Trade-Offs Between Growth, Longevity, and Storage Carbohydrates in Herbs and Shrubs: Evidence for Active Carbon Allocation Strategies
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
The work was supported by the Ministry of Education, Youth and Sport of the Czech Republic (MSMT) (#VES24, INTER-ACTION, LUAUS24258).
PubMed
40016866
PubMed Central
PMC12050394
DOI
10.1111/pce.15444
Knihovny.cz E-zdroje
- Klíčová slova
- active accumulation, carbon allocation strategies, carbon allocation trade‐offs, longevity, nonstructural carbohydrates, plant growth,
- MeSH
- fruktany metabolismus MeSH
- kořeny rostlin metabolismus MeSH
- metabolismus sacharidů * MeSH
- podnebí MeSH
- rostliny * metabolismus MeSH
- škrob metabolismus MeSH
- uhlík * metabolismus MeSH
- vývoj rostlin * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fruktany MeSH
- škrob MeSH
- uhlík * MeSH
Plants store nonstructural carbohydrates (NSCs) like starch, fructans and soluble sugars to support metabolism, stress tolerance and defence during low photosynthesis, ultimately influencing their growth and longevity. However, the relationship between NSC composition and growth or persistence in wild plants remains unclear. This study explores trade-offs between growth, longevity and NSCs in 201 plant species across diverse climates in the Western USA, spanning 500-4300 m in elevation and 80-1000 mm in precipitation. Annual growth rates and plant ages were derived from the ring widths of semidesert, steppe and alpine herbs and shrubs, along with NSC profiles in their roots and rhizomes. Results showed an inverse relationship between growth and age, with total NSC, starch and fructan levels negatively correlated with growth, supporting the growth-longevity and growth-storage trade-off hypotheses. Conversely, higher growth rates were linked to soluble sugars, suggesting that climate-driven growth limitations alone do not explain increased NSCs. Fructans were positively associated with longevity, especially in long-lived desert shrubs and alpine herbs, underscoring NSCs' active role in survival strategies. These findings challenge the carbon surplus hypothesis, suggesting that plants actively use specific NSCs to balance growth and persistence, with energy-rich sugars promoting growth and osmoprotective fructans enhancing longevity.
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Botany of the Czech Academy of Sciences Průhonice Czech Republic
Zobrazit více v PubMed
Adams, D. C. , and Collyer M. L.. 2017. “Multivariate Phylogenetic Comparative Methods: Evaluations, Comparisons, and Recommendations.” Systematic Biology 67, no. 1: 14–31. 10.1093/sysbio/syx055. PubMed DOI
Agrawal, A. A. 2020. “A Scale‐Dependent Framework for Trade‐Offs, Syndromes, and Specialization in Organismal Biology.” Ecology 101, no. 2. 10.1002/ecy.2924. PubMed DOI
Arendt, J. D. 1997. “Adaptive Intrinsic Growth Rates: An Integration Across Taxa.” The Quarterly Review of Biology 72: 149–177.
Aronson, J. , Kigel J., Shmida A., and Klein J.. 1992. “Adaptive Phenology of Desert and Mediterranean Populations of Annual Plants Grown With and Without Water Stress.” Oecologia 89, no. 1: 17–26. 10.1007/bf00319010. PubMed DOI
Black, B. A. , Colbert J. J., and Pederson N.. 2008. “Relationships Between Radial Growth Rates and Lifespan Within North American Tree Species.” Écoscience 15: 349–357.
Blumstein, M. , Gersony J., Martínez‐Vilalta J., and Sala A.. 2023. “Global Variation in Nonstructural Carbohydrate Stores in Response to Climate.” Global Change Biology 29, no. 7: 1854–1869. 10.1111/gcb.16573. PubMed DOI
Blumstein, M. , Sala A., Weston D. J., Holbrook N. M., and Hopkins R.. 2022. “Plant Carbohydrate Storage: Intra‐ and Inter‐Specific Trade‐Offs Reveal a Major Life History Trait.” New Phytologist 235, no. 6: 2211–2222. 10.1111/nph.18213. PubMed DOI
Büntgen, U. , Hellmann L., Tegel W., et al. 2015. “Temperature‐Induced Recruitment Pulses of Arctic Dwarf Shrub Communities.” Journal of Ecology 103, no. 2: 489–501. 10.1111/1365-2745.12361. DOI
Chapin, F. S. , Schulze E., and Mooney H. A.. 1990. “The Ecology and Economics of Storage in Plants.” Annual Review of Ecology and Systematics 21, no. 1: 423–447. 10.1146/annurev.es.21.110190.002231. DOI
Chlumská, Z. , Liancourt P., Hartmann H., et al. 2022. “Species‐ and Compound‐Specific Dynamics of Nonstructural Carbohydrates Toward the World's Upper Distribution of Vascular Plants.” Environmental and Experimental Botany 201: 104985. 10.1016/j.envexpbot.2022.104985. DOI
Chondol, T. , Klimeš A., Altman J., et al. 2023. “Habitat Preferences and Functional Traits Drive Longevity in Himalayan High‐Mountain Plants.” Oikos 2023: e010073. 10.1111/oik.10073. DOI
Couée, I. , Sulmon C., Gouesbet G., and El Amrani A.. 2006. “Involvement of Soluble Sugars in Reactive Oxygen Species Balance and Responses to Oxidative Stress in Plants.” Journal of Experimental Botany 57, no. 3: 449–459. 10.1093/jxb/erj027. PubMed DOI
Dietze, M. C. , Sala A., Carbone M. S., et al. 2014. “Nonstructural Carbon in Woody Plants.” Annual Review of Plant Biology 65, no. 1: 667–687. 10.1146/annurev-arplant-050213-040054. PubMed DOI
Dolezal, J. , Kopecky M., Dvorsky M., et al. 2019. “Sink Limitation of Plant Growth Determines Tree Line in the Arid Himalayas.” Functional Ecology 33: 553–565. 10.1111/1365-2435.13284. DOI
Doležal, J. , Dvorský M., Börner A., Wild J., and Schweingruber F. H.. 2018. Anatomy, Age and Ecology of High Mountain Plants in Ladakh, The Western Himalaya. Springer International Publishing.
Van den Ende, W. and Oner, E. T. , ed. 2023. The Book of Fructans. Academic Press.
Van den Ende, W. V. 2013. “Multifunctional Fructans and Raffinose Family Oligosaccharides.” Frontiers in Plant Science 4. 10.3389/fpls.2013.00247. PubMed DOI PMC
FitzJohn, R. G. 2012. “Diversitree: Comparative Phylogenetic Analyses of Diversification in R.” Methods in Ecology and Evolution 3, no. 6: 1084–1092. 10.1111/j.2041-210x.2012.00234.x. DOI
Freckleton, R. P. , Harvey P. H., and Pagel M.. 2002. “Phylogenetic Analysis and Comparative Data: A Test and Review of Evidence.” The American Naturalist 160, no. 6: 712–726. 10.1086/343873. PubMed DOI
Fung, I. 2000. “Variable Carbon Sinks.” Science 290, no. 5495: 1313. 10.1126/science.290.5495.1313. PubMed DOI
Gärtner, H. , and Schweingruber F. H.. 2013. Microscopic Preparation Techniques for Plant Stem Analysis. Verlag Dr. Kessel.
Gibon, Y. , PYL E. T., Sulpice R., et al. 2009. “Adjustment of Growth, Starch Turnover, Protein Content and Central Metabolism to a Decrease of the Carbon Supply When Arabidopsis is Grown in Very Short Photoperiods.” Plant, Cell and Environment 32: 859–874. 10.1111/j.1365-3040.2009.01965.x. PubMed DOI
González‐Paleo, L. , and Ravetta D. A.. 2015. “Carbon Acquisition Strategies Uncoupled From Predictions Derived From Species Life‐Cycle.” Flora–Morphology, Distribution, Functional Ecology of Plants 212: 1–9.
Guo, J. S. , Gear L., Hultine K. R., Koch G. W., and Ogle K.. 2020. “Non‐Structural Carbohydrate Dynamics Associated With Antecedent Stem Water Potential and Air Temperature in a Dominant Desert Shrub.” Plant, Cell & Environment 43: 1467–1483. PubMed
Hartmann, H. , Bahn M., Carbone M., and Richardson A. D.. 2020. “Plant Carbon Allocation in a Changing World – Challenges and Progress: Introduction to a Virtual Issue on Carbon Allocation.” New Phytologist 227, no. 4: 981–988. 10.1111/nph.16757. PubMed DOI
Hartmann, H. , and Trumbore S.. 2016. “Understanding the Roles of Nonstructural Carbohydrates in Forest Trees – From What We Can Measure to What We Want to Know.” New Phytologist 211, no. 2: 386–403. 10.1111/nph.13955. PubMed DOI
Hartmann, H. , Ziegler W., Kolle O., and Trumbore S.. 2013. “Thirst Beats Hunger – Declining Hydration During Drought Prevents Carbon Starvation in Norway Spruce Saplings.” New Phytologist 200, no. 2: 340–349. 10.1111/nph.12331. PubMed DOI
Hendry, G. 2008. “The Ecological Significance of Fructan in a Contemporary Flora.” New Phytologist 106: 201–216. 10.1111/j.1469-8137.1987.tb04690.x. DOI
Herms, D. A. , and Mattson W. J.. 1992. “The Dilemma of Plants: To Grow or Defend.” The Quarterly Review of Biology 67, no. 3: 283–335. 10.1086/417659. DOI
Hiltbrunner, E. , Arnaiz J., and Körner C.. 2021. “Biomass Allocation and Seasonal Non‐Structural Carbohydrate Dynamics Do Not Explain the Success of Tall Forbs in Short Alpine Grassland.” Oecologia 197, no. 4: 1063–1077. 10.1007/s00442-021-04950-7. PubMed DOI PMC
Holland, B. L. , Monk N. A. M., Clayton R. H., and Osborne C. P.. 2019. “A Theoretical Analysis of How Plant Growth Is Limited by Carbon Allocation Strategies and Respiration.” In Silico Plants 1, no. 1. 10.1093/insilicoplants/diz004. DOI
Huang, J. , Hammerbacher A., Weinhold A., et al. 2019. “Eyes on the Future – Evidence for Trade‐Offs Between Growth, Storage and Defense in Norway Spruce.” New Phytologist 222, no. 1: 144–158. 10.1111/nph.15522. PubMed DOI
Janeček, Š. , Bartušková A., Bartoš M., et al. 2015. “Effects of Disturbance Regime on Carbohydrate Reserves in Meadow Plants.” AoB Plants 7: plv123. 10.1093/aobpla/plv123. PubMed DOI PMC
Jin, Y. , and Qian H.. 2019. “V.Phylomaker: An R Package That Can Generate Very Large Phylogenies for Vascular Plants.” Ecography 42, no. 8: 1353–1359. 10.1111/ecog.04434. DOI
Karger, D. N. , Conrad O., Böhner J., et al. 2017. “Climatologies at High Resolution for the Earth's Land Surface Areas.” Scientific Data 4, no. 1: 170122. 10.1038/sdata.2017.122. PubMed DOI PMC
Klimešová, J. , Martínková J., Pausas J. G., et al. 2019. “Handbook of Standardized Protocols for Collecting Plant Modularity Traits.” Perspectives in Plant Ecology, Evolution and Systematics 40: 125485.
Körner, C. 2003. “Carbon Limitation in Trees.” Journal of Ecology 91, no. 1: 4–17. 10.1046/j.1365-2745.2003.00742.x. DOI
Landhäusser, S. M. , Chow P. S., Dickman L. T., et al. 2018. “Standardized Protocols and Procedures Can Precisely and Accurately Quantify Non‐Structural Carbohydrates.” Tree Physiology 38: 1764–1778. 10.1093/treephys/tpy118. PubMed DOI PMC
Livingston, D. P. , Hincha D. K., and Heyer A. G.. 2009. “Fructan and Its Relationship to Abiotic Stress Tolerance in Plants.” Cellular and Molecular Life Sciences 66, no. 13: 2007–2023. 10.1007/s00018-009-0002-x. PubMed DOI PMC
Lundgren, M. R. , and Des Marais D. L.. 2020. “Life History Variation as a Model for Understanding Trade‐Offs in Plant–Environment Interactions.” Current Biology 30, no. 4: R180–R189. 10.1016/j.cub.2020.01.003. PubMed DOI
Martínez‐Vilalta, J. , Sala A., Asensio D., et al. 2016. “Dynamics of Non‐Structural Carbohydrates in Terrestrial Plants: A Global Synthesis.” Ecological Monographs 86, no. 4: 495–516. 10.1002/ecm.1231. DOI
McLaughlin, S. P. 1989. “Natural Floristic Areas of the Western United States.” Journal of Biogeography 16, no. 3: 239. 10.2307/2845260. DOI
Mooney, H. A. 1972. “The Carbon Balance of Plants.” Annual Review of Ecology and Systematics 3, no. 1: 315–346. 10.1146/annurev.es.03.110172.001531. DOI
van Noordwijk, A. J. , and de Jong G.. 1986. “Acquisition and Allocation of Resources: Their Influence on Variation in Life History Tactics.” The American Naturalist 128, no. 1: 137–142. 10.1086/284547. DOI
Orme, D. , Freckleton R., Thomas G., et al. 2013. The Caper Package: Comparative Analysis of Phylogenetics and Evolution in R. R Package Version, Vol 5, no. 2, 1–36.
Osnas, J. L. D. , Katabuchi M., Kitajima K., et al. 2018. “Divergent Drivers of Leaf Trait Variation Within Species, Among Species, and Among Functional Groups.” Proceedings of the National Academy of Sciences 115, no. 21: 5480–5485. 10.1073/pnas.1803989115. PubMed DOI PMC
Pagel, M. 1999. “Inferring the Historical Patterns of Biological Evolution.” Nature 401, no. 6756: 877–884. 10.1038/44766. PubMed DOI
Piper, F.I. , Fajardo A., and Hoch G.. 2017. “Single‐Provenance Mature Conifers Show Higher Non‐Structural Carbohydrate Storage and Reduced Growth in a Drier Location.” Tree Physiology 37, no. 8: 1001–1010. 10.1093/treephys/tpx061. PubMed DOI
Pollock, C. J. 1986. “Tansley Review No. 5 Fructans and the Metabolism of Sucrose in Vascular Plants.” New Phytologist 104, no. 1: 1–24. 10.1111/j.1469-8137.1986.tb00629.x. PubMed DOI
Prescott, C. E. , Grayston S. J., Helmisaari H.‐S., et al. 2020. “Surplus Carbon Drives Allocation and Plant–Soil Interactions.” Trends in Ecology & Evolution 35, no. 12: 1110–1118. 10.1016/j.tree.2020.08.007. PubMed DOI
R Development Core Team . (2022). R: A Language and Environment for Statistical Computing. Vienna, Austria.
Rosas, T. , Galiano L., Ogaya R., Peñuelas J., and Martínez‐Vilalta J.. 2013. “Dynamics of Non‐Structural Carbohydrates in Three Mediterranean Woody Species Following Long‐Term Experimental Drought.” Frontiers in Plant Science 4. 10.3389/fpls.2013.00400. PubMed DOI PMC
Sala, A. , Woodruff D. R., and Meinzer F. C.. 2012. “Carbon Dynamics in Trees: Feast or Famine?” Tree Physiology 32, no. 6: 764–775. 10.1093/treephys/tpr143. PubMed DOI
Schuur, E. A. G. 2003. “Productivity and Global Climate Revisited: The Sensitivity of Tropical Forest Growth to Precipitation.” Ecology 84, no. 5: 1165–1170. 10.1890/0012-9658(2003)084[1165:pagcrt]2.0.co;2. DOI
Seager, R. , Lis N., Feldman J., et al. 2018. “Whither the 100th Meridian? The Once and Future Physical and Human Geography of America's Arid–Humid Divide. Part I: The Story so Far.” Earth Interactions 22, no. 5: 1–22. 10.1175/ei-d-17-0011.1. PubMed DOI
Simberloff, D. , and Dayan T.. 1991. “The Guild Concept and the Structure of Ecological Communities.” Annual Review of Ecology and Systematics 22, no. 1: 115–143. 10.1146/annurev.es.22.110191.000555. DOI
Smith, A. M. , and Stitt M.. 2007. “Coordination of Carbon Supply and Plant Growth.” Plant, Cell & Environment 30, no. 9: 1126–1149. 10.1111/j.1365-3040.2007.01708.x. PubMed DOI
Smith, S. A. , and Brown J. W.. 2018. “Constructing a Broadly Inclusive Seed Plant Phylogeny.” American Journal of Botany 105, no. 3: 302–314. 10.1002/ajb2.1019. PubMed DOI
Stitt, M. , and Zeeman S. C.. 2012. “Starch Turnover: Pathways, Regulation and Role in Growth.” Current Opinion in Plant Biology 15, no. 3: 282–292. 10.1016/j.pbi.2012.03.016. PubMed DOI
Sulpice, R. , Pyl E.‐T., Ishihara H., et al. 2009. “Starch as a Major Integrator in the Regulation of Plant Growth.” Proceedings of the National Academy of Sciences 106, no. 25: 10348–10353. 10.1073/pnas.0903478106. PubMed DOI PMC
Suprasanna, P. , Nikalje G. C., and Rai A. N.. 2016. “Osmolyte Accumulation and Implications in Plant Abiotic Stress Tolerance.” In Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies, edited by Iqbal N., Nazar R., and Khan N. A.. Springer.
Thomas, H. 2012. “Senescence, Ageing and Death of the Whole Plant.” New Phytologist 197, no. 3: 696–711. 10.1111/nph.12047. PubMed DOI
Tilman, D. 1988. Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton University Press.
Tixier, A. , Orozco J., Roxas A. A., Earles J. M., and Zwieniecki M. A.. 2018. “Diurnal Variation in Nonstructural Carbohydrate Storage in Trees: Remobilization and Vertical Mixing.” Plant Physiology 178, no. 4: 1602–1613. 10.1104/pp.18.00923. PubMed DOI PMC
Warton, D. I. , Duursma R. A., Falster D. S., and Taskinen S.. 2012. –Smatr 3 ‐ an R Package for Estimation and Inference About Allometric Lines.” Methods in Ecology and Evolution 3, no. 2: 257–259.
Wiley, E. , and Helliker B.. 2012. “A Re‐Evaluation of Carbon Storage in Trees Lends Greater Support for Carbon Limitation to Growth.” New Phytologist 195, no. 2: 285–289. 10.1111/j.1469-8137.2012.04180.x. PubMed DOI
Wiley, E. , Huepenbecker S., Casper B. B., and Helliker B. R.. 2013. “The Effects of Defoliation on Carbon Allocation: Can Carbon Limitation Reduce Growth in Favour of Storage?” Tree Physiology 33, no. 11: 1216–1228. 10.1093/treephys/tpt093. PubMed DOI
Yang, X. , Huang Z., Zhang K., and Cornelissen J. H. C.. 2015. “Geographic Pattern and Effects of Climate and Taxonomy on Nonstructural Carbohydrates of Artemisia Species and Their Close Relatives Across Northern China.” Biogeochemistry 125, no. 3: 337–348. 10.1007/s10533-015-0128-x. DOI
Zepeda, A. C. , Heuvelink E., and Marcelis L. F. M.. 2022. “Non‐Structural Carbohydrate Dynamics and Growth in Tomato Plants Grown at Fluctuating Light and Temperature.” Frontiers in Plant Science 13. 10.3389/fpls.2022.968881. PubMed DOI PMC