Cerebellocerebral connectivity predicts body mass index: a new open-source Python-based framework for connectome-based predictive modeling

. 2025 Jan 06 ; 14 () : .

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40072905

Grantová podpora
NIH

BACKGROUND: The cerebellum is one of the major central nervous structures consistently altered in obesity. Its role in higher cognitive function, parts of which are affected by obesity, is mediated through projections to and from the cerebral cortex. We therefore investigated the relationship between body mass index (BMI) and cerebellocerebral connectivity. METHODS: We utilized the Human Connectome Project's Young Adults dataset, including functional magnetic resonance imaging (fMRI) and behavioral data, to perform connectome-based predictive modeling (CPM) restricted to cerebellocerebral connectivity of resting-state fMRI and task-based fMRI. We developed a Python-based open-source framework to perform CPM, a data-driven technique with built-in cross-validation to establish brain-behavior relationships. Significance was assessed with permutation analysis. RESULTS: We found that (i) cerebellocerebral connectivity predicted BMI, (ii) task-general cerebellocerebral connectivity predicted BMI more reliably than resting-state fMRI and individual task-based fMRI separately, (iii) predictive networks derived this way overlapped with established functional brain networks (namely, frontoparietal networks, the somatomotor network, the salience network, and the default mode network), and (iv) we found there was an inverse overlap between networks predictive of BMI and networks predictive of cognitive measures adversely affected by overweight/obesity. CONCLUSIONS: Our results suggest obesity-specific alterations in cerebellocerebral connectivity, specifically with regard to task execution. With brain areas and brain networks relevant to task performance implicated, these alterations seem to reflect a neurobiological substrate for task performance adversely affected by obesity.

Zobrazit více v PubMed

NCD Risk Factor Collaboration (NCD-RisC) . Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128[Formula: see text]9 million children, adolescents, and adults. Lancet. 2017;390(10113):2627–42. 10.1016/S0140-6736(17)32129-3. PubMed DOI PMC

World Health Organization . Fact sheets: obesity and overweight. 2021. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accessed 26 February 2024.

Blüher  M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15(5):288–98. 10.1038/s41574-019-0176-8. PubMed DOI

Barbosa  DAN, Kuijper  FM, Duda  J, et al.  Aberrant impulse control circuitry in obesity. Mol Psychiatr. 2022;27(8):3374–84. 10.1038/s41380-022-01640-5. PubMed DOI PMC

Leigh  SJ, Morris  MJ. The role of reward circuitry and food addiction in the obesity epidemic: an update. Biol Psychol.  2018;131:31–42. 10.1016/j.biopsycho.2016.12.013. PubMed DOI

Ziauddeen  H, Alonso-Alonso  M, Hill  JO, et al.  Obesity and the neurocognitive basis of food reward and the control of intake. Adv Nutr.  2015;6(4):474–86. 10.3945/an.115.008268. PubMed DOI PMC

Verdejo-Román  J, Vilar-López  R, Navas  JF, et al.  Brain reward system’s alterations in response to food and monetary stimuli in overweight and obese individuals. Hum Brain Mapp.  2017;38(2):666–77. 10.1002/hbm.23407. PubMed DOI PMC

Yang  Y, Shields  GS, Guo  C, et al.  Executive function performance in obesity and overweight individuals: a meta-analysis and review. Neurosci Biobehav Rev. 2018;84:225–44. 10.1016/j.neubiorev.2017.11.020. PubMed DOI

Fitzpatrick  S, Gilbert  S, Serpell  L. Systematic review: are overweight and obese individuals impaired on behavioural tasks of executive functioning?. Neuropsychol Rev.  2013;23(2):138–56. 10.1007/s11065-013-9224-7. PubMed DOI

Olivo  G, Gour  S, Schiöth  HB. Low neuroticism and cognitive performance are differently associated to overweight and obesity: a cross-sectional and longitudinal UK Biobank study. Psychoneuroendocrinology. 2019;101:167–74. 10.1016/j.psyneuen.2018.11.014. PubMed DOI

García-García  I, Michaud  A, Dadar  M, et al.  Neuroanatomical differences in obesity: meta-analytic findings and their validation in an independent dataset. Int J Obes.  2019;43(5):943–51. 10.1038/s41366-018-0164-4. PubMed DOI

Gómez-Apo  E, Mondragón-Maya  A, Ferrari-Díaz  M  et al.  Structural brain changes associated with overweight and obesity. J Obes. 2021;2021::6613385. 10.1155/2021/6613385. PubMed DOI PMC

Glickstein  M, Strata  P, Voogd  J. Cerebellum: history. Neuroscience. 2009;162(3):549–59. 10.1016/j.neuroscience.2009.02.054. PubMed DOI

Guell  X, Hoche  F, Schmahmann  JD. Metalinguistic deficits in patients with cerebellar dysfunction: empirical support for the dysmetria of thought theory. Cerebellum.  2015;14(1):50–58. 10.1007/s12311-014-0630-z. PubMed DOI

Hoche  F, Guell  X, Vangel  MG, et al.  The cerebellar cognitive affective/Schmahmann syndrome scale. Brain.  2018;141(1):248–70. 10.1093/brain/awx317. PubMed DOI PMC

Hoche  F, Guell  X, Sherman  JC, et al.  Cerebellar contribution to social cognition. Cerebellum. 2016;15(6):732–43. 10.1007/s12311-015-0746-9. PubMed DOI PMC

Koziol  LF, Budding  DE, Chidekel  D. From movement to thought: executive function, embodied cognition, and the cerebellum. Cerebellum.  2012;11(2):505–25. 10.1007/s12311-011-0321-y. PubMed DOI

Manto  M, Mariën  P. Schmahmann’s syndrome—identification of the third cornerstone of clinical ataxiology. Cerebellum Ataxias.  2015;2(1):2. 10.1186/s40673-015-0023-1. PubMed DOI PMC

Mariën  P, Borgatti  R.  Language and the cerebellum. Handbook Clin Neurol.  2018;154:181–202.:10.1016/B978-0-444-63956-1.00011-4. PubMed DOI

Schmahmann  JD. The cerebellum and cognition. Neurosci Lett. 2019;688:62–75. 10.1016/j.neulet.2018.07.005. PubMed DOI

Thomas Yeo  BT, Krienen  FM, Sepulcre  J  et al. , . Cortical parcellation as published in “The organization of the human cerebral cortex estimated by intrinsic functional connectivity”. 2011. https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011 PubMed PMC

Guell  X, Schmahmann  JD, Gabrieli  JD  et al.  Functional gradients of the cerebellum. eLife.  2018;7:e36652. 10.7554/eLife.36652. PubMed DOI PMC

Guell  X, Gabrieli  JDE, Schmahmann  JD. Triple representation of language, working memory, social and emotion processing in the cerebellum: convergent evidence from task and seed-based resting-state fMRI analyses in a single large cohort. NeuroImage.  2018;172:437–49. 10.1016/j.neuroimage.2018.01.082. PubMed DOI PMC

Habas  C, Kamdar  N, Nguyen  D, et al.  Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci.  2009;29(26):8586–94. 10.1523/JNEUROSCI.1868-09.2009. PubMed DOI PMC

Marek  S, Siegel  JS, Gordon  EM, et al.  Spatial and temporal organization of the individual human cerebellum. Neuron. 2018;100(4):977–93. 10.1016/j.neuron.2018.10.010. PubMed DOI PMC

Buckner  RL, Krienen  FM, Castellanos  A  et al.  The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol.  2011;106(5):2322–45. 10.1152/jn.00339.2011. PubMed DOI PMC

Keren-Happuch  E, Shen-Hsing Annabel  C, Moon-Ho Ringo  H  et al.  A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies: a meta-analysis of cerebellar contributions. Hum Brain Mapp.  2014;35(2):593–615. 10.1002/hbm.22194. PubMed DOI PMC

Stoodley  CJ, Desmond  JE, Guell  X, et al.  Functional topography of the human cerebellum revealed by functional neuroimaging studies. In: Manto  MU, Gruol  DL, Schmahmann  JD, al.  et, eds. Handbook of the cerebellum and cerebellar disorders. Cham, Switzerland: Springer International Publishing, 2022:797–833. 10.1007/978-3-030-23810-0_30. DOI

Stoodley  CJ, Schmahmann  JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage.  2009;44(2):489–501. 10.1016/j.neuroimage.2008.08.039. PubMed DOI

Shen  X, Finn  ES, Scheinost  D  et al.  Using connectome-based predictive modeling to predict individual behavior from brain connectivity. Nat Protoc. 2017;12(3):506–18. 10.1038/nprot.2016.178. PubMed DOI PMC

Glasser  MF, Smith  SM, Marcus  DS  et al.  The Human Connectome Project’s neuroimaging approach. Nat Neurosci. 2016;19(9):1175–87. 10.1038/nn.4361. PubMed DOI PMC

Glasser  MF, Sotiropoulos  SN, Wilson  JA, et al.  The minimal preprocessing pipelines for the human connectome project. NeuroImage. 2013;80:105–24. 10.1016/j.neuroimage.2013.04.127. PubMed DOI PMC

Robinson  EC, Jbabdi  S, Glasser  MF  et al.  MSM: a new flexible framework for multimodal surface matching. NeuroImage.  2014;100:414–26. 10.1016/j.neuroimage.2014.05.069. PubMed DOI PMC

Glasser  MF, Coalson  TS, Robinson  EC, et al.  A multi-modal parcellation of human cerebral cortex. Nature.  2016;536(7615):171–78. 10.1038/nature18933. PubMed DOI PMC

Coalson  TS, Van Essen  DC, Glasser  MF. The impact of traditional neuroimaging methods on the spatial localization of cortical areas. Proc Natl Acad Sci U S A. 2018;115(27):E6356–365. 10.1073/pnas.1801582115. PubMed DOI PMC

Coalson  T, Glasser  M, Harwell  J, et al.  CIFTI-2 Connectivity File Formats Documentation CIFTI, Working Group. 2014. https://www.nitrc.org/forum/attachment.phpattachid=333&group_id=454&forum_id=1955. Accessed 3 March 2024.

Friston  KJ. Functional integration in the brain. In: Frackowiak  RSK, Friston  KJ, Frith  CD, et al., eds. Human brain function. Cambridge, Massachusetts: Elsevier Academic Press, 2004:971–97. 10.1016/B978-012264841-0/50050-0. DOI

Tian  Y, Margulies  DS, Breakspear  M, et al.  Topographic organization of the human subcortex unveiled with functional connectivity gradients. Nat Neurosci. 2020;23(11):1421–32. 10.1038/s41593-020-00711-6. PubMed DOI

Ren  Y, Guo  L, Guo  CC. A connectivity-based parcellation improved functional representation of the human cerebellum. Sci Rep.  2019;9(1):9115. 10.1038/s41598-019-45670-6. PubMed DOI PMC

Abraham  A, Pedregosa  F, Eickenberg  M, et al.  Machine learning for neuroimaging with scikit-learn. Front Neuroinform. 2014;8:1–10. 10.3389/fninf.2014.00014. PubMed DOI PMC

Pedregosa  F, Varoquaux  G, Gramfort  A  et al.  Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.

Ng  B, Dressler  M, Varoquaux  G  et al.  Transport on riemannian manifold for functional connectivity-based classification. In: Golland  P, Hata  N, Barillot  Ceds. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2014. Lecture Notes in Computer Science. Cham, Switzerland: Springer International Publishing; 2014:405–12. 10.1007/978-3-319-10470-6_51. PubMed DOI

Varoquaux  G, Baronnet  F, Kleinschmidt  A  et al.  Detection of brain functional-connectivity difference in post-stroke patients using group-level covariance modeling. In: Jiang  T, Navab  N, Pluim  JPW, eds. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2010. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer;2010:200–8. 10.1007/978-3-642-15705-9_25. PubMed DOI

Dadi  K, Rahim  M, Abraham  A, et al.  Benchmarking functional connectome-based predictive models for resting-state fMRI. NeuroImage. 2019;192:115–34. 10.1016/j.neuroimage.2019.02.062. PubMed DOI

Pervaiz  U, Vidaurre  D, Woolrich  MW, et al.  Optimising network modelling methods for fMRI. NeuroImage.  2020;211:116604. 10.1016/j.neuroimage.2020.116604. PubMed DOI PMC

Ledoit  O, Wolf  M. A well-conditioned estimator for large-dimensional covariance matrices. J Multivariate Anal.  2004;88(2):365–411. 10.1016/S0047-259X(03)00096-4. DOI

Kohavi  Ron. A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the 14th International Joint Conference on Artificial Intelligence.1995;2:1137–1143.

Rohde  K, Keller  M, la Cour Poulsen  L  et al.  Genetics and epigenetics in obesity. Metab Clin Exp.  2019;92:37–50. 10.1016/j.metabol.2018.10.007. PubMed DOI

Goodarzi  MO. Genetics of obesity: what genetic association studies have taught us about the biology of obesity and its complications. Lancet Diabetes Endo. 2018;6(3):223–36. 10.1016/S2213-8587(17)30200-0. PubMed DOI

Xu  Z, Xia  M, Wang  X, et al.  Meta-connectomic analysis maps consistent, reproducible, and transcriptionally relevant functional connectome hubs in the human brain. Commun Biol. 2022;5(1):1056. 10.1038/s42003-022-04028-x. PubMed DOI PMC

Fornito  A, Zalesky  A, Bassett  DS, et al.  Genetic influences on cost-efficient organization of human cortical functional networks. J Neurosci. 2011;31(9):3261–70. 10.1523/JNEUROSCI.4858-10.2011. PubMed DOI PMC

Glahn  DC, Winkler  AM, Kochunov  P, et al.  Genetic control over the resting brain. Proc Nat Acad Sci U S A.  2010;107(3):1223–28. 10.1073/pnas.0909969107. PubMed DOI PMC

Thompson  PM, Ge  T, Glahn  DC  et al.  Genetics of the connectome. NeuroImage. 2013;80:475–88. 10.1016/j.neuroimage.2013.05.013. PubMed DOI PMC

van den Heuvel  MP, van Soelen  ILC, Stam  CJ, et al.  Genetic control of functional brain network efficiency in children. Eur Neuropsychopharmacol.  2013;23(1):19–23. 10.1016/j.euroneuro.2012.06.007. PubMed DOI

Barch  DM, Burgess  GC, Harms  MP, et al.  Function in the human connectome: Task-fMRI and individual differences in behavior. NeuroImage.  2013;80:169–89. 10.1016/j.neuroimage.2013.05.033. PubMed DOI PMC

Hariri  AR, Tessitore  A, Mattay  VS, et al.  The amygdala response to emotional stimuli: a comparison of faces and scenes. NeuroImage.  2002;17(1):317–23. 10.1006/nimg.2002.1179. PubMed DOI

Delgado  MR, Nystrom  LE, Fissell  C, et al.  Tracking the hemodynamic responses to reward and punishment in the striatum. J Neurophysiol. 2000;84(6):3072–77. 10.1152/jn.2000.84.6.3072. PubMed DOI

Binder  JR, Gross  WL, Allendorfer  JB, et al.  Mapping anterior temporal lobe language areas with fMRI: a multicenter normative study. NeuroImage.  2011;54(2):1465–75. 10.1016/j.neuroimage.2010.09.048. PubMed DOI PMC

Smith  R, Keramatian  K, Christoff  K. Localizing the rostrolateral prefrontal cortex at the individual level. NeuroImage.  2007;36(4):1387–96. 10.1016/j.neuroimage.2007.04.032. PubMed DOI

Castelli  F, Happé  F, Frith  U, et al.  Movement and mind: a functional imaging study of perception and interpretation of complex intentional movement patterns. NeuroImage. 2000;12(3):314–25. 10.1006/nimg.2000.0612. PubMed DOI

Wheatley  T, Milleville  SC, Martin  A. Understanding animate agents: distinct roles for the social network and mirror system. Psychol Sci.  2007;18(6):469–74. 10.1111/j.1467-9280.2007.01923.x. PubMed DOI

Downing  PE, Jiang  Y, Shuman  M, et al.  A cortical area selective for visual processing of the human body. Science.  2001;293(5539):2470–73. 10.1126/science.1063414. PubMed DOI

Eklund  A, Nichols  TE, Knutsson  H. Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc Nat Acad Sci U S A. 2016;113(28):7900–905. 10.1073/pnas.1602413113. PubMed DOI PMC

Moritz  P, Nishihara  R, Wang  S  et al.  Ray: a distributed framework for emerging AI applications. In: Proceedings of the 13th USENIX Conference on Operating Systems Design and Implementation. OSDI’18. 2018:561–77. https://www.usenix.org/system/files/osdi18-moritz.pdf

WU-Minn HCP consortium , ed. 1200 Subjects Data Release Reference Manual. 2017.https://humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf. Accessed 20 August 2023.

Almende  BV, Thieurmel  B. et al.  visNetwork: network visualization using ‘vis.Js’ library. 2022. https://CRAN.R-project.org/package=visNetwork

R Core Team . R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2022.

Triarhou  LC. A proposed number system for the 107 cortical areas of economo and Koskinas, and Brodmann area correlations. Stereotact Funct Neurosurg.  2007;85(5):204–15. 10.1159/000103259. PubMed DOI

D  Patterson . Atlases. 2023. https://neuroimaging-core-docs.readthedocs.io/en/latest/pages/atlases.html. Accessed 19 May 2024.

Menon  V. Salience network. In: Toga  AW. ed. Brain mapping. Cambridge, Massachusetts: Elsevier Academic Press; 2015:597–611. 10.1016/B978-0-12-397025-1.00052-X. DOI

Peters  SK, Dunlop  K, Downar  J. Cortico-striatal-thalamic loop circuits of the salience network: a central pathway in psychiatric disease and treatment. Front Syst Neurosci.  2016;10:1–23. 10.3389/fnsys.2016.00104. PubMed DOI PMC

Tomiyama  H, Nakao  T, Murayama  K  et al.  Dysfunction between dorsal caudate and salience network associated with impaired cognitive flexibility in obsessive-compulsive disorder: a resting-state fMRI study. NeuroImage Clin.  2019;24:102004. 10.1016/j.nicl.2019.102004. PubMed DOI PMC

Tan  Z, Li  G, Zhang  W, et al.  Obese individuals show disrupted dynamic functional connectivity between basal ganglia and salience networks. Cereb Cortex.  2021;31(12):5676–85. 10.1093/cercor/bhab190. PubMed DOI PMC

García-García  I, Jurado  MÁ, Garolera  M, et al.  Alterations of the salience network in obesity: a resting-state fMRI study. Hum Brain Mapp.  2013;34(11):2786–97. 10.1002/hbm.22104. PubMed DOI PMC

Witt  ST, van Ettinger-Veenstra  H, Salo  T, et al.  What executive function network is that? An image-based meta-analysis of network labels. Brain Topogr. 2021;34(5):598–607. 10.1007/s10548-021-00847-z. PubMed DOI

Raichle  ME. The brain’s default mode network. Annu Rev Neurosci.  2015;38(1):433–47. 10.1146/annurev-neuro-071013-014030. PubMed DOI

Fox  MD, Snyder  AZ, Vincent  JL, et al.  The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A.  2005;102(27):9673–78. 10.1073/pnas.0504136102. PubMed DOI PMC

Shannon  BJ, Raichle  ME, Snyder  AZ, et al.  Premotor functional connectivity predicts impulsivity in juvenile offenders. Proc Nat Acad Sci U S A.  2011;108(27):11241–245. 10.1073/pnas.1108241108. PubMed DOI PMC

Wickham  H. Ggplot2: elegant graphics for data analysis. 2nd ed. Cham, Switzerland: Springer; 2016.

Stoodley  CJ, MacMore  JP, Makris  N, et al.  Location of lesion determines motor vs. cognitive consequences in patients with cerebellar stroke. NeuroImage Clin. 2016;12:765–75. 10.1016/j.nicl.2016.10.013. PubMed DOI PMC

Smaers  JB, Vanier  DR. Brain size expansion in primates and humans is explained by a selective modular expansion of the cortico-cerebellar system. Cortex.  2019;118:292–305. 10.1016/j.cortex.2019.04.023. PubMed DOI

Balsters  JH, Cussans  E, Diedrichsen  J, et al.  Evolution of the cerebellar cortex: the selective expansion of prefrontal-projecting cerebellar lobules. NeuroImage. 2010;49(3):2045–52. 10.1016/j.neuroimage.2009.10.045. PubMed DOI PMC

Weaver  AH. Reciprocal evolution of the cerebellum and neocortex in fossil humans. Proc Natl Acad Sci U S A.  2005;102(10):3576–80. 10.1073/pnas.0500692102. PubMed DOI PMC

Whiting  BA, Barton  RA. The evolution of the cortico-cerebellar complex in primates: anatomical connections predict patterns of correlated evolution. J Hum Evol.  2003;44(1):3–10. 10.1016/S0047-2484  (02)00162-8. PubMed DOI

King  M, Hernandez-Castillo  CR, Poldrack  RA, et al.  Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nat Neurosci. 2019;22(8):1371–78. 10.1038/s41593-019-0436-x. PubMed DOI PMC

Stoodley  CJ, Schmahmann  JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex.  2010;46(7):831–44. 10.1016/j.cortex.2009.11.008. PubMed DOI PMC

Guell  X, Schmahmann  J. Cerebellar functional anatomy: a didactic summary based on human fMRI evidence. Cerebellum.  2020;19(1):1–5. 10.1007/s12311-019-01083-9. PubMed DOI

Sader  M, Waiter  GD, Williams  JHG. The cerebellum plays more than one role in the dysregulation of appetite: review of structural evidence from typical and eating disorder populations. Brain Behav. 2023:13:(12):e3286. 10.1002/brb3.3286. PubMed DOI PMC

Berman  SM, Paz-Filho  G, Wong  ML  et al.  Effects of leptin deficiency and replacement on cerebellar response to food-related cues. Cerebellum.  2013;12(1):59–67. 10.1007/s12311-012-0360-z. PubMed DOI PMC

Volkow  ND, Wang  GJ, Tomasi  D, et al.  Obesity and addiction: neurobiological overlaps. Obes Rev.  2013;14(1):2–18. 10.1111/j.1467-789X.2012.01031.x. PubMed DOI PMC

Carnell  S, Benson  L, Pantazatos  SP, et al.  Amodal brain activation and functional connectivity in response to high-energy-density food cues in obesity. Obesity.  2014;22(11):2370–78. 10.1002/oby.20859. PubMed DOI PMC

Tomasi  D, Wang  GJ, Wang  R, et al.  Overlapping patterns of brain activation to food and cocaine cues in cocaine abusers: association to striatal D2/D3 receptors. Hum Brain Mapp.  2015;36(1):120–36. 10.1002/hbm.22617. PubMed DOI PMC

Carta  I, Chen  CH, Schott  AL  et al.  Cerebellar modulation of the reward circuitry and social behavior. Science.  2019;363(6424):eaav0581. 10.1126/science.aav0581. PubMed DOI PMC

Kostadinov  D, Beau  M, Blanco-Pozo  M, et al.  Predictive and reactive reward signals conveyed by climbing fiber inputs to cerebellar Purkinje cells. Nat Neurosci. 2019;22(6):950–62. 10.1038/s41593-019-0381-8. PubMed DOI PMC

Ernst  TM, Brol  AE, Gratz  M, et al.  The cerebellum is involved in processing of predictions and prediction errors in a fear conditioning paradigm. eLife. 2019;8:e46831. 10.7554/eLife.46831. PubMed DOI PMC

Milaneschi  Y, Simmons  WK, van Rossum  EFC  et al.  Depression and obesity: evidence of shared biological mechanisms. Mol Psychiatr. 2019;24(1):18–33. 10.1038/s41380-018-0017-5. PubMed DOI

Gariepy  G, Nitka  D, Schmitz  N. The association between obesity and anxiety disorders in the population: a systematic review and meta-analysis. Int J Obes.  2010;34(3):407–19. 10.1038/ijo.2009.252. PubMed DOI

Iosif  CI, Bashir  ZI, Apps  R, et al.  Cerebellar prediction and feeding behaviour. Cerebellum.  2023;22(5):1002–19. 10.1007/s12311-022-01476-3. PubMed DOI PMC

D’Mello  AM, Gabrieli  JDE, Nee  DE. Evidence for hierarchical cognitive control in the human cerebellum. Curr Biol.  2020;30(10):1881–92. 10.1016/j.cub.2020.03.028. PubMed DOI PMC

Oldrati  V, Schutter  DJLG. Targeting the human cerebellum with transcranial direct current stimulation to modulate behavior: a meta-analysis. Cerebellum.  2018;17(2):228–36. 10.1007/s12311-017-0877-2. PubMed DOI PMC

Starowicz-Filip  A, Prochwicz  K, Kłosowska  J, et al.  Cerebellar functional lateralization from the perspective of clinical neuropsychology. Front Psychol. 2021;12.1–12. 10.3389/fpsyg.2021.775308. PubMed DOI PMC

Uddin  LQ, Yeo  BTT, Spreng  RN. Towards a universal taxonomy of macro-scale functional human brain networks. Brain Topogr.  2019;32(6):926–42. 10.1007/s10548-019-00744-6. PubMed DOI PMC

Cristofori  I, Cohen-Zimerman  S, Grafman  J. Executive functions. Handbook Clin Neurol. 2019;163:197–219. 10.1016/B978-0-12-804281-6.00011-2. PubMed DOI

Hernandez  AR, Reasor  JE, Truckenbrod  LM, et al.  Medial prefrontal-perirhinal cortical communication is necessary for flexible response selection. Neurobiol Learn Mem.  2017;137:36–47. 10.1016/j.nlm.2016.10.012. PubMed DOI PMC

Skranes  J, Løhaugen  GCC, Evensen  KAI, et al.  Entorhinal cortical thinning affects perceptual and cognitive functions in adolescents born preterm with very low birth weight (VLBW). Early Hum Dev.  2012;88(2):103–9. 10.1016/j.earlhumdev.2011.07.017. PubMed DOI

Izen  SC, Chrastil  ER, Stern  CE. Resting state connectivity between medial temporal lobe regions and intrinsic cortical networks predicts performance in a path integration task. Front Hum Neurosci. 2018;12:415. 10.3389/fnhum.2018.00415. PubMed DOI PMC

Friedman  NP, Robbins  TW. The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology.  2022;47(1):72–89. 10.1038/s41386-021-01132-0. PubMed DOI PMC

Favieri  F, Forte  G, Casagrande  M. The executive functions in overweight and obesity: a systematic review of neuropsychological cross-sectional and longitudinal studies. Front Psychol.  2019;10.1–27. 10.3389/fpsyg.2019.02126. PubMed DOI PMC

Smith  E, Hay  P, Campbell  L, et al.  A review of the association between obesity and cognitive function across the lifespan: implications for novel approaches to prevention and treatment. Obes Rev. 2011;12(9):740–55. 10.1111/j.1467-789X.2011.00920.x. PubMed DOI

Coppin  G, Nolan-Poupart  S, Jones-Gotman  M, et al.  Working memory and reward association learning impairments in obesity. Neuropsychologia.  2014;65:146–55. 10.1016/j.neuropsychologia.2014.10.004. PubMed DOI PMC

Dohle  S, Diel  K, Hofmann  W. Executive functions and the self-regulation of eating behavior: a review. Appetite. 2018;124:4–9. 10.1016/j.appet.2017.05.041. PubMed DOI

Eichen  DM, Pasquale  EK, Twamley  EW, et al.  Targeting executive function for weight loss in adults with overweight or obesity. Physiol Behav.  2021;240:113540. 10.1016/j.physbeh.2021.113540. PubMed DOI PMC

Schmahmann  JD, Sherman  JC. The cerebellar cognitive affective syndrome. Brain.  1998;121(4):561–79. 10.1093/brain/121.4.561. PubMed DOI

Argyropoulos  GPD, van Dun  K, Adamaszek  M, et al.  The cerebellar cognitive affective/Schmahmann syndrome: a task force paper. Cerebellum.  2020;19(1):102–25. 10.1007/s12311-019-01068-8. PubMed DOI PMC

Herlin  B, Navarro  V, Dupont  S. The temporal pole: from anatomy to function-a literature appraisal. J Chem Neuroanat. 2021;113:101925. 10.1016/j.jchemneu.2021.101925. PubMed DOI

Pascual  B, Masdeu  JC, Hollenbeck  M, et al.  Large-scale brain networks of the human left temporal pole: a functional connectivity MRI study. Cereb Cortex.  2015;25(3):680–702. 10.1093/cercor/bht260. PubMed DOI PMC

Patterson  K, Nestor  PJ, Rogers  TT. Where do you know what you know? the representation of semantic knowledge in the human brain. Nat Rev Neurosci. 2007;8(12):976–87. 10.1038/nrn2277. PubMed DOI

Pobric  G, Jefferies  E, Ralph  MAL. Amodal semantic representations depend on both anterior temporal lobes: evidence from repetitive transcranial magnetic stimulation. Neuropsychologia.  2010;48(5):1336–42. 10.1016/j.neuropsychologia.2009.12.036. PubMed DOI

Schroeter  ML, Vogt  B, Frisch  S, et al.  Dissociating behavioral disorders in early dementia—an FDG-PET study. Psychiatry Res Neuroimaging. 2011;194(3):235–44. 10.1016/j.pscychresns.2011.06.009. PubMed DOI

Schroeter  ML, Vogt  B, Frisch  S  et al.  Executive deficits are related to the inferior frontal junction in early dementia. Brain.  2012;135(1):201–15. 10.1093/brain/awr311. PubMed DOI PMC

Zhu  W, Tang  W, Liang  Y, et al.  Aberrant functional connectivity of sensorimotor network and its relationship with executive dysfunction in bipolar disorder type I. Front Neurosci. 2022;15:1–9. 10.3389/fnins.2021.823550 PubMed DOI PMC

Kebets  V, Holmes  AJ, Orban  C, et al.  Somatosensory-motor dysconnectivity spans multiple transdiagnostic dimensions of psychopathology. Biol Psychiatr. 2019;86(10):779–91. 10.1016/j.biopsych.2019.06.013. PubMed DOI

Repp  BH, Su  YH. Sensorimotor synchronization: a review of recent research (2006–2012). Psychon Bull Rev.  2013;20(3):403–52. 10.3758/s13423-012-0371-2. PubMed DOI

Wiener  M, Turkeltaub  P, Coslett  HB. The image of time: a voxel-wise meta-analysis. NeuroImage.  2010;49(2):1728–40. 10.1016/j.neuroimage.2009.09.064. PubMed DOI

Comstock  DC, Hove  MJ, Balasubramaniam  R. Sensorimotor synchronization with auditory and visual modalities: behavioral and neural differences. Front Comput Neurosci.  2018;12:1–8. 10.3389/fncom.2018.00053. PubMed DOI PMC

Burgess  JD, Lum  JAG, Hohwy  J  et al.  Echoes on the motor network: how internal motor control structures afford sensory experience. Brain Struct Funct.  2017;222(9):3865–88. 10.1007/s00429-017-1484-1. PubMed DOI

Guell  X, Gabrieli  JDE, Schmahmann  JD. Embodied cognition and the cerebellum: perspectives from the dysmetria of thought and the universal cerebellar transform theories. Cortex.  2018;100:140–48. 10.1016/j.cortex.2017.07.005. PubMed DOI

Kawabata  K, Bagarinao  E, Watanabe  H, et al.  Functional connector hubs in the cerebellum. NeuroImage.  2022;257:119263. 10.1016/j.neuroimage.2022.119263. PubMed DOI

Mueller  K, Sacher  J, Arelin  K, et al.  Overweight and obesity are associated with neuronal injury in the human cerebellum and hippocampus in young adults: a combined MRI, serum marker and gene expression study. Transl Psychiat. 2012;2(12):e200. 10.1038/tp.2012.121. PubMed DOI PMC

Obradovic  M, Sudar-Milovanovic  E, Soskic  S, et al.  Leptin and obesity: role and clinical implication. Front Endocrinol.  2021;12:1–14. 10.3389/fendo.2021.585887. PubMed DOI PMC

Burguera  B, Couce  ME, Long  J, et al.  The long form of the leptin receptor (OB-Rb) is widely expressed in the human brain. Neuroendocrinology.  2000;71(3):187–95. 10.1159/000054536. PubMed DOI

Matochik  JA, London  ED, Yildiz  BO, et al.  Effect of leptin replacement on brain structure in genetically leptin-deficient adults. J Clin Endocrinol Metab.  2005;90(5):2851–54. 10.1210/jc.2004-1979. PubMed DOI

London  ED, Berman  SM, Chakrapani  S, et al.  Short-term plasticity of gray matter associated with leptin deficiency and replacement. J Clin Endocrinol Metab. 2011;96(8):E1212–220. 10.1210/jc.2011-0314. PubMed DOI PMC

Baicy  K, London  ED, Monterosso  J, et al.  Leptin replacement alters brain response to food cues in genetically leptin-deficient adults. Proc Natl Acad Sci U S A.  2007;104(46):18276–279. 10.1073/pnas.0706481104. PubMed DOI PMC

Fernandez  L, Major  BP, Teo  WP  et al.  Assessing cerebellar brain inhibition (CBI) via transcranial magnetic stimulation (TMS): a systematic review. Neurosci Biobehav Rev.  2018;86:176–206. 10.1016/j.neubiorev.2017.11.018. PubMed DOI

Manto  M, Argyropoulos  GPD, Bocci  T  et al.  Consensus paper: novel directions and next steps of non-invasive brain stimulation of the cerebellum in health and disease. Cerebellum.  2022;21(6):1092–122. 10.1007/s12311-021-01344-6. PubMed DOI

Sebastian  R, Kim  JH, Brenowitz  R  et al.  Cerebellar neuromodulation improves naming in post-stroke aphasia. Brain Commun.  2020;2(2):fcaa179. 10.1093/braincomms/fcaa179. PubMed DOI PMC

Low  AYT, Goldstein  N, Gaunt  JR, et al.  Reverse-translational identification of a cerebellar satiation network. Nature.  2021;600(7888):269–73. 10.1038/s41586-021-04143-5. PubMed DOI PMC

Marron  EM, Viejo-Sobera  R, Cuatrecasas  G  et al.  Prefronto-cerebellar neuromodulation affects appetite in obesity. Int J Obes.  2019;43(10):2119–24. 10.1038/s41366-018-0278-8. PubMed DOI PMC

van Galen  KA, Ter Horst  KW, Booij  J, et al.  The role of central dopamine and serotonin in human obesity: lessons learned from molecular neuroimaging studies. Metabolism Clin Exp.  2018;85:325–39. 10.1016/j.metabol.2017.09.007. PubMed DOI

van Galen  KA, Schrantee  A, ter Horst  KW, et al.  Brain responses to nutrients are severely impaired and not reversed by weight loss in humans with obesity: a randomized crossover study. Nat Metab.  2023;5(6):1059–72. 10.1038/s42255-023-00816-9. PubMed DOI

van der Zwaal  EM, de Weijer  BA, van de Giessen  EM, et al.  Striatal dopamine D2/3 receptor availability increases after long-term bariatric surgery-induced weight loss. Eur Neuropsychopharmacol.  2016;26(7):1190–200. 10.1016/j.euroneuro.2016.04.009. PubMed DOI

Zhang  X, Ma  N, Lin  Q, et al.  Body roundness index and all-cause mortality among US adults. JAMA Network Open.  2024;7(6):e2415051. 10.1001/jamanetworkopen.2024.15051. PubMed DOI PMC

Suliga  E, Ciesla  E, Głuszek-Osuch  M  et al.  The usefulness of anthropometric indices to identify the risk of metabolic syndrome. Nutrients. 2019;11(11):2598. 10.3390/nu11112598. PubMed DOI PMC

Amirabdollahian  F, Haghighatdoost  F. Anthropometric indicators of adiposity related to body weight and body shape as cardiometabolic risk predictors in British young adults: superiority of waist-to-height ratio. J Obes.  2018;2018:8370304. 10.1155/2018/8370304. PubMed DOI PMC

Huxley  R, Mendis  S, Zheleznyakov  E, et al.  Body mass index, waist circumference and waist:hip ratio as predictors of cardiovascular risk—a review of the literature. Eur J Clin Nutr.  2010;64(1):16–22. 10.1038/ejcn.2009.68. PubMed DOI

O’Neill  D. Measuring obesity in the absence of a gold standard. Econ Hum Biol. 2015;17:116–28. 10.1016/j.ehb.2015.02.002. PubMed DOI

Bachmann  T, Mueller  K, Schroeter  ML, et al.  Cerebellocerebral connectivity predicts body mass index: a new open-source Python-based framework for connectome-based predictive modeling [DOME-ML Annotations]. DOME-ML Registry. 2025. https://registry.dome-ml.org/review/pj6nprkh27.

Van Rossum  G, Drake  FL. The Python Language Reference. 2024. Accessed September 9, 2024.https://docs.python.org/3/reference/index.html.

Core  R. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2024.https://www.r-project.org/

Hagberg  AA, Schult  DA, Swart  PJ. Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of the 7th Python in Science Conference. 2008:11–15. 10.25080/TCWV9851. DOI

Brett  M, Markiewicz  CJ, Hanke  M  et al.  Nipy/Nibabel: 5.2.1. Zenodo; 2024. 10.5281/zenodo.10714563. Accessed 9 September 2024. DOI

Pandas The . Pandas-Dev/Pandas: Pandas. Zenodo; 2024. 10.5281/zenodo.10957263. Accessed 9 September 2024 DOI

Vallat  R, Appelhoff  S, Spaak  E  et al.  Raphaelvallat/Pingouin: V0.5.5. Zenodo. 2024. 10.5281/zenodo.13683424. Accessed 9 September 2024. DOI

Sjoberg  DD, Whiting  K, Curry  M  et al.  Reproducible summary tables with the gtsummary package. R J.  2021;13(1):570–80. 10.32614/RJ-2021-053. DOI

Bachmann  T, Mueller  K, Kusnezow  S  et al.  Supporting data for “Cerebellocerebral Connectivity Predicts Body Mass Index: A New Open-Source Python-Based Framework for Connectome-Based Predictive Modeling.”  GigaScience Database. 2025; 10.5524/102649. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...