Photogeneration and Visualization of a Surface-Stabilized Dinitrene
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
MSCA Fellowship CZ FZU I-CZ.02.01.01/00/22_010/0002906
Ministerstvo Školství, Mládeže a Tělovýchovy
e-INFRA CZ LM2018140
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2023051
Ministerstvo Školství, Mládeže a Tělovýchovy
P 33527-N
Austrian Science Fund
I 5145-N
Austrian Science Fund
21-17194L
Grantová Agentura České Republiky
PubMed
39989376
PubMed Central
PMC12070354
DOI
10.1002/anie.202502640
Knihovny.cz E-zdroje
- Klíčová slova
- azide, metal surface, nitrene, photochemistry, scanning probe microscopy,
- Publikační typ
- časopisecké články MeSH
Nitrenes are known as key intermediates in various chemical reactions. Nitrene transfer reactions are particularly effective for synthesizing nitrogen-containing compounds, where metal catalysts play a crucial role in controlling nitrene reactivity and selectivity. In this study, we demonstrate the formation of a stable surface-supported dinitrene on Au(111) through UV irradiation of its diazide precursor, characterized by scanning probe techniques. The photoreaction mechanism is elucidated with wavelength-dependent experiments and time-dependent density functional theory calculations. Our findings present the first real-space visualization of a metal nitrene adsorbed on a surface, highlighting its potential in catalysis and surface functionalization.
Department of Physical Chemistry University of Graz Heinrichstraße 28 8010 Graz Austria
Institute of Physics Czech Academy of Sciences Cukrovarnická 10 16200 Prague 6 Czech Republic
Instituto de Ciencia de Materiales de Madrid CSIC Cantoblanco 28049 Madrid Spain
Zobrazit více v PubMed
Kuijpers P. F., van der Vlugt J. I., Schneider S., de Bruin B., Chem. Eur. J. 2017, 23, 13819–13829. PubMed PMC
Dequirez G., Pons V., Dauban P., Angew. Chem. Int. Ed. 2012, 51, 7384–7395. PubMed
Peplow M., Nature 2023, 618, 21–24. PubMed
Reisenbauer J. C., Green O., Franchino A., Finkelstein P., Morandi B., Science 2022, 377, 1104–1109. PubMed
Patel S. C., Burns N. Z., J. Am. Chem. Soc. 2022, 144, 17797–17802. PubMed
Sawant D. M., Joshi G., Ansari A. J., iScience 2024, 27, 109311. PubMed PMC
Ye L.-W., Zhu X.-Q., Sahani R. L., Xu Y., Qian P.-C., Liu R.-S., Chem. Rev. 2021, 121, 9039–9112. PubMed
Liu W., Choi I., Zerull E. E., Schomaker J. M., ACS Catal. 2022, 12, 5527–5539.
Bräse S., Gil C., Knepper K., Zimmermann V., Angew. Chem. Int. Ed. 2005, 44, 5188–5240. PubMed
Shin K., Kim H., Chang S., Acc. Chem. Res. 2015, 48, 1040–1052. PubMed
Minozzi M., Nanni D., Spagnolo P., Chem. Eur. J. 2009, 15, 7830–7840. PubMed
Leyva Elisa, Platz M. S., Persy Gabriele, Wirz Jakob, J. Am. Chem. Soc. 1986, 108, 3783–3790.
Soto J., Otero J. C., J. Phys. Chem. A 2019, 123, 9053–9060. PubMed
Gritsan N., Platz M., in Organic Azides, John Wiley & Sons, Ltd, 2009, pp. 311–372.
Schrock A. K., Schuster G. B., J. Am. Chem. Soc. 1984, 106, 5234–5240.
Schuster G. B., Platz M. S., in Advances in Photochemistry (Eds.: Volman D. H., Hammond G. S., Neckers D. C.), John Wiley & Sons, Inc., Hoboken, NJ, USA, 2007, pp. 69–143.
Leyva E., Platz M. S., Moctezuma E., J. Photochem. Photobiol. 2022, 11, 100126.
Janssen M., Frederichs T., Olaru M., Lork E., Hupf E., Beckmann J., Science 2024, 385, 318–321. PubMed
de Oteyza D. G., Frederiksen T., J. Phys. Condens. Matter 2022, 34, 443001. PubMed
Bebensee F., Bombis C., Vadapoo S.-R., Cramer J. R., Besenbacher F., Gothelf K. V., Linderoth T. R., J. Am. Chem. Soc. 2013, 135, 2136–2139. PubMed
Díaz Arado O., Mönig H., Wagner H., Franke J.-H., Langewisch G., Held P. A., Studer A., Fuchs H., ACS Nano 2013, 7, 8509–8515. PubMed
Stolz S., Bauer M., Pignedoli C. A., Krane N., Bommert M., Turco E., Bassi N., Kinikar A., Merino-Dìez N., Hany R., Brune H., Gröning O., Widmer R., Commun. Chem. 2021, 4, 1–7. PubMed PMC
Mieres-Perez J., Lucht K., Trosien I., Sander W., Sanchez-Garcia E., Morgenstern K., J. Am. Chem. Soc. 2021, 143, 4653–4660. PubMed
Albrecht F., Fatayer S., Pozo I., Tavernelli I., Repp J., Peña D., Gross L., Science 2022, 377, 298–301. PubMed
Frezza F., Sánchez-Grande A., Canola S., Lamancová A., Mutombo P., Chen Q., Wäckerlin C., Ernst K.-H., Muntwiler M., Zema N., Di Giovannantonio M., Nachtigallová D., Jelínek P., Angew. Chem. Int. Ed. 2024, 63, e202405983. PubMed
Zhukhovitskiy A. V., MacLeod M. J., Johnson J. A., Chem. Rev. 2015, 115, 11503–11532. PubMed
Jiang L., Zhang B., Médard G., Seitsonen A. P., Haag F., Allegretti F., Reichert J., Kuster B., Barth J. V., Papageorgiou A. C., Chem. Sci. 2017, 8, 8301–8308. PubMed PMC
Bakker A., Timmer A., Kolodzeiski E., Freitag M., Gao H. Y., Mönig H., Amirjalayer S., Glorius F., Fuchs H., J. Am. Chem. Soc. 2018, 140, 11889–11892. PubMed
Bakker A., Freitag M., Kolodzeiski E., Bellotti P., Timmer A., Ren J., Schulze Lammers B., Moock D., Roesky H. W., Mönig H., Amirjalayer S., Fuchs H., Glorius F., Angew. Chem. Int. Ed. 2020, 59, 13643–13646. PubMed PMC
Hellerstedt J., Cahlík A., Stetsovych O., Švec M., Shimizu T. K., Mutombo P., Klívar J., Stará I. G., Jelínek P., Starý I., Angew. Chem. Int. Ed. 2019, 58, 2266–2271. PubMed
Willenbockel M., Maurer R. J., Bronner C., Schulze M., Stadtmüller B., Soubatch S., Tegeder P., Reuter K., Tautz F. S., Chem. Commun. 2015, 51, 15324–15327. PubMed
Wong K. T., Tanskanen J. T., Bent S. F., Langmuir 2013, 29, 15842–15850. PubMed
Liao B.-C., Jian B.-H., Wu M.-J., Lee J.-T., ACS Appl. Energ. Mater. 2023, 6, 8581–8589.
Kim J. Y., Jang W. J., Kim H., Yoon J. K., Park J., Kahng S.-J., Lee J., Han S., Appl. Surf. Sci. 2013, 268, 432–435.
Mendieta-Moreno J. I., Mallada B., de la Torre B., Cadart T., Kotora M., Jelínek P., Angew. Chem. Int. Ed. 2022, 61, e202208010. PubMed
Lowe B., Hellerstedt J., Matěj A., Mutombo P., Kumar D., Ondráček M., Jelinek P., Schiffrin A., J. Am. Chem. Soc. 2022, 144, 21389–21397. PubMed
Zhou X.-L., Zhu X.-Y., White J. M., Surf. Sci. Rep. 1991, 13, 73–220.
Lindstrom C. D., Zhu X.-Y., Chem. Rev. 2006, 106, 4281–4300. PubMed
Kubicki J., Luk H. L., Zhang Y., Vyas S., Peng H.-L., Hadad C. M., Platz M. S., J. Am. Chem. Soc. 2012, 134, 7036–7044. PubMed
Peters W. K., Couch D. E., Mignolet B., Shi X., Nguyen Q. L., Fortenberry R. C., Schlegel H. B., Remacle F., Kapteyn H. C., Murnane M. M., Li W., Proc. Natl. Acad. Sci. USA 2017, 114, E11072–E11081. PubMed PMC
Peng H.-L., Phys. Chem. Chem. Phys. 2018, 20, 29091–29104. PubMed
Burdzinski G., Hackett J. C., Wang J., Gustafson T. L., Hadad C. M., Platz M. S., J. Am. Chem. Soc. 2006, 128, 13402–13411. PubMed
Ghosh J., Banerjee S., Bhattacharya A., Chem. Phys. 2017, 494, 78–89.
Braslavsky S. E., Pure Appl. Chem. 2007, 79, 293–465.
Lemir I. D., Argüello J. E., Lanterna A. E., Scaiano J. C., Chem. Commun. 2020, 56, 10239–10242. PubMed