The prognostic reasoning system for chronic kidney disease progression (PROGRES-CKD) may help improve waiting list management for outpatient nephrology services in a second-level public hospital in Italy
Jazyk angličtina Země Itálie Médium print-electronic
Typ dokumentu časopisecké články, validační studie
PubMed
40014297
DOI
10.1007/s40620-025-02222-8
PII: 10.1007/s40620-025-02222-8
Knihovny.cz E-zdroje
- Klíčová slova
- AI (artificial intelligence), Chronic kidney disease, Progression of chronic kidney disease, Risk score, Transition management, Waiting list,
- MeSH
- ambulantní péče * MeSH
- časové faktory MeSH
- chronická renální insuficience * terapie diagnóza MeSH
- hodnocení rizik metody MeSH
- lidé středního věku MeSH
- lidé MeSH
- náhrada funkce ledvin statistika a číselné údaje MeSH
- nefrologie * MeSH
- nemocnice veřejné MeSH
- prognóza MeSH
- progrese nemoci MeSH
- senioři MeSH
- seznamy čekatelů * MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- validační studie MeSH
- Geografické názvy
- Itálie MeSH
BACKGROUND: The management of patients with non-dialysis dependent chronic kidney disease (NDD-CKD) is challenging due to coexisting diseases, competing risks and uncertainties around optimal transition planning. Such clinical challenges are further exacerbated by physician shortage, coupled with rising service demands, which may hinder timely medical access due to long waiting times. Accurate progression risk assessment may help optimize resource allocation and adapting care based on individual patients' needs. This study validated the Prognostic Reasoning System for Chronic Kidney Disease Progression (PROGRES-CKD) in an Italian public hospital and compared its potential impact on waiting list optimization against physician-based protocols. METHODS: First we first validated PROGRES-CKD by assessing its accuracy in predicting kidney replacement therapy (KRT) initiation within 6 months and 24 months in a historical cohort of patients treated at the San Gerardo Hospital (Italy) between 01-01-2015 and 31-12-2019. In a second study we compared PROGRES-CKD to attending nephrologists' prognostic ratings and simulated their potential impact on a waiting list management protocol. RESULTS: We included 2005 patients who underwent 11,757 outpatient nephrology visits in 4 years. Most visits occurred for NDD-CKD stage 4 patients; the incidence of KRT onset was 10.8 and 9.32/100 patient-years at the 6 and 24-month prediction horizon cohorts, respectively. PROGRES-CKD demonstrated high accuracy in predicting KRT initiation at 6 and 24 months (AUROC = 0.88 and AUROC = 0.85, respectively). Nephrologists' prognostic performance was highly operator-dependent, albeit always significantly lower than PROGRES-CKD. In the simulation exercise, allocation based on PROGRES-CKD resulted in more follow-up visits for patients progressing to end-stage kidney disease (ESKD) and fewer visits for non-progressing patients, compared to allocation determined by nephrologists' prognosis. CONCLUSIONS: PROGRES-CKD showed high accuracy in a real-world application. Waiting list simulation suggests that PROGRES-CKD may enable more efficient allocation of resources.
Clinical Advanced Analytics Global Medical Office Fresenius Medical Care Waltham USA
Department of Medicine and Surgery University of Milano Bicocca Milan Italy
FMC Dialysis Services Slovakia Bratislava Slovakia
Institute of Social Health at Palacký University Olomouc Olomouc Czech Republic
Marketing Department Fresenius Medical Care Italia Spa Crema Italy
Medical Faculty University of PJ Safarik Kosice Slovakia
Nephrology and Dialysis Unit ASST Monza San Gerardo Hospital Monza Italy
Santa Barbara Smart Health GDTI Fresenius Medical Care Valencia Spain
Struttura Complessa Nefrologia e Dialisi ASST Nord Milano Milan Italy
Zobrazit více v PubMed
Cockwell P, Fisher LA (2020) The global burden of chronic kidney disease. Lancet 395(10225):662–664. https://doi.org/10.1016/S0140-6736(19)32977-0 PubMed DOI
Evans M, Lopau K (2020) The transition clinic in chronic kidney disease care. Nephrol Dial Transpl 35(S2):ii4–ii10. https://doi.org/10.1093/ndt/gfaa022 DOI
Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group (2024) KDIGO 2024 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. https://doi.org/10.1016/S0085-2538(24)00110-8 DOI
Bellocchio F et al (2021) Validation of a novel predictive algorithm for kidney failure in patients suffering from chronic kidney disease: the prognostic reasoning system for chronic kidney disease (PROGRES-CKD). Int J Environ Res Public Health. https://doi.org/10.3390/ijerph182312649 PubMed DOI PMC
Levey AS et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med. https://doi.org/10.7326/0003-4819-150-9-200905050-00006 PubMed DOI PMC
Linden A (2006) Measuring diagnostic and predictive accuracy in disease management: an introduction to receiver operating characteristic (ROC) analysis. J Eval Clin Pract. https://doi.org/10.1111/j.1365-2753.2005.00598.x PubMed DOI
Tangri N et al (2011) A predictive model for progression of chronic kidney disease to kidney failure. JAMA J Am Med Assoc. https://doi.org/10.1001/jama.2011.451 DOI
Lim DKE et al (2022) Prediction models used in the progression of chronic kidney disease: a scoping review. PLoS ONE. https://doi.org/10.1371/JOURNAL.PONE.0271619 PubMed DOI PMC
Lambe KA, O’reilly G, Kelly BD, Curristan S (2016) Dual-process cognitive interventions to enhance diagnostic reasoning: a systematic review. BMJ Qual Saf. https://doi.org/10.1136/bmjqs PubMed DOI
Eneanya ND, Yang W, Reese PP (2019) Reconsidering the consequences of using race to estimate kidney function. JAMA 322(2):113–114. https://doi.org/10.1001/jama.2019.5774 PubMed DOI
Gama RM, Kalyesubula R, Fabian J, Mahalingasivam V (2021) NICE takes ethnicity out of estimating kidney function. BMJ. https://doi.org/10.1136/BMJ.N2159 PubMed DOI
Inker LA et al (2021) New creatinine- and cystatin C-based equations to estimate GFR without race. N Engl J Med 385(19):1737–1749. https://doi.org/10.1056/NEJMOA2102953/SUPPL_FILE/NEJMOA2102953_DISCLOSURES.PDF PubMed DOI PMC
Williams WW, Hogan JW, Ingelfinger JR (2021) Time to eliminate health care disparities in the estimation of kidney function. N Engl J Med 385(19):1804–1806. https://doi.org/10.1056/NEJME2114918/SUPPL_FILE/NEJME2114918_DISCLOSURES.PDF PubMed DOI
Hsu C et al (2021) Race, genetic ancestry, and estimating kidney function in CKD. N Engl J Med 385(19):1750–1760. https://doi.org/10.1056/NEJMOA2103753/SUPPL_FILE/NEJMOA2103753_DATA-SHARING.PDF PubMed DOI PMC
Goldfarb-Rumyantzev AS, Gautam S, Dong N, Brown RS (2018) Prediction model and risk stratification tool for survival in patients with CKD. Kidney Int Rep 3(2):417. https://doi.org/10.1016/J.EKIR.2017.11.010 PubMed DOI
Tran NTD, Balezeaux M, Granal M, Fouque D, Ducher M, Fauvel JP (2023) Prediction of all-cause mortality for chronic kidney disease patients using four models of machine learning. Nephrol Dial Transpl 38(7):1691–1699. https://doi.org/10.1093/NDT/GFAC316 DOI
Piscitelli P et al (2023) Albuminuria improves R2CHA2DS2-VASc score in predicting mortality in high cardiovascular risk population. Nutr Metab Cardiovasc Dis 33(8):1591–1598. https://doi.org/10.1016/J.NUMECD.2023.05.014 PubMed DOI
Ye W et al (2022) Development of clinical prediction models for renal and cardiovascular outcomes and mortality in patients with type 2 diabetes and chronic kidney disease using time-varying predictors. J Diabetes Complicat 36(5):108180. https://doi.org/10.1016/J.JDIACOMP.2022.108180 DOI
Sheer R et al (2022) Predictive risk models to identify patients at high-risk for severe clinical outcomes with chronic kidney disease and type 2 diabetes. J Prim Care Community Heal. https://doi.org/10.1177/21501319211063726/ASSET/IMAGES/LARGE/10.1177_21501319211063726-FIG7.JPEG DOI
Prouvot J et al (2022) Low performance of prognostic tools for predicting death before dialysis in older patients with advanced CKD. J Nephrol 35(3):993–1004. https://doi.org/10.1007/S40620-021-01180-1/METRICS PubMed DOI