Conservation Genetics Via Cà Fornacetta 9 Bologna 40064 Ozzano dell'Emilia Italy
See more in PubMed
Chapron, G. et al. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science346, 1517–1519 (2014). PubMed
Doan, K. et al. Evolutionary history of the extinct wolf population from France in the context of global phylogeographic changes throughout the Holocene. Mol. Ecol.32, 4627–4647 (2023). PubMed
Angelici, F. M. et al. The sicilian wolf: genetic identity of a recently extinct insular population. Zool. Sc. 36, 189–197 (2019). PubMed
Gómez-Sánchez, D. et al. On the path to extinction: inbreeding and admixture in a declining grey wolf population. Mol. Ecol.27, 3599–3612 (2018). PubMed
Jarausch, A., Harms, V., Kluth, G., Reinhardt, I. & Nowak, C. How the west was won: genetic reconstruction of rapid wolf recolonization into Germany’s anthropogenic landscapes. Heredity127, 92–106 (2021). PubMed PMC
Dissegna, A. et al. How to choose? Comparing different methods to count wolf packs in a protected area of the Northern Apennines. Genes14, 932 (2023). PubMed PMC
Marucco, F. et al. A multidisciplinary approach to estimating wolf population size for long-term conservation. Conserv. Biol.37, e14132 (2023). PubMed
Fabbri, E. et al. Genetic structure of expanding wolf (Canis lupus) populations in Italy and Croatia, and the early steps of the recolonization of the Eastern Alps. Mamm. Biol.79, 138–148 (2014).
Valière, N. et al. Long-distance wolf recolonization of France and Switzerland inferred from non-invasive genetic sampling over a period of 10 years. Anim. Conserv.6, 83–92 (2003).
Stronen, A. V. et al. The use of museum skins for genomic analyses of temporal genetic diversity in wild species. Conserv. Genet. Resour.11, 499–503 (2019).
Cilli, E. et al. Museomics provides insights into conservation and education: the instance of an African lion specimen from the Museum of Zoology Pietro Doderlein. Diversity15, 87 (2023).
Utzeri, V. J. et al. Ancient DNA re-opens the question of the phylogenetic position of the sardinian pika Prolagus sardus (Wagner, 1829), an extinct lagomorph. Sci. Rep.13, 13635 (2023). PubMed PMC
Jansson, E., Harmoinen, J., Ruokonen, M. & Aspi, J. Living on the edge: reconstructing the genetic history of the Finnish wolf population. BMC Evol. Biol.14, 64 (2014). PubMed PMC
Straube, N. et al. Successful application of ancient DNA extraction and library construction protocols to museum wet collection specimens. Mol. Ecol. Resour.21, 2299–2315 (2021). PubMed
Suchan, T. et al. Hybridization capture using RAD probes (hyRAD), a new tool for performing genomic analyses on collection specimens. PLoS ONE. 11, e0151651 (2016). PubMed PMC
Linck, E. B., Hanna, Z. R., Sellas, A. & Dumbacher, J. P. Evaluating hybridization capture with RAD probes as a tool for museum genomics with historical bird specimens. Ecol. Evol.7, 4755–4767 (2017). PubMed PMC
Hansen, H. B. et al. Comparing ancient DNA preservation in petrous bone and tooth cementum. PLoS ONE. 12, e0170940 (2017). PubMed PMC
Palkopoulou, E. et al. A comprehensive genomic history of extinct and living elephants. P Natl. Acad. Sci. U S A. 115, E2566–E2574 (2018). PubMed PMC
Pinsky, M. L. et al. Genomic stability through time despite decades of exploitation in cod on both sides of the Atlantic. P Natl. Acad. Sci.118, e2025453118 (2021). PubMed PMC
Andrews, A. J. et al. Exploitation history of Atlantic bluefin tuna in the Eastern Atlantic and Mediterranean - insights from ancient bones. ICES J. Mar. Sci.79, 247–262 (2022).
Dalén, L., Heintzman, P. D., Kapp, J. D. & Shapiro, B. Deep-time paleogenomics and the limits of DNA survival. Science382, 48–53 (2023). PubMed PMC
Zimen, E. & Boitani, L. Number and distribution of wolves in Italy. 43, 73–78 (1975).
Fabbri, E. et al. From the Apennines to the alps: colonization genetics of the naturally expanding Italian wolf (Canis lupus) population. Mol. Ecol.16, 1661–1671 (2007). PubMed
Ražen, N. et al. Long-distance dispersal connects Dinaric-Balkan and Alpine grey wolf (Canis lupus) populations. Eur. J. Wildl. Res.62, 137–142 (2016).
Hulva, P. et al. Wolves at the crossroad: fission–fusion range biogeography in the western carpathians and Central Europe. Divers. Distrib.24, 179–192 (2018).
Hulva, P. et al. Genetic admixture between Central European and Alpine wolf populations. Wildl. Biol. e01281 (2024).
Gervasi, V. et al. Estimating distribution and abundance of wide-ranging species with integrated spatial models: opportunities revealed by the first wolf assessment in South-central Italy. Ecol. Evol.14, e11285. 10.1002/ece3.11285 (2024). PubMed PMC
Montana, L. et al. Combining phylogenetic and demographic inferences to assess the origin of the genetic diversity in an isolated wolf population. PLoS ONE. 12, e0176560 (2017). PubMed PMC
vonHoldt, B. M. et al. A genome-wide perspective on the evolutionary history of enigmatic wolf-like canids. Genome Res.21, 1294–1305 (2011). PubMed PMC
Pilot, M. et al. Genome-wide signatures of population bottlenecks and diversifying selection in European wolves. Heredity112, 428–442 (2014). PubMed PMC
Silva, P. et al. Genomic evidence for the old divergence of Southern European wolf populations. Proc. R. Soc. B. 287. (2020). 10.1098/rspb.2020.1206 PubMed PMC
Altobello, G. Fauna dell’Abruzzo e del Molise. Mammiferi. IV. I Carnivori (Carnivora). (1921).
Caniglia, R. et al. A standardized approach to empirically define reliable assignment thresholds and appropriate management categories in deeply introgressed populations. Sci. Rep.10, 2862 (2020). PubMed PMC
Musto, C. et al. Men and wolves: anthropogenic causes are an important driver of wolf mortality in human-dominated landscapes in Italy. Glob Ecol. Conserv.32, e01892 (2021).
Nowak, R. M. & Federoff, N. E. The systematic status of the Italian wolf Canis lupus. Acta Theriol.47, 333–338 (2002).
Verginelli, F. et al. Mitochondrial DNA from prehistoric canids highlights relationships between dogs and south-east European wolves. Mol. Biol. Evol.22, 2541–2551 (2005). PubMed
Dufresnes, C. et al. Howling from the past: historical phylogeography and diversity losses in European grey wolves. Proc. R Soc. B. 285, 20181148 (2018). PubMed PMC
Ciucani, M. M. et al. Old wild wolves: ancient DNA survey unveils population dynamics in late pleistocene and Holocene Italian remains. PeerJ7, e6424 (2019). PubMed PMC
Iurino, D. A. et al. A Middle Pleistocene wolf from central Italy provides insights on the first occurrence of Canis lupus in Europe. Sci. Rep.12, 2882 (2022). PubMed PMC
Randi, E. et al. Multilocus detection of wolf x dog hybridization in Italy, and guidelines for marker selection. PLoS ONE. 9, e86409 (2014). PubMed PMC
Pinhasi, R. et al. Optimal ancient DNA yields from the inner ear part of the human petrous bone. PLoS ONE. 10, e0129102 (2015). PubMed PMC
Koupadi, K. et al. Population dynamics in Italian canids between the late pleistocene and bronze age. Genes11, 1409 (2020). PubMed PMC
Dabney, J. et al. Complete mitochondrial genome sequence of a middle pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl. Acad. Sci. U S A. 110, 15758–15763 (2013). PubMed PMC
Cilli, E. et al. A multifaceted approach towards investigating childbirth deaths in double burials: anthropology, paleopathology and ancient DNA. J. Archaeol. Sci.122, 105219 (2020).
Serventi, P. et al. Iron Age Italic population genetics: the Piceni from Novilara (8th–7th century BC). Ann. Hum. Biol.45, 34–43 (2018). PubMed
Caniglia, R. et al. Big bad wolf or man’s best friend? Unmasking a false wolf aggression on humans. Forensic Sci. Int. Genet.24, e4–e6 (2016). PubMed
Velli, E. et al. Guess who’s coming to dinner: molecular tools to reconstruct multilocus genetic profiles from wild canid consumption remains. Animals12, 2428 (2022). PubMed PMC
Anderson, T. M. et al. Molecular and evolutionary history of melanism in north American gray wolves. Science323, 1339–1343 (2009). PubMed PMC
Caniglia, R. et al. Black coats in an admixed wolf × dog pack is melanism an indicator of hybridization in wolves? Eur. J. Wildl. Res.59, 543–555 (2013).
Sundqvist, A-K., Ellegren, H., Olivier, M. & Vilà, C. Y chromosome haplotyping in scandinavian wolves (Canis lupus) based on microsatellite markers. Mol. Ecol.10, 1959–1966 (2001). PubMed
Randi, E. et al. Mitochondrial DNA variability in Italian and east European wolves: detecting the consequences of small population size and hybridization. Conserv. Biol.14, 464–473 (2000).
Fabbri, E. et al. From predation to management: monitoring wolf distribution and understanding depredation patterns from attacks on livestock. Hystrix It J. Mamm.29, 101–110 (2018).
Fabbri, E. et al. Genetic structure and expansion of golden jackals (Canis aureus) in the north-western distribution range (Croatia and Eastern Italian Alps). Conserv. Genet.15, 187–199 (2014).
Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. 41, 95–98 (1999).
Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics25, 1451–1452 (2009). PubMed
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol.215, 403–410 (1990). PubMed
Valière, N. Gimlet: a computer program for analysing genetic individual identification data. Mol. Ecol. Notes. 2, 377–379 (2002).
Pompanon, F., Bonin, A., Bellemain, E. & Taberlet, P. Genotyping errors: causes, consequences and solutions. Nat. Rev. Genet.6, 847–859 (2005). PubMed
Jombart, T. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics24, 1403–1405 (2008). PubMed
Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics155, 945–959 (2000). PubMed PMC
Caniglia, R., Fabbri, E., Mastrogiuseppe, L. & Randi, E. Who is who? Identification of livestock predators using forensic genetic approaches. Forensic Sci. International: Genet.7, 397–404 (2013). PubMed
Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour.15, 1179–1191 (2015). PubMed PMC
Caniglia, R., Fabbri, E., Galaverni, M., Milanesi, P. & Randi, E. Noninvasive sampling and genetic variability, pack structure, and dynamics in an expanding wolf population. J. Mammal. 95, 41–59 (2014).
Belkhir, K. GENETIX 4.05, population genetic software in Windows TM. (2004).
Hammer, Ø., Harper, D. A. T. & Ryan, P. D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Electron.4 (2001). http://palaeo-electronica.org/2001_1/past/issue1_01.htm
Levine, M. A. Angela von den Driesch: A guide to the measurement of animal bone from archaeological sites. Peabody Museum Bulletin 1. Harvard: Peabody Museum of Archaeology and Ethnology, 138 pp., 62 figs. $5.00. Antiquity 55, 75–76 (1981). (1976).
Khosravi, R., Kaboli, M., Imani, J. & Nourani, E. Morphometric variations of the skull in the Gray Wolf (Canis lupus) in Iran. Acta Theriol.57, (2012).
Engdal, V. A. Phenotypic variation in past and present Scandinavian wolves (Canis lupus L.). Master thesis in Ecology and Evolution. Faculty of Mathematics and Natural Sciences, University of Oslo. (2018).
Andersone, Ž. & Ozoliņš, J. Craniometrical characteristics and dental anomalies in wolves Canis lupus from Latvia. Acta Theriol.45, 549–558 (2000).
Okarma, H. & Buchalczyk, T. Craniometrical characteristics of wolves Canis lupus from Poland. Acta Theriol.38, 253–262 (1993).
Galaverni, M. et al. Disentangling timing of admixture, patterns of introgression, and phenotypic indicators in a hybridizing wolf population. Mol. Biol. Evol.34, 2324–2339 (2017). PubMed PMC
Ciucci, P., Lucchini, V., Boitani, L. & Randi, E. Dewclaws in wolves as evidence of admixed ancestry with dogs. Can. J. Zool.81, 2077–2081 (2003).
Kreeger, T. J. The internal wolf: physiology, pathology, and pharmacology. Wolves: behaviour, ecology and conservation, edited by Mech, L. D. and Boitani, L., 192–21. University of Chicago Press (2003).
Sutter, N. B., Mosher, D. S., Gray, M. M. & Ostrander, E. A. Morphometrics within dog breeds are highly reproducible and dispute Rensch’s rule. Mamm. Genome. 19, 713–723 (2008). PubMed PMC
Trbojević, I. Sexual dimorphism and population differentiation of the wolf (Canis lupus) based on morphometry in the Central Balkans. North-West J. Zoo. 12, 349–355 (2016). http://biozoojournals.ro/nwjz/index.html
Cooper, A. & Poinar, H. N. Ancient DNA: do it right or not at all. Science289, 1139 (2000). PubMed
Castelló, J. R. Canids of the World: Wolves, wild dogs, Foxes, Jackals, Coyotes, and Their Relatives (Princeton University Press, 2018).
Lopez, L., Turner, K. G., Bellis, E. S. & Lasky, J. R. Genomics of natural history collections for understanding evolution in the wild. Mol. Ecol. Resourc. 20, 1153–1160 (2020). PubMed
Ciucani, M. M. et al. The extinct sicilian wolf shows a complex history of isolation and admixture with ancient dogs. iScience26, 107307 (2023). PubMed PMC
Leone, A. et al. Pliocene colonization of the Mediterranean by Great White Shark inferred from fossil records, historical jaws, phylogeographic and divergence time analyses. J. Biogeogr.47, 1119–1129 (2020).
Lucchini, V., Galov, A. & Randi, E. Evidence of genetic distinction and long-term population decline in wolves (Canis lupus) in the Italian apennines. Mol. Ecol.13, 523–536 (2004). PubMed
Muñoz-Fuentes, V., Darimont, C. T., Paquet, P. C. & Leonard, J. A. The genetic legacy of extirpation and re-colonization in Vancouver Island wolves. Conserv. Genet.11, 547–556 (2010).
Kardos, M. et al. Genomic consequences of intensive inbreeding in an isolated wolf population. Nat. Ecol. Evol.2, 124–131 (2018). PubMed
Robinson, J. A. et al. Genomic signatures of extensive inbreeding in Isle Royale wolves, a population on the threshold of extinction. Sci. Adv.5, eaau0757 (2019). PubMed PMC
Lobo, D., López-Bao, J. V. & Godinho, R. The population bottleneck of the Iberian wolf impacted genetic diversity but not admixture with domestic dogs: a temporal genomic approach. Mol. Ecol.32, 5986–5999 (2023). PubMed
Aragno, P. et al. La Popolazione Di Lupo Nelle Regioni dell’Italia peninsulare 2020/2021. Relazione tecnica realizzata nell’ambito della convenzione ISPRA-Ministero della Transizione Ecologica Attività Di Monitoraggio Nazionale Nell’ambito del piano di Azione Del Lupo. (2022).
Battilani, D. et al. Beyond population size: whole-genome data reveal bottleneck legacies in the peninsular Italian wolf. J. Hered.esae04110.1093/jhered/esae041 (2024). PubMed PMC
Marucco, F., Pilgrim, K. L., Avanzinelli, E., Schwartz, M. K. & Rossi, L. Wolf dispersal patterns in the Italian Alps and implications for wildlife diseases spreading. Animals12, 1260 (2022). PubMed PMC
Stronen, A. V. et al. A reduced SNP panel to trace gene flow across southern European wolf populations and detect hybridization with other Canis taxa. Sci. Rep.12, 4195 (2022). PubMed PMC
Bergmann, C. Ueber die Verhaltnisse Der Warmeokonomie Der Thierezuihrer Grosse. Gottinger Studien. 3, 595–708 (1847).
Musto, C. et al. First evidence of widespread positivity to anticoagulant rodenticides in grey wolves (Canis lupus). Sci. Total Environ.915, 169990 (2024). PubMed