Spatially regularized estimation of the tissue homogeneity model parameters in DCE-MRI using proximal minimization

. 2019 Dec ; 82 (6) : 2257-2272. [epub] 20190717

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31317577

PURPOSE: The Tofts and the extended Tofts models are the pharmacokinetic models commonly used in dynamic contrast-enhanced MRI (DCE-MRI) perfusion analysis, although they do not provide two important biological markers, namely, the plasma flow and the permeability-surface area product. Estimates of such markers are possible using advanced pharmacokinetic models describing the vascular distribution phase, such as the tissue homogeneity model. However, the disadvantage of the advanced models lies in biased and uncertain estimates, especially when the estimates are computed voxelwise. The goal of this work is to improve the reliability of the estimates by including information from neighboring voxels. THEORY AND METHODS: Information from the neighboring voxels is incorporated in the estimation process through spatial regularization in the form of total variation. The spatial regularization is applied on five maps of perfusion parameters estimated using the tissue homogeneity model. Since the total variation is not differentiable, two proximal techniques of convex optimization are used to solve the problem numerically. RESULTS: The proposed algorithm helps to reduce noise in the estimated perfusion-parameter maps together with improving accuracy of the estimates. These conclusions are proved using a numerical phantom. In addition, experiments on real data show improved spatial consistency and readability of perfusion maps without considerable lowering of the quality of fit. CONCLUSION: The reliability of the DCE-MRI perfusion analysis using the tissue homogeneity model can be improved by employing spatial regularization. The proposed utilization of modern optimization techniques implies only slightly higher computational costs compared to the standard approach without spatial regularization.

Zobrazit více v PubMed

Schabel MC, Parker DL. Uncertainty and bias in contrast concentration measurements using spoiled gradient echo pulse sequences. Phys Med Biol. 2008;53:2345-2373.

Koh TS. On the a priori identifiability of the two-compartment distributed parameter model from residual tracer data acquired by dynamic contrast-enhanced imaging. IEEE Trans Biomed Eng. 2008;55:340-344.

Brix G, Zwick S, Kiessling F, Griebel J. Pharmacokinetic analysis of tissue microcirculation using nested models: multimodel inference and parameter identifiability. Med Phys. 2009;36:2923-2933.

Brix G, Salehi Ravesh M, Griebel J. Two-compartment modeling of tissue microcirculation revisited. Med Phys. 2017;44:1809-1822.

Lopata RGP, Backes WH, van den Bosch PPJ, van Riel NAW. On the identifiability of pharmacokinetic parameters in dynamic contrast-enhanced imaging. Magn Reson Med. 2007;58:425-429.

Henderson E, Rutt BK, Lee T-Y. Temporal sampling requirements for the tracer kinetics modeling of breast disease. Magn Reson Imaging. 1998;16:1057-1073.

Aerts H, Jaspers K, Backes WH. The precision of pharmacokinetic parameters in dynamic contrast-enhanced magnetic resonance imaging: the effect of sampling frequency and duration. Phys Med Biol. 2011;56:5665-5678.

Larsson C, Kleppestø M, Rasmussen I, et al. Sampling requirements in DCE-MRI based analysis of high grade gliomas: simulations and clinical results. J Magn Reson Imaging. 2013;37:818-829.

Evelhoch JL. Key factors in the acquisition of contrast kinetic data for oncology. J Magn Reson Imaging. 1999;259:254-259.

Kershaw LE, Cheng H-LM. Temporal resolution and SNR requirements for accurate DCE-MRI data analysis using the AATH model. Magn Reson Med. 2010;64:1772-1780.

Bartoš M, Jiřík R, Kratochvíla J, Standara M, Starčuk Z, Taxt T. The precision of DCE-MRI using the tissue homogeneity model with continuous formulation of the perfusion parameters. Magn Reson Imaging. 2014;32:505-513.

Garpebring A, Brynolfsson P, Yu J, et al. Uncertainty estimation in dynamic contrast-enhanced MRI. Magn Reson Med. 2013;69:992-1002.

Dale BM, Jesberger JA, Lewin JS, Hillenbrand CM, Duerk JL. Determining and optimizing the precision of quantitative measurements of perfusion from dynamic contrast enhanced MRI. J Magn Reson Imaging. 2003;18:575-584.

De Naeyer D, De Deene Y, Ceelen WP, Segers P, Verdonck P. Precision analysis of kinetic modelling estimates in dynamic contrast enhanced MRI. MAGMA. 2011;24:51-66.

Koh TS, Cheong D, Hou Z. Issues of discontinuity in the impulse residue function for deconvolution analysis of dynamic contrast-enhanced MRI data. Magn Reson Med. 2011;66:886-892.

Garpebring A, Östlund N, Karlsson M. A novel estimation method for physiological parameters in dynamic contrast-enhanced MRI: application of a distributed parameter model using Fourier-domain calculations. IEEE Trans Med Imaging. 2009;28:1375-1383.

Bartoš M, Keunen O, Jiřík R, Bjerkvig R, Taxt T. Perfusion analysis of dynamic contrast enhanced magnetic resonance images using a fully continuous tissue homogeneity model with mean transit time dispersion and frequency domain estimation of the signal delay. In Analysis of Biomedical Signals and Images. Vol. 20. Brno, Czech Republic: Brno University of Technology; 2010:269-274.

Sommer JC, Gertheiss J, Schmid VJ. Spatially regularized estimation for the analysis of dynamic contrast-enhanced magnetic resonance imaging data. Stat Med. 2014;33:1029-1041.

Sommer JC, Schmid VJ. Spatial two-tissue compartment model for dynamic contrast-enhanced magnetic resonance imaging. J R Stat Soc Ser C. (Applied Stat). 2014;63:695-713.

Schmid VJ, Whitcher B, Padhani AR, Taylor NJ, Yang G-Z. Bayesian methods for pharmacokinetic models in dynamic contrast-enhanced magnetic resonance imaging. IEEE Trans Med Imaging. 2006;25:1627-1636.

Feilke M, Bischl B, Schmid VJ, Gertheiss J. Boosting in nonlinear regression models with an application to DCE-MRI data. Methods Inf Med. 2016;55:31-41.

Kelm BM, Menze BH, Nix O, Zechmann CM, Hamprecht FA. Estimating kinetic parameter maps from dynamic contrast-enhanced MRI using spatial prior knowledge. IEEE Trans Med Imaging. 2009;28:1534-1547.

Yang W, Yu L, Lu Z, et al. Estimating pharmacokinetic parameter maps from breast DCE-MRI with implicit regularization by guided image filtering. IEEE 11th International Symposium on Biomedical Imaging (ISBI). IEEE. 2014;2014:878-881.

Guo Y, Lingala SG, Zhu Y, Lebel RM, Nayak KS. Direct estimation of tracer-kinetic parameter maps from highly undersampled brain dynamic contrast enhanced MRI. Magn Reson Med. 2017;78:1566-1578.

Parikh N, Boyd S. Proximal algorithms. Found Trends Optim. 2013;1:123-231.

Lee JD, Sun Y, Saunders MA. Proximal Newton-type methods for minimizing composite functions. SIAM J Optim. 2014;24:1420-1443.

Chambolle A, Pock T. A first-order primal-dual algorithm for convex problems with applications to imaging. J Math Imaging Vis. 2011;40:120-145.

Seber G, Wild CJ. Nonlinear Regression (Wiley Series in Probability and Statistics). Hoboken, NJ: Wiley-Interscience; 2003.

Madsen K, Nielsen HB, Tingleff O. Methods for Non-Linear Least Squares Problems, 2nd ed. Lyngby: Informatics and Mathematical Modelling, Technical University of Denmark, DTU; 2004.

Ahearn TS, Staff R, Redpath T, Semple S. The use of the Levenberg-Marquardt curve-fitting algorithm in pharmacokinetic modelling of DCE-MRI data. Phys Med Biol. 2005;50:N85-N92.

Feilke M, Bischl B, Schmid VJ, Gertheiss J. Web-based appendix for boosting in nonlinear regression models with an application to DCE-MRI data: details on the optimization in the boosting algorithm. Methods Inf Med. 2016;55:31-41.

Tofts PS, Brix G, Buckley DL, et al. Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusable tracer: Standardized quantities and symbols. J Magn Reson Imaging. 1999;10:223-232.

Sourbron SP, Buckley DL. Classic models for dynamic contrast-enhanced MRI. NMR Biomed. 2013;26:1004-1027.

Johnson JA, Wilson TA. A model for capillary exchange. Am J Physiol Heart Circ Physiol. 1966;210:1299-1303.

Baselice F, Ferraioli G, Pascazio V. Relaxation time estimation from complex magnetic resonance images. Sensors. 2010;10:3611-3625.

Nowak RD. Wavelet-based Rician noise removal for magnetic resonance imaging. IEEE Trans Image Process. 1999;8:1408-1419.

Gudbjartsson H, Patz S. The Rician distribution of noisy MRI data. Magn Reson Med. 1995;34:910-914.

Bartoš M, Šorel M, Jiřík R. Time-efficient Fourier domain evaluation of pharmacokinetic model in dynamic contrast-enhanced magnetic resonance imaging. IFMBE Proc. 2019;68:777-781.

Sourbron SP, Buckley DL. Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability. Phys Med Biol. 2011;57:R1-R33.

Rudin LI, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Phys D Nonlinear Phenom. 1992;60:259-268.

Rajmic P, Novosadova M. On the limitation of convex optimization for sparse signal segmentation. 2016 39th Int Conf Telecommun Signal Process. TSP 2016;2016:550-554.

Michel V, Gramfort A, Varoquaux G, Eger E, Thirion B. Total variation regularization for fMRI-based prediction of behaviour. IEEE Trans Med Imaging. 2011;30:1-12.

Rakotomamonjy A, Flamary R, Gasso G. DC proximal Newton for nonconvex optimization problems. IEEE Trans Neural Networks Learn Syst. 2016;27:636-647.

Salzo S, Villa S. Convergence analysis of a proximal Gauss-Newton method. Comput Optim Appl. 2012;53:557-589.

Maier O, Schoormans J, Schloegl M, et al. Rapid T1 quantification from high resolution 3D data with model-based reconstruction. Magn Reson Med. 2019;81:2072-2089.

Obad N, Espedal H, Jirik R, et al. Lack of functional normalisation of tumour vessels following anti-angiogenic therapy in glioblastoma. J Cereb Blood Flow Metab. 2018;38:1741-1753.

Jirik R, Soucek K, Mezl M, et al. Blind deconvolution in dynamic contrast-enhanced MRI and ultrasound. In 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol. 2014. IEEE, 2014. pp. 4276-4279.

Li KL, Zhu XP, Waterton J, Jackson A. Improved 3D quantitative mapping of blood volume and endothelial permeability in brain tumors. J Magn Reson Imaging. 2000;12:347-357.

Taxt T, Jiřík R, Rygh CB, et al. Single-channel blind estimation of arterial input function and tissue impulse response in DCE-MRI. IEEE Trans Biomed Eng. 2012;59:1012-1021.

Kratochvíla J, Jiřík R, Bartoš M, Standara M, Starcuk Z, Taxt T. Distributed capillary adiabatic tissue homogeneity model in parametric multi-channel blind AIF estimation using DCE-MRI. Magn Reson Med. 2016;75:1355-1365.

Henderson E, Sykes J, Drost D, Weinmann H-J, Rutt BK, Lee T-Y. Simultaneous MRI measurement of blood flow, blood volume, and capillary permeability in mammary tumors using two different contrast agents. J Magn Reson Imaging. 2000;12:991-1003.

Šorel M, Bartoš M. Fast Bayesian JPEG decompression and denoising with tight frame priors. IEEE Trans Image Process. 2017;26:490-501.

Foi A. Noise estimation and removal in MR imaging: the variance-stabilization approach. In Proceedings of the International Symposium on Biomedical Imaging. 2011;1809-1814.

Bredies K, Holler M. A TGV-based framework for variational image decompression, zooming, and reconstruction. Part I: Analytics. SIAM J Imaging Sci. 2015;8:2814-2850.

Fusco R, Sansone M, Petrillo M, Petrillo A. Influence of parameterization on tracer kinetic modeling in DCE-MRI. J Med Biol Eng. 2014;34:157-163.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...