High-throughput Photoactive Magnetic Microrobots for Food Quality Control
Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
CZ.02.01.01/00/22_008/0004587
ERDF/ESF project TECHSCALE
22-04132I
Czech Science Foundation (GACR) project
CZ.10.03.01/00/22_003/0000048
European Union under REFRESH-Research Excellence for Region Sustainability and High-tech Industries project
PubMed
40066504
PubMed Central
PMC12285628
DOI
10.1002/smtd.202401952
Knihovny.cz E-resources
- Keywords
- food analysis, microrobots, nanorobots,
- MeSH
- Food Analysis * methods instrumentation MeSH
- Antioxidants analysis MeSH
- Food Quality * MeSH
- Magnetite Nanoparticles chemistry MeSH
- Silicon Dioxide chemistry MeSH
- Quality Control MeSH
- Robotics * instrumentation MeSH
- High-Throughput Screening Assays * methods instrumentation MeSH
- Ultraviolet Rays MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antioxidants MeSH
- Magnetite Nanoparticles MeSH
- Silicon Dioxide MeSH
Ensuring food quality and safety according to stringent global standards requires analytical procedures that are accurate, cost-effective, and efficient. This present innovative high-throughput microrobots designed for the detection of antioxidants in food samples. These microrobots consist of photocatalytic bismuth subcarbonate anchored on silica-coated magnetite nanoparticles. Upon exposure to UV light, they generate reactive oxygen species via photocatalysis, which oxidize the colorless dye into a green-colored radical cation. The presence of antioxidants inhibits this reaction, allowing for the quantification of antioxidant activity. The magnetic Fe₃O₄/SiO₂ core enables steering of the microrobots using a transverse rotating magnetic field, facilitating automated assays on a custom-designed 3D-printed sensing platform. This results demonstrate that these magneto-photocatalytic microrobots can perform automated, high-throughput assessments of food quality, representing a significant advancement in food analysis technology.
See more in PubMed
FAO , The Future of Food and Agriculture – Trends and Challenges, Food and Agriculture Organization of the United Nations, Rome, 2017.
Hassoun A., Jagtap S., Garcia‐Garcia G., Trollman H., Pateiro M., Lorenzo J. M., Trif M., Vasile Rusu A., Muhammad Aadil R., Šimat V., Cropotova J., Câmara J. S., J. Food Eng. 2023, 337, 111216.
Paxton W. F., Kistler K. C., Olmeda C. C., Sen A., St Angelo S. K., Cao Y., Mallouk T. E., Lammert P. E., Crespi V. H., Journal of America Chemical Society 2004, 126, 13424. PubMed
Kim J., Mayorga‐Burrezo P., Song S. J., Mayorga‐Martinez C. C., Medina‐Sánchez M., Pané S., Pumera M., Chem. Soc. Rev. 2024, 53, 9190. PubMed
Wang J., Nanomachines: Fundamentals And Applications, Wiley‐VCH, Weinheim, Germany, 2013.
Dai B., Zhou Y., Xiao X., Chen Y., Guo J., Gao C., Xie Y., Chen J., Adv. Sci. 2022, 9, 2203057. PubMed PMC
Lei K., Jianguo G., Pumera M., Curr. Opin. Electrochem. 2018, 10, 174.
Zhang Y., Yuan K., Zhang L., Adv. Mater. Technol. 2019, 4, 1800636.
Maria‐Hormigos R., Jurado‐Sánchez B., Anal. Bioanal. Chem. 2022, 414, 7035. PubMed PMC
Cai L., Xu D., Zhang Z., Li N., Zhao Y., Research 2023, 6, 0044. PubMed PMC
Steager E. B., Selman Sakar M., Magee C., Kennedy M., Cowley A., Kumar V., Int. J. Robotics Research 2013, 32, 346.
Jiang J., Yang Z., Ferreira A., Zhang L., Advanced Intelligent Systems 2022, 4, 2100279.
Wang Y., Liu X., Chen C., Chen Y., Li Y., Ye H., Wang B., Chen H., Guo J., Ma X., ACS Nano 2022, 16, 180. PubMed
Jurado‐Sánchez B., Pacheco M., Rojo J., Escarpa A., Angew. Chem., Int. Ed. 2017, 56, 6957. PubMed
Mayorga‐Martinez C. C., Castoralova M., Zelenka J., Ruml T., Pumera M., Small 2023, 19, 2205047. PubMed
Sun F., Yao M., Su H., Yang Q., Wu W., Sens. Actuators, B 2023, 385, 133679.
Rojas D., Jurado‐Sánchez B., Escarpa A., Analytica Chemistry 2018, 90, 2912. PubMed
Luo Y., Su Y., Lin Y., He L., Wu L., Hou X., Zheng C., Anal. Chim. Acta 2021, 1156, 338354. PubMed
Ávila E.‐F., Lopez‐Ramirez B., M. A., Báez D. F., Jodra A., Singh V. V., Kaufmann K., Wang J., ACS Sens. 2016, 1, 217.
Molinero‐Fernández Á., Moreno‐Guzmán M., López M. A., Escarpa A., Anal. Chem. 2017, 89, 10850. PubMed
Brzezicha J., Błażejewicz D., Brzezińska J., Grembecka M., Food Chem. Toxicol. 2021, 155, 112377. PubMed
Tzachristas A., Pasvanka K., Calokerinos A., Proestos C., Applied Science 2020, 10, 5908.
Shahidi F., Ambigaipalan P., Journal of Functional Foods 2015, 18, 820.
Sánchez‐Moreno C., Food Science and Technology International 2002, 8, 121.
Nenadis N., Wang L. F., Tsimidou M., Zhang H. Y., J. Agric. Food Chem. 2004, 52, 4669. PubMed
Asem N., Abdul Gapar N. A., Abd Hapit N. H., Azam Omar E., Journal of Apicultural Research 2020, 59, 437.
Li L., Gao H., Yi Z., Wang S., Wu X., Li R., Yang H., Colloids Surf. A 2022, 664, 128758.
Liu S., Tu Y., Dai G., Ceram. Int. 2014, 40, 2343.
Kim J., Tran V. T., Oh S., Kim C. S., Hong J. C., Kim S., Joo Y. S., Mun S., Kim M. H., Jung J. W., Lee J., Kang Y. S., Koo J. W., Lee J., ACS Appl. Mater. Interfaces 2018, 10, 41935. PubMed
Kim J., Mayorga‐Martinez C. C., Pumera M., Nat. Commun. 2023, 14, 935. PubMed PMC
Oh S., Kim J., Tran V. T., Lee D. K., Ahmed S. R., Hong J. C., Lee J., Park E. Y., Lee J., ACS Appl. Mater. Interfaces 2018, 10, 12534. PubMed
Huang H., Tian N., Jin S., Zhang Y., Wang S., Solid State Sci. 2014, 30, 1.
Finger L. W., Hazen R. M., Hofmeister A. M., Phys. Chem. Miner. 1986, 13, 215.
Rojas D., Kuthanova M., Dolezelikova K., Pumera M., NPG Asia Mater. 2022, 14, 1.
Jia Y., Lia S., Gao J., Zhu G., Zhang F., Shi X., Huang Y., Liu C., Appl. Catal., B 2019, 240, 241.
Rao F., Zhu G., Zhang W., Xu Y., Cao B., Shi X., Gao J., Huang Y., Huang Y., Hojamberdiev M., ACS Catal. 2021, 11, 7735.
Shen H., Yang C., Xue W., Hao L., Wang D., Fu F., Sun Z., Chemistry—A European Journal 2023, 29, 202300748. PubMed
Zhu G., Hojamberdiev M., Katsumata K., Cai X., Matsushita N., Okada K., Liu P., Zhou J., Mater. Chem. Phys. 2013, 142, 95.
Vyskocil J., Mayorga‐Martinez C. C., Jablonska E., Novotný F., Ruml T., Pumera M., ACS Nano 2020, 14, 8247. PubMed
Pacheco M., Mayorga‐Martinez C. C., Escarpa A., Pumera M., Micellar ACS Appl. Mater. Interfaces 2022, 14, 26128. PubMed
Wang J., Biosens. Bioelectron. 2016, 76, 234. PubMed
Xiong K., Lin J., Chen Q., Gao T., Xu L., Guan J., Matter 2023, 6, 907.
Ozgen M., Reese R. N., Tulio J. R., Tulio A. Z., Scheerens J. C., Miller A. R., J. Agric. Food Chem. 2006, 54, 1151. PubMed
Munteanu I. G., Apetrei C., Antioxidants 2022, 11, 584. PubMed PMC
Gao X., Liu Y., Zhang K., Weng J., Chen R., Zhang X., Wang Z., Yang S., Liu J., Ind. Eng. Chem. Res. 2022, 61, 17801.
Niu P. B., Wang Y. Q., Hu R., Yang T., ACS Appl. Nano Mater. 2024, 7, 5996.
Zhou T., Chen D., Li H., Ge D., Chen X., Food Chem. 2024, 447, 138919. PubMed
Mayorga‐Martinez C. C., Zelenka J., Klima K., Mayorga‐Burrezo P., Hoang L., Ruml T., Pumera M., ACS Nano 2022, 16, 8694. PubMed