High-Field Diffusion Tensor Imaging of Median, Tibial, and Sural Nerves in Type 2 Diabetes With Morphometric Analysis
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
P3-0043
Slovenian Research Agency (ARiS)
J3-4507
Slovenian Research Agency (ARiS)
N3-0256
Slovenian Research Agency (ARiS)
22-02756K
Czech Science Foundation (GACR)
LM2023050
Ministry of Education, Youth and Sports of the Czech Republic (MEYS)
CZ.02.1.01/0.0/0.0/18_046/0016045
European Regional Development Fund (ERDF)
20240004
University Medical Center Ljubljana
CZ.02.1.01/0.0/0.0/18_046/0016045
Ministerstvo Školství, Mládeže a Tělovýchovy
J3-4507
Javna Agencija za Raziskovalno Dejavnost RS
N3-0256
Javna Agencija za Raziskovalno Dejavnost RS
P3-0043
Javna Agencija za Raziskovalno Dejavnost RS
22-02756K
Grantová Agentura České Republiky
PubMed
39962292
PubMed Central
PMC11832795
DOI
10.1111/jon.70025
Knihovny.cz E-zdroje
- Klíčová slova
- diffusion tensor, fractional anisotropy, histology, magnetic resonance imaging, microscopy, optical projection tomography,
- MeSH
- anizotropie MeSH
- diabetes mellitus 2. typu * patologie MeSH
- diabetické neuropatie * patologie MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mrtvola MeSH
- nervus medianus * patologie MeSH
- nervus suralis * patologie MeSH
- nervus tibialis * patologie MeSH
- reprodukovatelnost výsledků MeSH
- senioři MeSH
- senzitivita a specificita MeSH
- zobrazování difuzních tenzorů * metody MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND PURPOSE: The primary objective was to compare diffusion tensor imaging (DTI) scalar parameters of peripheral nerves between subjects with type 2 diabetes mellitus (T2DM) and those without diabetes. Secondarily, we aimed to correlate DTI scalar parameters with nerve morphometric properties. METHODS: Median, tibial, and sural nerves were harvested from 34 male cadavers (17 T2DM, 17 nondiabetic). Each nerve was divided into three segments. The initial segment was scanned using 9.4 Tesla MRI system (three-dimensional pulsed-gradient spin-echo sequence). DTI scalars were calculated from region-average diffusion-weighted signals. Second segment was optically cleared, acquired with optical projection tomography (OPT), and analyzed for morphometrical properties. Toluidine-stained sections were prepared from last segment, and axon- and myelin-related properties were evaluated. RESULTS: DTI scalar parameters of median and tibial nerves were comparable between the groups, while sural nerves of T2DM exhibited on average 41% higher mean diffusivity (MD) (p = 0.03), 38% higher radial diffusivity (RD) (p = 0.03), and 27% lower fractional anisotropy (FA) (p = 0.005). Significant differences in toluidine-evaluated parameters of sural nerves were observed between the groups, with a positive correlation between FA with fiber density (p = 0.0001) and with myelin proportion (p < 0.0001) and an inverse correlation between RD and myelin proportion (p = 0.003). OPT-measured morphometric properties did not correlate with DTI scalar parameters. CONCLUSIONS: High-field DTI shows promise as an imaging technique for detecting axonal and myelin-related changes in small sural nerves ex vivo. The reduced fiber density and decreased myelin content, which can be observed in T2DM, likely contribute to observed FA reduction and increased MD/RD.
Department of Condensed Matter Physics Jožef Stefan Institute Ljubljana Slovenia
Department of Radiology Faculty of Medicine University of Ljubljana Ljubljana Slovenia
Diabetes Centre Institute for Clinical and Experimental Medicine Prague Czech Republic
Institute of Anatomy Faculty of Medicine University of Ljubljana Ljubljana Slovenia
Institute of Forensic Medicine Faculty of Medicine University of Ljubljana Ljubljana Slovenia
Institute of Radiology University Medical Centre Ljubljana Ljubljana Slovenia
Zobrazit více v PubMed
Feldman E. L., Callaghan B. C., Pop‐Busui R., et al., “Diabetic Neuropathy,” Nature Reviews Disease Primers 5 (2019): 41. PubMed
Jang H. N. and Oh T. J., “Pharmacological and Nonpharmacological Treatments for Painful Diabetic Peripheral Neuropathy,” Diabetes & Metabolism Journal 47 (2023): 743–756. PubMed PMC
Strand N., Anderson M. A., Attanti S., et al., “Diabetic Neuropathy: Pathophysiology Review,” Current Pain and Headache Reports 28 (2024): 481–487. PubMed
Galiero R., Caturano A., Vetrano E., et al., “Peripheral Neuropathy in Diabetes Mellitus: Pathogenetic Mechanisms and Diagnostic Options,” International Journal of Molecular Sciences 24 (2023): 3554. PubMed PMC
Rota E. and Morelli N., “Entrapment Neuropathies in Diabetes Mellitus,” World Journal of Diabetes 7 (2016): 342–353. PubMed PMC
Bishop K. and Poole R., “Common Tests for Diabetic Peripheral Neuropathy,” Practical Diabetes 39 (2022): 35–38.
Vaeggemose M., Pham M., Ringgaard S., et al., “Diffusion Tensor Imaging MR Neurography for the Detection of Polyneuropathy in Type 1 Diabetes,” Journal of Magnetic Resonance Imaging 45 (2017): 1125–1134. PubMed
Griffiths T. T., Flather R., Teh I., et al., “Diffusion Tensor Imaging in Cubital Tunnel Syndrome,” Scientific Reports 11 (2021): 14982. PubMed PMC
Vaeggemose M., Haakma W., Pham M., et al., “Diffusion Tensor Imaging MR Neurography Detects Polyneuropathy in Type 2 Diabetes,” Journal of Diabetes and Its Complications 34 (2020): 107439. PubMed
Jende J. M. E., Kender Z., Mooshage C., et al., “Diffusion Tensor Imaging of the Sciatic Nerve as a Surrogate Marker for Nerve Functionality of the Upper and Lower Limb in Patients with Diabetes and Prediabetes,” Frontiers in Neuroscience 15 (2021): 642589. PubMed PMC
Lehmann H. C., Zhang J., Mori S., and Sheikh K. A., “Diffusion Tensor Imaging to Assess Axonal Regeneration in Peripheral Nerves,” Experimental Neurology 223 (2010): 238–244. PubMed PMC
Tagliafico A. S. and Tagliafico G., “Fascicular Ratio: A New Parameter to Evaluate Peripheral Nerve Pathology on Magnetic Resonance Imaging: A Feasibility Study on a 3T MRI System,” Medicine 93 (2014): e68. PubMed PMC
Chen Y., Baraz J., SY X., et al., “Multiparametric Quantitative MRI of Peripheral Nerves in the Leg: A Reliability Study,” Journal of Magnetic Resonance Imaging 59 (2024): 563–574. PubMed PMC
Kim B., Srinivasan A., Sabb B., Feldman E. L., and Pop‐Busui R., “Diffusion Tensor Imaging of the Sural Nerve in Normal Controls,” Clinical Imaging 38 (2014): 648–654. PubMed PMC
Cosottini M. and Roccatagliata L., “Neuroimaging at 7 T: Are We Ready for Clinical Transition?,” European Radiology Experimental 5 (2021): 37. PubMed PMC
Sharpe J., “Optical Projection Tomography as a New Tool for Studying Embryo Anatomy,” Journal of Anatomy 202 (2003): 175–181. PubMed PMC
Cvetko E., Čapek M., Damjanovska M., Reina M. A., Eržen I., and Stopar‐Pintarič T., “The Utility of Three‐Dimensional Optical Projection Tomography in Nerve Injection Injury Imaging,” Anaesthesia 70 (2015): 939–947. PubMed
Prats‐Galino A., Čapek M., Reina M. A., et al., “3D Reconstruction of Peripheral Nerves From Optical Projection Tomography Images: A Method for Studying Fascicular Interconnections and Intraneural Plexuses,” Clinical Anatomy 31 (2018): 424–431. PubMed
Pušnik L., Radochová B., Janáček J., et al., “Fascicle Differentiation of Upper Extremity Nerves on High‐Resolution Ultrasound With Multimodal Microscopic Verification,” Scientific Reports 15 (2025): 557. PubMed PMC
Awais K., Snoj Ž., Cvetko E., and Serša I., “Diffusion Tensor Imaging of a Median Nerve by Magnetic Resonance: A Pilot Study,” Life 12 (2022): 748. PubMed PMC
Snoj Ž., Serša I., Maticic U., Cvetko E., and Omejec G., “Nerve Fascicle Depiction at MR Microscopy and High‐Frequency US With Anatomic Verification,” Radiology 297 (2020): 672–674. PubMed
Pušnik L., Serša I., Umek N., Cvetko E., and Snoj Ž., “Correlation Between Diffusion Tensor Indices and Fascicular Morphometric Parameters of Peripheral Nerve,” Frontiers in Physiology 14 (2023): 1070227. PubMed PMC
Markova L., Umek N., Horvat S., et al., “Neurotoxicity of Bupivacaine and Liposome Bupivacaine After Sciatic Nerve Block in Healthy and Streptozotocin‐Induced Diabetic Mice,” BMC Veterinary Research 16 (2020): 247. PubMed PMC
Antunes S. L. G., Fazan V. P. S., Jardim M. R., et al., “Morphometric Analysis of Nerve Fibers in Neural Leprosy,” Muscle & Nerve 63 (2021): 593–599. PubMed
Diabetes Control and Complications Trial Research Group , Nathan D. M., Genuth S., et al., “The Effect of Intensive Treatment of Diabetes on the Development and Progression of Long‐Term Complications in Insulin‐Dependent Diabetes Mellitus,” New England Journal of Medicine 329 (1993): 977–986. PubMed
Singh K. P., Gupta K., Kataria N., Arora V., and Nagpal N., “High‐Resolution Ultrasonography of the Sural Nerve in Diabetic Peripheral Neuropathy,” Journal of Ultrasonography 20 (2020): e83–e89. PubMed PMC
Weis J., Katona I., Nikolin S., et al., “Techniques for the Standard Histological and Ultrastructural Assessment of Nerve Biopsies,” Journal of the Peripheral Nervous System 26 (2021): S3–10. PubMed
Schwabl C., Schmidle G., Kaiser P., Drakonaki E., Taljanovic M. S., and Klauser A. S., “Nerve Entrapment Syndromes: Detection by Ultrasound,” Ultrasonography 42 (2023): 376–387. PubMed PMC
Tomažin T., Pušnik L., Albano D., Jengojan S., and Snoj Ž., “Multiparametric Ultrasound Assessment of Carpal Tunnel Syndrome: Beyond Nerve Cross‐Sectional Area,” Seminars in Musculoskeletal Radiology 28 (2024): 661–671. PubMed
Pham M., Oikonomou D., Hornung B., et al., “Magnetic Resonance Neurography Detects Diabetic Neuropathy Early and With Proximal Predominance,” Annals of Neurology 78 (2015): 939–948. PubMed PMC
Kronlage M., Schwehr V., Schwarz D., et al., “Peripheral Nerve Diffusion Tensor Imaging (DTI): Normal Values and Demographic Determinants in a Cohort of 60 Healthy Individuals,” European Radiology 28 (2018): 1801–1808. PubMed
Chen Y., Haacke E. M., and Li J., “Peripheral Nerve Magnetic Resonance Imaging,” F1000Research 8 (2019): 1803. PubMed PMC
Ishikawa T., Asakura K., Mizutani Y., et al., “MR Neurography for the Evaluation of CIDP,” Muscle & Nerve 55 (2017): 483–489. PubMed
Takagi T., Nakamura M., Yamada M., Hikishima K., and Momoshima S., “Visualization of Peripheral Nerve Degeneration and Regeneration : Monitoring With Diffusion Tensor Tractography,” Neuroimage 44 (2009): 884–892. PubMed
Goyal M., John A., and Mittal A., “Diffusion Tensor Imaging in Patients With Diabetic Peripheral Neuropathy : Fractional Anisotropy and Apparent Diffusion Coefficient Dataset of Posterior Tibial Nerve,” Data Brief 43 (2022): 108421. PubMed PMC
Wang X., Luo L., Xing J., et al., “Assessment of Peripheral Neuropathy in Type 2 Diabetes by Diffusion Tensor Imaging,” Quantitative Imaging in Medicine and Surgery 12 (2022): 395–405. PubMed PMC
Edward R., Abdelalim A. M., Ashour A. S., Afifi L., and Al‐Athwari A., “A Study of Diffusion Tensor Imaging of Median Nerve in Diabetic Peripheral Neuropathy,” The Egyptian Journal of Neurology, Psychiatry and Neurosurgery 56 (2020): 42.
Sierra‐Silvestre E., Smith R. E., Andrade R. J., Kennedy B., and Coppieters M. W., “Microstructural Changes in the Median and Ulnar Nerve in People With and Without Diabetic Neuropathy in Their Hands: A Cross‐Sectional Diffusion MRI Study,” European Journal of Radiology 181 (2024): 111721. PubMed
Schneider C., Sprenger A., Weiss K., et al., “MRI Detects Peripheral Nerve and Adjacent Muscle Pathology in Non‐Systemic Vasculitic Neuropathy (NSVN),” Journal of Neurology 266 (2019): 975–981. PubMed
Chhabra A., Thakkar R. S., Andreisek G., et al., “Anatomic MR Imaging and Functional Diffusion Tensor Imaging of Peripheral Nerve Tumors and Tumorlike Conditions,” American Journal of Neuroradiology 34 (2013): 802–807. PubMed PMC
Haakma W., Jongbloed B. A., Froeling M., et al., “MRI Shows Thickening and Altered Diffusion in the Median and Ulnar Nerves in Multifocal Motor Neuropathy,” European Radiology 27 (2017): 2216–2224. PubMed PMC
Vaeggemose M., Vaeth S., Pham M., et al., “Magnetic Resonance Neurography and Diffusion Tensor Imaging of the Peripheral Nerves in Patients With Charcot‐Marie‐Tooth Type 1A,” Muscle & Nerve 56 (2017): E78–E84. PubMed
Manzanera Esteve I. V., Farinas A. F., Pollins A. C., et al., “Probabilistic Assessment of Nerve Regeneration With Diffusion MRI in Rat Models of Peripheral Nerve Trauma,” Scientific Reports 9 (2019): 19686. PubMed PMC
Lichtenstein T., Sprenger A., Weiss K., et al., “MRI Biomarkers of Proximal Nerve Injury in CIDP,” Annals of Clinical and Translational Neurology 5 (2018): 19–28. PubMed PMC
Sveinsson B., Rowe O. E., Stockmann J. P., et al., “Feasibility of Simultaneous High‐Resolution Anatomical and Quantitative Magnetic Resonance Imaging of Sciatic Nerves in Patients With Charcot–Marie–Tooth Type 1A (CMT1A) at 7T,” Muscle & Nerve 66 (2022): 206–211. PubMed PMC
Wade R. G., Lu F., Poruslrani Y., et al., “Meta‐Analysis of the Normal Diffusion Tensor Imaging Values of the Peripheral Nerves in the Upper Limb,” Scientific Reports 13 (2023): 4852. PubMed PMC
Vanden Bulcke C., Stölting A., Maric D., Macq B., Absinta M., and Maggi P., “Comparative Overview of Multi‐Shell Diffusion MRI Models to Characterize the Microstructure of Multiple Sclerosis Lesions and Periplaques,” NeuroImage: Clinical 42 (2024): 103593. PubMed PMC
Lehmann H. C., Wunderlich G., Fink G. R., and Sommer C., “Diagnosis of Peripheral Neuropathy,” Neurological Research and Practice 2 (2020): 20. PubMed PMC
Jackson L. J., Serhal M., Omar I. M., Garg A., Michalek J., and Serhal A., “Sural Nerve: Imaging Anatomy and Pathology,” British Journal of Radiology 96 (2023): 20220336. PubMed PMC
Ghetti C. B., Mitchell B. C., Shah V. J., et al., “An Anatomic Study of the Sural Nerve Using 3‐Tesla MRI: A Comparison to Cadaveric Data with Surgical Applications,” Foot & Ankle International 43 (2022): 540–550. PubMed
Pušnik L., Laubry L., Serša I., et al., “Analysis‐Associated Factors Interfering with Diffusion Tensor Indices of Peripheral Nerves,” Image Analysis and Stereology 43 (2024): 203–210.
Holz M., Heil S. R., and Sacco A., “Temperature‐Dependent Self‐Diffusion Coefficients of Water and Six Selected Molecular Liquids for Calibration in Accurate 1H NMR PFG Measurements,” Physical Chemistry Chemical Physics 2 (2000): 4740–4742.