Focused ultrasound-induced blood-brain barrier opening: A comparative analysis of permeability quantification based on K trans and PS
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, srovnávací studie
Grantová podpora
GA22-10953S
Grantová Agentura České Republiky
LM2023050
Ministerstvo Školství, Mládeže a Tělovýchovy
PubMed
39963048
PubMed Central
PMC11971499
DOI
10.1002/mrm.30446
Knihovny.cz E-zdroje
- Klíčová slova
- BBB opening, DCE‐MRI, focused ultrasound, perfusion analysis, simulation,
- MeSH
- hematoencefalická bariéra * diagnostické zobrazování metabolismus účinky záření MeSH
- kontrastní látky MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- mozek diagnostické zobrazování MeSH
- permeabilita MeSH
- počítačová simulace MeSH
- počítačové zpracování obrazu metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- kontrastní látky MeSH
PURPOSE: Focused ultrasound-induced blood-brain barrier (BBB) opening is a promising method for neurotherapeutic delivery. The standard for quantifying induced BBB permeability is the K trans $$ {K}^{\mathrm{trans}} $$ parameter, which reflects both permeability and plasma flow. The influence of plasma flow can be eliminated by estimating the PS parameter. However, this parameter has been largely unexplored in this application. This study aims to compare permeability estimates based on K trans $$ {K}^{\mathrm{trans}} $$ and PS in focused ultrasound-induced BBB opening experiments. METHODS: We used the extended Tofts model (ETM) and the two-compartment exchange model (2CXM) to estimate K trans $$ {K}^{\mathrm{trans}} $$ and PS parameters, respectively. Permeability estimates were compared using simulated concentration curves, simulated DCE-MRI data, and real datasets. We explored the influence of spatially-regularized model fitting on the results. RESULTS: For opened BBB, K trans $$ {K}^{\mathrm{trans}} $$ was minimally influenced by plasma flow under the tested conditions. However, fitting the ETM often introduced outliers in K trans $$ {K}^{\mathrm{trans}} $$ estimates in regions with closed BBB. The 2CXM outperformed the ETM at high signal-to-noise ratios, but its higher complexity led to lower precision at low signal-to-noise ratios. Both these issues were successfully compensated by spatially-regularized model fitting. CONCLUSION: Both K trans $$ {K}^{\mathrm{trans}} $$ and PS seem to be eligible options for the quantification of BBB opening, and the correct choice depends on the specifics of the acquired DCE-MRI data. Additionally, spatial regularization has demonstrated its importance in enhancing the accuracy and reproducibility of results for both models.
Department of Pharmacology Faculty of Medicine Masaryk University Brno Czechia
Faculty of Electrical Engineering and Communication Brno University of Technology Brno Czechia
Institute of Scientific Instruments Czech Academy of Sciences Brno Czechia
Zobrazit více v PubMed
Gorick CM, Breza VR, Nowak KM, et al. Applications of focused ultrasound‐mediated blood–brain barrier opening. Adv Drug Deliv Rev. 2022;191:114583. PubMed PMC
Konofagou EE, Tunga Y‐S, Choia J, Deffieuxa T, Baseria B, Vlachosa F. Ultrasound‐induced blood–brain barrier opening. Curr Pharm Biotechnol. 2012;13:1332‐1345. PubMed PMC
Lipsman N, Meng Y, Bethune AJ, et al. Blood–brain barrier opening in Alzheimer's disease using MR‐guided focused ultrasound. Nat Commun. 2018;9:2336. PubMed PMC
Meng Y, MacIntosh BJ, Shirzadi Z, et al. Resting state functional connectivity changes after MR‐guided focused ultrasound mediated blood–brain barrier opening in patients with Alzheimer's disease. NeuroImage. 2019;200:275‐280. PubMed
Conti A, Kamimura HA, Novell A, Duggento A, Toschi N. Magnetic resonance methods for focused ultrasound‐induced blood–brain barrier opening. Front Phys Ther. 2020;8:547674.
Sun T, Samiotaki G, Wang S, Acosta C, Chen CC, Konofagou EE. Acoustic cavitation‐based monitoring of the reversibility and permeability of ultrasound‐induced blood–brain barrier opening. Phys Med Biol. 2015;60:9079‐9094. PubMed PMC
Chu PC, Chai WY, Tsai CH, Kang ST, Yeh CK, Liu HL. Focused ultrasound‐induced blood–brain barrier opening: association with mechanical index and cavitation index analyzed by dynamic contrast‐enhanced magnetic‐resonance imaging. Sci Rep. 2016;6:4151. PubMed PMC
Jackson A, Parker G, Buckley D. Dynamic Contrast‐Enhanced Magnetic Resonance in Oncology. Springer; 2005.
Sourbron SP, Buckley DL. Classic models for dynamic contrast‐enhanced MRI. NMR Biomed. 2013;26:1004‐1027. PubMed
Huh H, Park TY, Seo H, et al. A local difference in blood–brain barrier permeability in the caudate putamen and thalamus of a rat brain induced by focused ultrasound. Sci Rep. 2020;10:19286. PubMed PMC
Choi HJ, Han M, Seo H, Park CY, Lee E‐H, Park J. The new insight into the inflammatory response following focused ultrasound‐mediated blood–brain barrier disruption. Fluids Barriers CNS. 2022;19:103. PubMed PMC
Vlachos F, Tung Y, Konofagou E. Permeability assessment of the focused ultrasound‐induced blood–brain barrier opening using dynamic contrast‐enhanced MRI. Phys Med Biol. 2010;55:5451‐5466. PubMed PMC
Vlachos F, Tung YS, Konofagou E. Permeability dependence study of the focused ultrasound‐induced blood–brain barrier opening at distinct pressures and microbubble diameters using DCE‐MRI. Magn Reson Med. 2011;66:821‐830. PubMed PMC
Lee P‐Y, Wei H‐J, Pouliopoulos Antonios N, et al. Deep Learning Enables Reduced Gadolinium Dose for Contrast‐Enhanced Blood–Brain Barrier Opening. 2023.
Yang F‐Y, Ko C‐E, Huang S‐Y, Chung I‐F, Chen G‐S. Pharmacokinetic changes induced by focused ultrasound in glioma‐bearing rats as measured by dynamic contrast‐enhanced MRI. PLoS One. 2014;9:e92910. PubMed PMC
Wang S, Wu C‐C, Zhang H, et al. Focused ultrasound induced‐blood–brain barrier opening in mouse brain receiving radiosurgery dose of radiation enhances local delivery of systemic therapy. Br J Radiol. 2020;93:20190214. PubMed PMC
Park J, Aryal M, Vykhodtseva N, Zhang Y‐Z, McDannold N. Evaluation of permeability, doxorubicin delivery, and drug retention in a rat brain tumor model after ultrasound‐induced blood‐tumor barrier disruption. J Control Release. 2017;250:77‐85. PubMed PMC
Chen K‐T, Chai W‐Y, Lin Y‐J, et al. Neuronavigation‐guided focused ultrasound for transcranial blood–brain barrier opening and immunostimulation in brain tumors. Science . Advances. 2021;7:eabd0772. PubMed PMC
Chai W‐Y, Chu P‐C, Tsai M‐Y, et al. Magnetic‐resonance imaging for kinetic analysis of permeability changes during focused ultrasound‐induced blood–brain barrier opening and brain drug delivery. J Control Release. 2014;192:1‐9. PubMed
Chai W‐Y, Chu P‐C, Tsai C‐H, et al. Image‐guided focused‐ultrasound CNS molecular delivery: an implementation via dynamic contrast‐enhanced magnetic‐resonance imaging. Sci Rep. 2018;8:4151. PubMed PMC
Fan CH, Lin WH, Ting CY, et al. Contrast‐enhanced ultrasound imaging for the detection of focused ultrasound‐induced blood–brain barrier opening. Theranostics. 2014;4:1014‐1025. PubMed PMC
Yoon K, Lee W, Chen E, et al. Localized blood–brain barrier opening in ovine model using image‐guided transcranial focused ultrasound. Ultrasound Med Biol. 2019;45:2391‐2404. PubMed PMC
Aryal M, Park J, Vykhodtseva N, Zhang Y‐Z, McDannold N. Enhancement in blood‐tumor barrier permeability and delivery of liposomal doxorubicin using focused ultrasound and microbubbles: evaluation during tumor progression in a rat glioma model. Phys Med Biol. 2015;60:2511‐2527. PubMed PMC
Samiotaki G, Karakatsani ME, Buch A, et al. Pharmacokinetic analysis and drug delivery efficiency of the focused ultrasound‐induced blood–brain barrier opening in non‐human primates. Magn Reson Imaging. 2017;37:273‐281. PubMed PMC
Pacia CP, Zhu L, Yang Y, et al. Feasibility and safety of focused ultrasound‐enabled liquid biopsy in the brain of a porcine model. Sci Rep. 2020;10:7449. PubMed PMC
Hývlová D, Vitouš J, Jiřík R. Comparison of pharmacokinetic models for quantification of blood‐brain‐barrier opening induced by focused ultrasound. Proceedings II of the 29st Conference STUDENT EEICT 2023: Selected papers:133‐136Brno University of Technology; 2023.
Feng L. Golden‐angle radial MRI: basics, advances, and applications. J Magn Reson Imaging. 2022;56:45‐62. PubMed PMC
Uecker M. BART: Computational magnetic resonance imaging. https://mrirecon.github.io/bart/
Bartoš M, Rajmic P, Šorel M, Mangová M, Keunen O, Jiřík R. Spatially regularized estimation of the tissue homogeneity model parameters in DCE‐MRI using proximal minimization. Magn Reson Med. 2019;82:2257‐2272. PubMed
Hývlová D. PerfSim. https://github.com/NMRISIBrno/PerfSim.git
Vitouš J, Jiřík R, Stračina T, et al. T1 mapping of myocardium in rats using self‐gated golden‐angle acquisition. Magn Reson Med. 2024;91:368‐380. PubMed
Jiřík R. Perfusion Lab. https://perflab.isibrno.cz/
Maier O, Schoormans J, Schloegl M, et al. Rapid T1 quantification from high resolution 3D data with model‐based reconstruction. Magn Reson Med. 2019;81:2072‐2089. PubMed PMC
Ewing JR, Bagher‐Ebadian H. Model selection in measures of vascular parameters using dynamic contrast‐enhanced MRI: experimental and clinical applications. NMR Biomed. 2013;26:1028‐1041. PubMed PMC
Luypaert R, Ingrisch M, Sourbron S, De Mey J. The Akaike information criterion in DCE‐MRI: does it improve the haemodynamic parameter estimates? Phys Med Biol. 2012;57:3609. PubMed
Glatting G, Kletting P, Reske SN, Hohl K, Ring C. Choosing the optimal fit function: comparison of the Akaike information criterion and the F‐test. Med Phys. 2007;34:4285‐4292. PubMed
Fluckiger JU, Schabel MC, DiBella EVR. Toward local arterial input functions in dynamic contrast‐enhanced MRI. J Magn Reson Imaging. 2010;32:924‐934. PubMed
Adam JF, Elleaume H, Duc GL, et al. Absolute cerebral blood volume and blood flow measurements based on synchrotron radiation quantitative computed tomography. J Cereb Blood Flow Metab. 2003;23:499‐512. PubMed
Cremer Jill E, Seville MP. Regional brain blood flow, blood volume, and haematocrit values in the adult rat. J Cereb Blood Flow Metab. 1983;3:254‐256. PubMed
Jiřík R, Soucek K, Mezl M, et al. Blind deconvolution in dynamic contrast‐enhanced MRI and ultrasound. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol 2014. IEEE; 2014:4276‐4279. PubMed
Jiřík R, Taxt T, Macíček O, et al. Blind deconvolution estimation of an arterial input function for small animal DCE‐MRI. Magn Reson Imaging. 2019;62:46‐56. PubMed
Haroon J, Aboody K, Flores L, et al. Use of transcranial low‐intensity focused ultrasound for targeted delivery of stem cell‐derived exosomes to the brain. Sci Rep. 2023;13:1‐8. PubMed PMC
Hývlová D, Jiřík R, Vitouš J, et al. DCE‐MRI data of focused ultrasound‐induced blood–brain barrier opening in mice (real & simulated). doi:10.5281/zenodo.136831032024 PubMed DOI PMC