Trade-Offs Between Growth, Longevity, and Storage Carbohydrates in Herbs and Shrubs: Evidence for Active Carbon Allocation Strategies

. 2025 Jun ; 48 (6) : 4505-4517. [epub] 20250227

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40016866

Grantová podpora
The work was supported by the Ministry of Education, Youth and Sport of the Czech Republic (MSMT) (#VES24, INTER-ACTION, LUAUS24258).

Plants store nonstructural carbohydrates (NSCs) like starch, fructans and soluble sugars to support metabolism, stress tolerance and defence during low photosynthesis, ultimately influencing their growth and longevity. However, the relationship between NSC composition and growth or persistence in wild plants remains unclear. This study explores trade-offs between growth, longevity and NSCs in 201 plant species across diverse climates in the Western USA, spanning 500-4300 m in elevation and 80-1000 mm in precipitation. Annual growth rates and plant ages were derived from the ring widths of semidesert, steppe and alpine herbs and shrubs, along with NSC profiles in their roots and rhizomes. Results showed an inverse relationship between growth and age, with total NSC, starch and fructan levels negatively correlated with growth, supporting the growth-longevity and growth-storage trade-off hypotheses. Conversely, higher growth rates were linked to soluble sugars, suggesting that climate-driven growth limitations alone do not explain increased NSCs. Fructans were positively associated with longevity, especially in long-lived desert shrubs and alpine herbs, underscoring NSCs' active role in survival strategies. These findings challenge the carbon surplus hypothesis, suggesting that plants actively use specific NSCs to balance growth and persistence, with energy-rich sugars promoting growth and osmoprotective fructans enhancing longevity.

Zobrazit více v PubMed

Adams, D. C. , and Collyer M. L.. 2017. “Multivariate Phylogenetic Comparative Methods: Evaluations, Comparisons, and Recommendations.” Systematic Biology 67, no. 1: 14–31. 10.1093/sysbio/syx055. PubMed DOI

Agrawal, A. A. 2020. “A Scale‐Dependent Framework for Trade‐Offs, Syndromes, and Specialization in Organismal Biology.” Ecology 101, no. 2. 10.1002/ecy.2924. PubMed DOI

Arendt, J. D. 1997. “Adaptive Intrinsic Growth Rates: An Integration Across Taxa.” The Quarterly Review of Biology 72: 149–177.

Aronson, J. , Kigel J., Shmida A., and Klein J.. 1992. “Adaptive Phenology of Desert and Mediterranean Populations of Annual Plants Grown With and Without Water Stress.” Oecologia 89, no. 1: 17–26. 10.1007/bf00319010. PubMed DOI

Black, B. A. , Colbert J. J., and Pederson N.. 2008. “Relationships Between Radial Growth Rates and Lifespan Within North American Tree Species.” Écoscience 15: 349–357.

Blumstein, M. , Gersony J., Martínez‐Vilalta J., and Sala A.. 2023. “Global Variation in Nonstructural Carbohydrate Stores in Response to Climate.” Global Change Biology 29, no. 7: 1854–1869. 10.1111/gcb.16573. PubMed DOI

Blumstein, M. , Sala A., Weston D. J., Holbrook N. M., and Hopkins R.. 2022. “Plant Carbohydrate Storage: Intra‐ and Inter‐Specific Trade‐Offs Reveal a Major Life History Trait.” New Phytologist 235, no. 6: 2211–2222. 10.1111/nph.18213. PubMed DOI

Büntgen, U. , Hellmann L., Tegel W., et al. 2015. “Temperature‐Induced Recruitment Pulses of Arctic Dwarf Shrub Communities.” Journal of Ecology 103, no. 2: 489–501. 10.1111/1365-2745.12361. DOI

Chapin, F. S. , Schulze E., and Mooney H. A.. 1990. “The Ecology and Economics of Storage in Plants.” Annual Review of Ecology and Systematics 21, no. 1: 423–447. 10.1146/annurev.es.21.110190.002231. DOI

Chlumská, Z. , Liancourt P., Hartmann H., et al. 2022. “Species‐ and Compound‐Specific Dynamics of Nonstructural Carbohydrates Toward the World's Upper Distribution of Vascular Plants.” Environmental and Experimental Botany 201: 104985. 10.1016/j.envexpbot.2022.104985. DOI

Chondol, T. , Klimeš A., Altman J., et al. 2023. “Habitat Preferences and Functional Traits Drive Longevity in Himalayan High‐Mountain Plants.” Oikos 2023: e010073. 10.1111/oik.10073. DOI

Couée, I. , Sulmon C., Gouesbet G., and El Amrani A.. 2006. “Involvement of Soluble Sugars in Reactive Oxygen Species Balance and Responses to Oxidative Stress in Plants.” Journal of Experimental Botany 57, no. 3: 449–459. 10.1093/jxb/erj027. PubMed DOI

Dietze, M. C. , Sala A., Carbone M. S., et al. 2014. “Nonstructural Carbon in Woody Plants.” Annual Review of Plant Biology 65, no. 1: 667–687. 10.1146/annurev-arplant-050213-040054. PubMed DOI

Dolezal, J. , Kopecky M., Dvorsky M., et al. 2019. “Sink Limitation of Plant Growth Determines Tree Line in the Arid Himalayas.” Functional Ecology 33: 553–565. 10.1111/1365-2435.13284. DOI

Doležal, J. , Dvorský M., Börner A., Wild J., and Schweingruber F. H.. 2018. Anatomy, Age and Ecology of High Mountain Plants in Ladakh, The Western Himalaya. Springer International Publishing.

Van den Ende, W. and Oner, E. T. , ed. 2023. The Book of Fructans. Academic Press.

Van den Ende, W. V. 2013. “Multifunctional Fructans and Raffinose Family Oligosaccharides.” Frontiers in Plant Science 4. 10.3389/fpls.2013.00247. PubMed DOI PMC

FitzJohn, R. G. 2012. “Diversitree: Comparative Phylogenetic Analyses of Diversification in R.” Methods in Ecology and Evolution 3, no. 6: 1084–1092. 10.1111/j.2041-210x.2012.00234.x. DOI

Freckleton, R. P. , Harvey P. H., and Pagel M.. 2002. “Phylogenetic Analysis and Comparative Data: A Test and Review of Evidence.” The American Naturalist 160, no. 6: 712–726. 10.1086/343873. PubMed DOI

Fung, I. 2000. “Variable Carbon Sinks.” Science 290, no. 5495: 1313. 10.1126/science.290.5495.1313. PubMed DOI

Gärtner, H. , and Schweingruber F. H.. 2013. Microscopic Preparation Techniques for Plant Stem Analysis. Verlag Dr. Kessel.

Gibon, Y. , PYL E. T., Sulpice R., et al. 2009. “Adjustment of Growth, Starch Turnover, Protein Content and Central Metabolism to a Decrease of the Carbon Supply When Arabidopsis is Grown in Very Short Photoperiods.” Plant, Cell and Environment 32: 859–874. 10.1111/j.1365-3040.2009.01965.x. PubMed DOI

González‐Paleo, L. , and Ravetta D. A.. 2015. “Carbon Acquisition Strategies Uncoupled From Predictions Derived From Species Life‐Cycle.” Flora–Morphology, Distribution, Functional Ecology of Plants 212: 1–9.

Guo, J. S. , Gear L., Hultine K. R., Koch G. W., and Ogle K.. 2020. “Non‐Structural Carbohydrate Dynamics Associated With Antecedent Stem Water Potential and Air Temperature in a Dominant Desert Shrub.” Plant, Cell & Environment 43: 1467–1483. PubMed

Hartmann, H. , Bahn M., Carbone M., and Richardson A. D.. 2020. “Plant Carbon Allocation in a Changing World – Challenges and Progress: Introduction to a Virtual Issue on Carbon Allocation.” New Phytologist 227, no. 4: 981–988. 10.1111/nph.16757. PubMed DOI

Hartmann, H. , and Trumbore S.. 2016. “Understanding the Roles of Nonstructural Carbohydrates in Forest Trees – From What We Can Measure to What We Want to Know.” New Phytologist 211, no. 2: 386–403. 10.1111/nph.13955. PubMed DOI

Hartmann, H. , Ziegler W., Kolle O., and Trumbore S.. 2013. “Thirst Beats Hunger – Declining Hydration During Drought Prevents Carbon Starvation in Norway Spruce Saplings.” New Phytologist 200, no. 2: 340–349. 10.1111/nph.12331. PubMed DOI

Hendry, G. 2008. “The Ecological Significance of Fructan in a Contemporary Flora.” New Phytologist 106: 201–216. 10.1111/j.1469-8137.1987.tb04690.x. DOI

Herms, D. A. , and Mattson W. J.. 1992. “The Dilemma of Plants: To Grow or Defend.” The Quarterly Review of Biology 67, no. 3: 283–335. 10.1086/417659. DOI

Hiltbrunner, E. , Arnaiz J., and Körner C.. 2021. “Biomass Allocation and Seasonal Non‐Structural Carbohydrate Dynamics Do Not Explain the Success of Tall Forbs in Short Alpine Grassland.” Oecologia 197, no. 4: 1063–1077. 10.1007/s00442-021-04950-7. PubMed DOI PMC

Holland, B. L. , Monk N. A. M., Clayton R. H., and Osborne C. P.. 2019. “A Theoretical Analysis of How Plant Growth Is Limited by Carbon Allocation Strategies and Respiration.” In Silico Plants 1, no. 1. 10.1093/insilicoplants/diz004. DOI

Huang, J. , Hammerbacher A., Weinhold A., et al. 2019. “Eyes on the Future – Evidence for Trade‐Offs Between Growth, Storage and Defense in Norway Spruce.” New Phytologist 222, no. 1: 144–158. 10.1111/nph.15522. PubMed DOI

Janeček, Š. , Bartušková A., Bartoš M., et al. 2015. “Effects of Disturbance Regime on Carbohydrate Reserves in Meadow Plants.” AoB Plants 7: plv123. 10.1093/aobpla/plv123. PubMed DOI PMC

Jin, Y. , and Qian H.. 2019. “V.Phylomaker: An R Package That Can Generate Very Large Phylogenies for Vascular Plants.” Ecography 42, no. 8: 1353–1359. 10.1111/ecog.04434. DOI

Karger, D. N. , Conrad O., Böhner J., et al. 2017. “Climatologies at High Resolution for the Earth's Land Surface Areas.” Scientific Data 4, no. 1: 170122. 10.1038/sdata.2017.122. PubMed DOI PMC

Klimešová, J. , Martínková J., Pausas J. G., et al. 2019. “Handbook of Standardized Protocols for Collecting Plant Modularity Traits.” Perspectives in Plant Ecology, Evolution and Systematics 40: 125485.

Körner, C. 2003. “Carbon Limitation in Trees.” Journal of Ecology 91, no. 1: 4–17. 10.1046/j.1365-2745.2003.00742.x. DOI

Landhäusser, S. M. , Chow P. S., Dickman L. T., et al. 2018. “Standardized Protocols and Procedures Can Precisely and Accurately Quantify Non‐Structural Carbohydrates.” Tree Physiology 38: 1764–1778. 10.1093/treephys/tpy118. PubMed DOI PMC

Livingston, D. P. , Hincha D. K., and Heyer A. G.. 2009. “Fructan and Its Relationship to Abiotic Stress Tolerance in Plants.” Cellular and Molecular Life Sciences 66, no. 13: 2007–2023. 10.1007/s00018-009-0002-x. PubMed DOI PMC

Lundgren, M. R. , and Des Marais D. L.. 2020. “Life History Variation as a Model for Understanding Trade‐Offs in Plant–Environment Interactions.” Current Biology 30, no. 4: R180–R189. 10.1016/j.cub.2020.01.003. PubMed DOI

Martínez‐Vilalta, J. , Sala A., Asensio D., et al. 2016. “Dynamics of Non‐Structural Carbohydrates in Terrestrial Plants: A Global Synthesis.” Ecological Monographs 86, no. 4: 495–516. 10.1002/ecm.1231. DOI

McLaughlin, S. P. 1989. “Natural Floristic Areas of the Western United States.” Journal of Biogeography 16, no. 3: 239. 10.2307/2845260. DOI

Mooney, H. A. 1972. “The Carbon Balance of Plants.” Annual Review of Ecology and Systematics 3, no. 1: 315–346. 10.1146/annurev.es.03.110172.001531. DOI

van Noordwijk, A. J. , and de Jong G.. 1986. “Acquisition and Allocation of Resources: Their Influence on Variation in Life History Tactics.” The American Naturalist 128, no. 1: 137–142. 10.1086/284547. DOI

Orme, D. , Freckleton R., Thomas G., et al. 2013. The Caper Package: Comparative Analysis of Phylogenetics and Evolution in R. R Package Version, Vol 5, no. 2, 1–36.

Osnas, J. L. D. , Katabuchi M., Kitajima K., et al. 2018. “Divergent Drivers of Leaf Trait Variation Within Species, Among Species, and Among Functional Groups.” Proceedings of the National Academy of Sciences 115, no. 21: 5480–5485. 10.1073/pnas.1803989115. PubMed DOI PMC

Pagel, M. 1999. “Inferring the Historical Patterns of Biological Evolution.” Nature 401, no. 6756: 877–884. 10.1038/44766. PubMed DOI

Piper, F.I. , Fajardo A., and Hoch G.. 2017. “Single‐Provenance Mature Conifers Show Higher Non‐Structural Carbohydrate Storage and Reduced Growth in a Drier Location.” Tree Physiology 37, no. 8: 1001–1010. 10.1093/treephys/tpx061. PubMed DOI

Pollock, C. J. 1986. “Tansley Review No. 5 Fructans and the Metabolism of Sucrose in Vascular Plants.” New Phytologist 104, no. 1: 1–24. 10.1111/j.1469-8137.1986.tb00629.x. PubMed DOI

Prescott, C. E. , Grayston S. J., Helmisaari H.‐S., et al. 2020. “Surplus Carbon Drives Allocation and Plant–Soil Interactions.” Trends in Ecology & Evolution 35, no. 12: 1110–1118. 10.1016/j.tree.2020.08.007. PubMed DOI

R Development Core Team . (2022). R: A Language and Environment for Statistical Computing. Vienna, Austria.

Rosas, T. , Galiano L., Ogaya R., Peñuelas J., and Martínez‐Vilalta J.. 2013. “Dynamics of Non‐Structural Carbohydrates in Three Mediterranean Woody Species Following Long‐Term Experimental Drought.” Frontiers in Plant Science 4. 10.3389/fpls.2013.00400. PubMed DOI PMC

Sala, A. , Woodruff D. R., and Meinzer F. C.. 2012. “Carbon Dynamics in Trees: Feast or Famine?” Tree Physiology 32, no. 6: 764–775. 10.1093/treephys/tpr143. PubMed DOI

Schuur, E. A. G. 2003. “Productivity and Global Climate Revisited: The Sensitivity of Tropical Forest Growth to Precipitation.” Ecology 84, no. 5: 1165–1170. 10.1890/0012-9658(2003)084[1165:pagcrt]2.0.co;2. DOI

Seager, R. , Lis N., Feldman J., et al. 2018. “Whither the 100th Meridian? The Once and Future Physical and Human Geography of America's Arid–Humid Divide. Part I: The Story so Far.” Earth Interactions 22, no. 5: 1–22. 10.1175/ei-d-17-0011.1. PubMed DOI

Simberloff, D. , and Dayan T.. 1991. “The Guild Concept and the Structure of Ecological Communities.” Annual Review of Ecology and Systematics 22, no. 1: 115–143. 10.1146/annurev.es.22.110191.000555. DOI

Smith, A. M. , and Stitt M.. 2007. “Coordination of Carbon Supply and Plant Growth.” Plant, Cell & Environment 30, no. 9: 1126–1149. 10.1111/j.1365-3040.2007.01708.x. PubMed DOI

Smith, S. A. , and Brown J. W.. 2018. “Constructing a Broadly Inclusive Seed Plant Phylogeny.” American Journal of Botany 105, no. 3: 302–314. 10.1002/ajb2.1019. PubMed DOI

Stitt, M. , and Zeeman S. C.. 2012. “Starch Turnover: Pathways, Regulation and Role in Growth.” Current Opinion in Plant Biology 15, no. 3: 282–292. 10.1016/j.pbi.2012.03.016. PubMed DOI

Sulpice, R. , Pyl E.‐T., Ishihara H., et al. 2009. “Starch as a Major Integrator in the Regulation of Plant Growth.” Proceedings of the National Academy of Sciences 106, no. 25: 10348–10353. 10.1073/pnas.0903478106. PubMed DOI PMC

Suprasanna, P. , Nikalje G. C., and Rai A. N.. 2016. “Osmolyte Accumulation and Implications in Plant Abiotic Stress Tolerance.” In Osmolytes and Plants Acclimation to Changing Environment: Emerging Omics Technologies, edited by Iqbal N., Nazar R., and Khan N. A.. Springer.

Thomas, H. 2012. “Senescence, Ageing and Death of the Whole Plant.” New Phytologist 197, no. 3: 696–711. 10.1111/nph.12047. PubMed DOI

Tilman, D. 1988. Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton University Press.

Tixier, A. , Orozco J., Roxas A. A., Earles J. M., and Zwieniecki M. A.. 2018. “Diurnal Variation in Nonstructural Carbohydrate Storage in Trees: Remobilization and Vertical Mixing.” Plant Physiology 178, no. 4: 1602–1613. 10.1104/pp.18.00923. PubMed DOI PMC

Warton, D. I. , Duursma R. A., Falster D. S., and Taskinen S.. 2012. –Smatr 3 ‐ an R Package for Estimation and Inference About Allometric Lines.” Methods in Ecology and Evolution 3, no. 2: 257–259.

Wiley, E. , and Helliker B.. 2012. “A Re‐Evaluation of Carbon Storage in Trees Lends Greater Support for Carbon Limitation to Growth.” New Phytologist 195, no. 2: 285–289. 10.1111/j.1469-8137.2012.04180.x. PubMed DOI

Wiley, E. , Huepenbecker S., Casper B. B., and Helliker B. R.. 2013. “The Effects of Defoliation on Carbon Allocation: Can Carbon Limitation Reduce Growth in Favour of Storage?” Tree Physiology 33, no. 11: 1216–1228. 10.1093/treephys/tpt093. PubMed DOI

Yang, X. , Huang Z., Zhang K., and Cornelissen J. H. C.. 2015. “Geographic Pattern and Effects of Climate and Taxonomy on Nonstructural Carbohydrates of Artemisia Species and Their Close Relatives Across Northern China.” Biogeochemistry 125, no. 3: 337–348. 10.1007/s10533-015-0128-x. DOI

Zepeda, A. C. , Heuvelink E., and Marcelis L. F. M.. 2022. “Non‐Structural Carbohydrate Dynamics and Growth in Tomato Plants Grown at Fluctuating Light and Temperature.” Frontiers in Plant Science 13. 10.3389/fpls.2022.968881. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...