Immersive Virtual Reality as Computer-Assisted Cognitive-Motor Dual-Task Training in Patients with Parkinson's Disease
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
FW04020080
Technology Agency of the Czech Republic (TAČR Trend)
PubMed
40005365
PubMed Central
PMC11857223
DOI
10.3390/medicina61020248
PII: medicina61020248
Knihovny.cz E-resources
- Keywords
- balance, clinical trials, mobility, neurodegenerative diseases, questionnaire, rehabilitation,
- MeSH
- Cognition MeSH
- Quality of Life psychology MeSH
- Middle Aged MeSH
- Humans MeSH
- Parkinson Disease * psychology therapy rehabilitation MeSH
- Postural Balance physiology MeSH
- Surveys and Questionnaires MeSH
- Aged MeSH
- Virtual Reality Exposure Therapy * methods MeSH
- Virtual Reality * MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Background and Objectives: The aim of this study was to determine the effect of immersive virtual reality used as a short-term multifaceted activity with a focus on motor and cognitive function in patients with Parkinson's Disease. The sub-objective focused on quality of life in the study group of patients. Materials and Methods: Nineteen patients (64.2 ± 12.8 years) were included in this study. Inclusion criteria for this study: adult patients in Hoehn and Yahr's stage 1-3, cooperative, with stable health status, independent and mobile. IVR therapy was performed twice a week for 20 min for one month. Input and output measurements were taken within 14 days of starting or ending therapy. The 10 Meter Walk test was used to examine and assess both comfortable and fast walking, and the Timed Up and Go (TUG) + s dual task was applied to quickly assess the highest possible level of functional mobility. The Berg Balance Scale test (BBS) was used to assess balance with a 14-item balance scale containing specific movement tasks. The standardized Parkinson's Disease Questionnaire (PDQ-39) was used to assess quality of life. Data were processed in the PAST program using a nonparametric paired Wilcoxon test. The significance level was set at α = 0.05. The value of the r score was used to evaluate the effect size. Results: A significant reduction in the time in the fast walk 10MWT (p = 0.006; r = 0.63) and TUG (p < 0.001; r = 0.80) parameter were found after therapy. Significant improvement in the BBS score was found after applied therapy (p = 0.016; r = 0.55). In the PDQ-39 questionnaire, significant improvements were found in the study group after therapy in the domains of mobility (p = 0.027; r = 0.51) and emotional well-being (p = 0.011; r = 0.58). Conclusions: The results of this study indicate a positive effect of virtual reality therapy on balance and gait, which is also good in terms of reducing the risk of falls in the study group. Therapy also promoted quality of life in the study group.
See more in PubMed
Xiao Y., Yang T., Shang H. The impact of motor-cognitive dual-task training on physical and cognitive functions in Parkinson’s disease. Brain Sci. 2023;13:437. doi: 10.3390/brainsci13030437. PubMed DOI PMC
Hereitová I., Krobot A. Cognitive-motor interference after stroke. Czech Slovak. Neurol. Neurosurg. 2020;83:520–525. doi: 10.14735/amcsnn2020520. DOI
McIsaac T.L., Lamberg E.M., Muratori L.M. Building a framework for a dual task taxonomy. Biomed. Res. Int. 2015;2015:591475. doi: 10.1155/2015/591475. PubMed DOI PMC
Johansson H., Folkerts A.K., Hammarström I., Kalbe E., Leavy B. Effects of motor–cognitive training on dual-task performance in people with Parkinson’s disease: A systematic review and meta-analysis. J. Neurol. 2023;270:2890–2907. doi: 10.1007/s00415-023-11610-8. PubMed DOI PMC
Rochester L., Galna B., Lord S., Burn D. The nature of dual-task interference during gait in incident Parkinson’s disease. Neuroscience. 2014;265:83–94. doi: 10.1016/j.neuroscience.2014.01.041. PubMed DOI
Yogev-Seligmann G., Giladi N., Gruendlinger L., Hausdorff J.M. The contribution of postural control and bilateral coordination to the impact of dual tasking on gait. Exp. Brain Res. 2013;226:81–93. doi: 10.1007/s00221-013-3412-9. PubMed DOI
Stegemöller E.L., Wilson J.P., Hazamy A., Shelley M.C., Okun M.S., Altmann L.J., Hass C.J. Associations between cognitive and gait performance during single-and dual-task walking in people with Parkinson disease. Phys. Ther. 2014;94:757–766. doi: 10.2522/ptj.20130251. PubMed DOI PMC
Tuena C., Borghesi F., Bruni F., Cavedoni S., Maestri S., Riva G., Tettamanti M., Liperoti R., Rossi L., Ferrarin M., et al. Technology-Assisted Cognitive Motor Dual-Task Rehabilitation in Chronic Age-Related Conditions: Systematic Review. J. Med. Internet Res. 2023;25:e44484. doi: 10.2196/44484. PubMed DOI PMC
Quintas J., Pais J., Martins A.I., Santos H., Neves L., Sousa S., Benhsain D., Dierick F., Callén A., Cunha A., et al. CogniViTra, a digital solution to support dual-task rehabilitation training. Electronics. 2021;10:1304. doi: 10.3390/electronics10111304. DOI
Pedroli E., Cipresso P., Greci L., Arlati S., Boilini L., Stefanelli L., Rossi M., Goulene K., Sacco M., Stramba-Badiale M., et al. An immersive motor protocol for frailty rehabilitation. Front. Neurol. 2019;10:1078. doi: 10.3389/fneur.2019.01078. PubMed DOI PMC
Riva G., Wiederhold B.K., Chirico A., Di Lernia D., Mantovani F., Gaggioli A. Brain and virtual reality: What do they have in common and how to exploit their potential. Annu. Rev. Cyberther. Telemed. 2018;16:3–7.
Tuena C., Serino S., Pedroli E., Stramba-Badiale M., Riva G., Repetto C. Building embodied spaces for spatial memory neurorehabilitation with virtual reality in normal and pathological aging. Brain Sci. 2021;11:1067. doi: 10.3390/brainsci11081067. PubMed DOI PMC
Tan X., Wang K., Sun W., Li X., Wang W., Tian F. A Review of Recent Advances in Cognitive-Motor Dual-Tasking for Parkinson’s Disease Rehabilitation. Sensors. 2024;24:6353. doi: 10.3390/s24196353. PubMed DOI PMC
Hawkes C.H., Del Tredici K., Braak H. A timeline for Parkinson’s disease. Park. Relat. Disord. 2010;16:79–84. doi: 10.1016/j.parkreldis.2009.08.007. PubMed DOI
Bartoš A., Raisová M., Kopeček M. Novelizace české verze Addenbrookského kognitivního testu (ACE-CZ) Česká Slov. Neurol. Neurochir. 2011;74/107:681–684.
Lindholm B., Nilsson M.H., Hansson O., Hagell P. The clinical significance of 10-m walk test standardizations in Parkinson’s disease. J. Neurol. 2018;265:1829–1835. doi: 10.1007/s00415-018-8921-9. PubMed DOI PMC
Morris S., Morris M.E., Iansek R. Reliability of Measurements Obtained with the Timed “Up & Go” Test in People with Parkinson Disease. Phys. Ther. 2001;81:810–819. doi: 10.1093/ptj/81.2.810. PubMed DOI
Berg K.O., Wood-Dauphinee S.L., Williams J.I., Maki B. Measuring balance in the elderly: Validation of an instrument. Can. J. Public. Health. 1992;83((Suppl. S2)):7–11. doi: 10.1177/0269215520941142. PubMed DOI
Peto V., Jenkinson C., Fitzpatrick R. PDQ-39: A review of the development, validation and application of a Parkinson’s disease quality of life questionnaire and its associated measures. J. Neurol. 1998;245((Suppl. S1)):10–14. doi: 10.1007/PL00007730. PubMed DOI
Hammer Ø., Harper D.A.T., Ryan P.D. PAST: Paleontological statistics software package for education and data analysis. [(accessed on 1 December 2024)];Palaeontol. Electron. 2001 4:1–9. Available online: https://palaeo-electronica.org/2001_1/past/past.pdf.
Cohen J. A power prime. Psychol. Bull. 1992;112:155–159. doi: 10.1037/0033-2909.112.1.155. PubMed DOI
Ferrazzoli D., Ortelli P., Cucca A., Bakdounes L., Canesi M., Volpe D. Motor-Cognitive Approach and Aerobic Training: A Synergism for Rehabilitative Intervention in Parkinson’s Disease. Neurodegener. Dis. Manag. 2020;10:41–55. doi: 10.2217/nmt-2019-0025. PubMed DOI
Bayot M., Dujardin K., Tard C., Defebvre L., Bonnet C.T., Allart E., Delval A. The Interaction between Cognition and Motor Control: A Theoretical Framework for Dual-Task Interference Effects on Posture, Gait Initiation, Gait and Turning. Neurophysiol. Clin. 2018;48:361–375. doi: 10.1016/j.neucli.2018.10.003. PubMed DOI
Chua L.K., Chung Y.C., Bellard D., Swan L., Gobreial N., Romano A., Glatt R., Bonaguidi M.A., Lee D.J., Jin Y., et al. Gamified Dual-Task Training for Individuals with Parkinson Disease: An Exploratory Study on Feasibility, Safety, and Efficacy. Int. J. Environ. Res. Public Health. 2021;18:12384. doi: 10.3390/ijerph182312384. PubMed DOI PMC
Li Z., Wang T., Liu H., Jiang Y., Wang Z., Zhuang J. Dual-Task Training on Gait, Motor Symptoms, and Balance in Patients with Parkinson’s Disease: A Systematic Review and Meta-Analysis. Clin. Rehabil. 2020;34:1355–1367. doi: 10.1177/0269215520941142. PubMed DOI
Strouwen C., Molenaar E.A.L.M., Münks L., Keus S.H.J., Zijlmans J.C.M., Vandenberghe W., Bloem B.R., Nieuwboer A. Training Dual Tasks Together or Apart in Parkinson’s Disease: Results from the DUALITY Trial. Mov. Disord. 2017;32:1201–1210. doi: 10.1002/mds.27014. PubMed DOI
Canning C.G., Ada L., Johnson J.J., McWhirter S. Walking Capacity in Mild to Moderate Parkinson’s Disease. Arch. Phys. Med. Rehabil. 2006;87:371–375. doi: 10.1016/j.apmr.2005.11.021. PubMed DOI
Raffegeau T.E., Krehbiel L.M., Kang N., Thijs F.J., Altmann L.J., Cauraugh J.H., Hass C.J. A meta-analysis: Parkinson’s disease and dual-task walking. Park. Relat. Disord. 2019;62:28–35. doi: 10.1016/j.parkreldis.2018.12.012. PubMed DOI PMC
Caligiore D., Mustile M., Fineschi A., Romano L., Piras F., Assogna F., Pontieri F.E., Spalletta G., Baldassarre G. Action Observation with Dual Task for Improving Cognitive Abilities in Parkinson’s Disease: A Pilot Study. Front. Syst. Neurosci. 2019;13:7. doi: 10.3389/fnsys.2019.00007. PubMed DOI PMC