Cerebellocerebral connectivity predicts body mass index: a new open-source Python-based framework for connectome-based predictive modeling
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
Grantová podpora
NIH
PubMed
40072905
PubMed Central
PMC11899596
DOI
10.1093/gigascience/giaf010
PII: 8071667
Knihovny.cz E-zdroje
- Klíčová slova
- BMI, Human Connectome Project (HCP), Python, cerebellum, connectome-based predictive modeling, functional magnetic resonance imaging (fMRI),
- MeSH
- dospělí MeSH
- index tělesné hmotnosti * MeSH
- konektom * metody MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody MeSH
- mladý dospělý MeSH
- mozeček * diagnostické zobrazování fyziologie MeSH
- nervová síť diagnostické zobrazování fyziologie MeSH
- obezita diagnostické zobrazování MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The cerebellum is one of the major central nervous structures consistently altered in obesity. Its role in higher cognitive function, parts of which are affected by obesity, is mediated through projections to and from the cerebral cortex. We therefore investigated the relationship between body mass index (BMI) and cerebellocerebral connectivity. METHODS: We utilized the Human Connectome Project's Young Adults dataset, including functional magnetic resonance imaging (fMRI) and behavioral data, to perform connectome-based predictive modeling (CPM) restricted to cerebellocerebral connectivity of resting-state fMRI and task-based fMRI. We developed a Python-based open-source framework to perform CPM, a data-driven technique with built-in cross-validation to establish brain-behavior relationships. Significance was assessed with permutation analysis. RESULTS: We found that (i) cerebellocerebral connectivity predicted BMI, (ii) task-general cerebellocerebral connectivity predicted BMI more reliably than resting-state fMRI and individual task-based fMRI separately, (iii) predictive networks derived this way overlapped with established functional brain networks (namely, frontoparietal networks, the somatomotor network, the salience network, and the default mode network), and (iv) we found there was an inverse overlap between networks predictive of BMI and networks predictive of cognitive measures adversely affected by overweight/obesity. CONCLUSIONS: Our results suggest obesity-specific alterations in cerebellocerebral connectivity, specifically with regard to task execution. With brain areas and brain networks relevant to task performance implicated, these alterations seem to reflect a neurobiological substrate for task performance adversely affected by obesity.
Department of Information Engineering University of Pisa Pisa 56122 Italy
Department of Neurology University of Halle Medical Center Halle 06102 Germany
Department of Neurology University of Leipzig Medical Center Leipzig 04103 Germany
Max Planck Institute for Human Cognitive and Brain Sciences Leipzig 04103 Germany
Zobrazit více v PubMed
NCD Risk Factor Collaboration (NCD-RisC) . Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128[Formula: see text]9 million children, adolescents, and adults. Lancet. 2017;390(10113):2627–42. 10.1016/S0140-6736(17)32129-3. PubMed DOI PMC
World Health Organization . Fact sheets: obesity and overweight. 2021. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accessed 26 February 2024.
Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15(5):288–98. 10.1038/s41574-019-0176-8. PubMed DOI
Barbosa DAN, Kuijper FM, Duda J, et al. Aberrant impulse control circuitry in obesity. Mol Psychiatr. 2022;27(8):3374–84. 10.1038/s41380-022-01640-5. PubMed DOI PMC
Leigh SJ, Morris MJ. The role of reward circuitry and food addiction in the obesity epidemic: an update. Biol Psychol. 2018;131:31–42. 10.1016/j.biopsycho.2016.12.013. PubMed DOI
Ziauddeen H, Alonso-Alonso M, Hill JO, et al. Obesity and the neurocognitive basis of food reward and the control of intake. Adv Nutr. 2015;6(4):474–86. 10.3945/an.115.008268. PubMed DOI PMC
Verdejo-Román J, Vilar-López R, Navas JF, et al. Brain reward system’s alterations in response to food and monetary stimuli in overweight and obese individuals. Hum Brain Mapp. 2017;38(2):666–77. 10.1002/hbm.23407. PubMed DOI PMC
Yang Y, Shields GS, Guo C, et al. Executive function performance in obesity and overweight individuals: a meta-analysis and review. Neurosci Biobehav Rev. 2018;84:225–44. 10.1016/j.neubiorev.2017.11.020. PubMed DOI
Fitzpatrick S, Gilbert S, Serpell L. Systematic review: are overweight and obese individuals impaired on behavioural tasks of executive functioning?. Neuropsychol Rev. 2013;23(2):138–56. 10.1007/s11065-013-9224-7. PubMed DOI
Olivo G, Gour S, Schiöth HB. Low neuroticism and cognitive performance are differently associated to overweight and obesity: a cross-sectional and longitudinal UK Biobank study. Psychoneuroendocrinology. 2019;101:167–74. 10.1016/j.psyneuen.2018.11.014. PubMed DOI
García-García I, Michaud A, Dadar M, et al. Neuroanatomical differences in obesity: meta-analytic findings and their validation in an independent dataset. Int J Obes. 2019;43(5):943–51. 10.1038/s41366-018-0164-4. PubMed DOI
Gómez-Apo E, Mondragón-Maya A, Ferrari-Díaz M et al. Structural brain changes associated with overweight and obesity. J Obes. 2021;2021::6613385. 10.1155/2021/6613385. PubMed DOI PMC
Glickstein M, Strata P, Voogd J. Cerebellum: history. Neuroscience. 2009;162(3):549–59. 10.1016/j.neuroscience.2009.02.054. PubMed DOI
Guell X, Hoche F, Schmahmann JD. Metalinguistic deficits in patients with cerebellar dysfunction: empirical support for the dysmetria of thought theory. Cerebellum. 2015;14(1):50–58. 10.1007/s12311-014-0630-z. PubMed DOI
Hoche F, Guell X, Vangel MG, et al. The cerebellar cognitive affective/Schmahmann syndrome scale. Brain. 2018;141(1):248–70. 10.1093/brain/awx317. PubMed DOI PMC
Hoche F, Guell X, Sherman JC, et al. Cerebellar contribution to social cognition. Cerebellum. 2016;15(6):732–43. 10.1007/s12311-015-0746-9. PubMed DOI PMC
Koziol LF, Budding DE, Chidekel D. From movement to thought: executive function, embodied cognition, and the cerebellum. Cerebellum. 2012;11(2):505–25. 10.1007/s12311-011-0321-y. PubMed DOI
Manto M, Mariën P. Schmahmann’s syndrome—identification of the third cornerstone of clinical ataxiology. Cerebellum Ataxias. 2015;2(1):2. 10.1186/s40673-015-0023-1. PubMed DOI PMC
Mariën P, Borgatti R. Language and the cerebellum. Handbook Clin Neurol. 2018;154:181–202.:10.1016/B978-0-444-63956-1.00011-4. PubMed DOI
Schmahmann JD. The cerebellum and cognition. Neurosci Lett. 2019;688:62–75. 10.1016/j.neulet.2018.07.005. PubMed DOI
Thomas Yeo BT, Krienen FM, Sepulcre J et al. , . Cortical parcellation as published in “The organization of the human cerebral cortex estimated by intrinsic functional connectivity”. 2011. https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation_Yeo2011 PubMed PMC
Guell X, Schmahmann JD, Gabrieli JD et al. Functional gradients of the cerebellum. eLife. 2018;7:e36652. 10.7554/eLife.36652. PubMed DOI PMC
Guell X, Gabrieli JDE, Schmahmann JD. Triple representation of language, working memory, social and emotion processing in the cerebellum: convergent evidence from task and seed-based resting-state fMRI analyses in a single large cohort. NeuroImage. 2018;172:437–49. 10.1016/j.neuroimage.2018.01.082. PubMed DOI PMC
Habas C, Kamdar N, Nguyen D, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29(26):8586–94. 10.1523/JNEUROSCI.1868-09.2009. PubMed DOI PMC
Marek S, Siegel JS, Gordon EM, et al. Spatial and temporal organization of the individual human cerebellum. Neuron. 2018;100(4):977–93. 10.1016/j.neuron.2018.10.010. PubMed DOI PMC
Buckner RL, Krienen FM, Castellanos A et al. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–45. 10.1152/jn.00339.2011. PubMed DOI PMC
Keren-Happuch E, Shen-Hsing Annabel C, Moon-Ho Ringo H et al. A meta-analysis of cerebellar contributions to higher cognition from PET and fMRI studies: a meta-analysis of cerebellar contributions. Hum Brain Mapp. 2014;35(2):593–615. 10.1002/hbm.22194. PubMed DOI PMC
Stoodley CJ, Desmond JE, Guell X, et al. Functional topography of the human cerebellum revealed by functional neuroimaging studies. In: Manto MU, Gruol DL, Schmahmann JD, al. et, eds. Handbook of the cerebellum and cerebellar disorders. Cham, Switzerland: Springer International Publishing, 2022:797–833. 10.1007/978-3-030-23810-0_30. DOI
Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage. 2009;44(2):489–501. 10.1016/j.neuroimage.2008.08.039. PubMed DOI
Shen X, Finn ES, Scheinost D et al. Using connectome-based predictive modeling to predict individual behavior from brain connectivity. Nat Protoc. 2017;12(3):506–18. 10.1038/nprot.2016.178. PubMed DOI PMC
Glasser MF, Smith SM, Marcus DS et al. The Human Connectome Project’s neuroimaging approach. Nat Neurosci. 2016;19(9):1175–87. 10.1038/nn.4361. PubMed DOI PMC
Glasser MF, Sotiropoulos SN, Wilson JA, et al. The minimal preprocessing pipelines for the human connectome project. NeuroImage. 2013;80:105–24. 10.1016/j.neuroimage.2013.04.127. PubMed DOI PMC
Robinson EC, Jbabdi S, Glasser MF et al. MSM: a new flexible framework for multimodal surface matching. NeuroImage. 2014;100:414–26. 10.1016/j.neuroimage.2014.05.069. PubMed DOI PMC
Glasser MF, Coalson TS, Robinson EC, et al. A multi-modal parcellation of human cerebral cortex. Nature. 2016;536(7615):171–78. 10.1038/nature18933. PubMed DOI PMC
Coalson TS, Van Essen DC, Glasser MF. The impact of traditional neuroimaging methods on the spatial localization of cortical areas. Proc Natl Acad Sci U S A. 2018;115(27):E6356–365. 10.1073/pnas.1801582115. PubMed DOI PMC
Coalson T, Glasser M, Harwell J, et al. CIFTI-2 Connectivity File Formats Documentation CIFTI, Working Group. 2014. https://www.nitrc.org/forum/attachment.phpattachid=333&group_id=454&forum_id=1955. Accessed 3 March 2024.
Friston KJ. Functional integration in the brain. In: Frackowiak RSK, Friston KJ, Frith CD, et al., eds. Human brain function. Cambridge, Massachusetts: Elsevier Academic Press, 2004:971–97. 10.1016/B978-012264841-0/50050-0. DOI
Tian Y, Margulies DS, Breakspear M, et al. Topographic organization of the human subcortex unveiled with functional connectivity gradients. Nat Neurosci. 2020;23(11):1421–32. 10.1038/s41593-020-00711-6. PubMed DOI
Ren Y, Guo L, Guo CC. A connectivity-based parcellation improved functional representation of the human cerebellum. Sci Rep. 2019;9(1):9115. 10.1038/s41598-019-45670-6. PubMed DOI PMC
Abraham A, Pedregosa F, Eickenberg M, et al. Machine learning for neuroimaging with scikit-learn. Front Neuroinform. 2014;8:1–10. 10.3389/fninf.2014.00014. PubMed DOI PMC
Pedregosa F, Varoquaux G, Gramfort A et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.
Ng B, Dressler M, Varoquaux G et al. Transport on riemannian manifold for functional connectivity-based classification. In: Golland P, Hata N, Barillot Ceds. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2014. Lecture Notes in Computer Science. Cham, Switzerland: Springer International Publishing; 2014:405–12. 10.1007/978-3-319-10470-6_51. PubMed DOI
Varoquaux G, Baronnet F, Kleinschmidt A et al. Detection of brain functional-connectivity difference in post-stroke patients using group-level covariance modeling. In: Jiang T, Navab N, Pluim JPW, eds. Medical Image Computing and Computer-Assisted Intervention–MICCAI 2010. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer;2010:200–8. 10.1007/978-3-642-15705-9_25. PubMed DOI
Dadi K, Rahim M, Abraham A, et al. Benchmarking functional connectome-based predictive models for resting-state fMRI. NeuroImage. 2019;192:115–34. 10.1016/j.neuroimage.2019.02.062. PubMed DOI
Pervaiz U, Vidaurre D, Woolrich MW, et al. Optimising network modelling methods for fMRI. NeuroImage. 2020;211:116604. 10.1016/j.neuroimage.2020.116604. PubMed DOI PMC
Ledoit O, Wolf M. A well-conditioned estimator for large-dimensional covariance matrices. J Multivariate Anal. 2004;88(2):365–411. 10.1016/S0047-259X(03)00096-4. DOI
Kohavi Ron. A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the 14th International Joint Conference on Artificial Intelligence.1995;2:1137–1143.
Rohde K, Keller M, la Cour Poulsen L et al. Genetics and epigenetics in obesity. Metab Clin Exp. 2019;92:37–50. 10.1016/j.metabol.2018.10.007. PubMed DOI
Goodarzi MO. Genetics of obesity: what genetic association studies have taught us about the biology of obesity and its complications. Lancet Diabetes Endo. 2018;6(3):223–36. 10.1016/S2213-8587(17)30200-0. PubMed DOI
Xu Z, Xia M, Wang X, et al. Meta-connectomic analysis maps consistent, reproducible, and transcriptionally relevant functional connectome hubs in the human brain. Commun Biol. 2022;5(1):1056. 10.1038/s42003-022-04028-x. PubMed DOI PMC
Fornito A, Zalesky A, Bassett DS, et al. Genetic influences on cost-efficient organization of human cortical functional networks. J Neurosci. 2011;31(9):3261–70. 10.1523/JNEUROSCI.4858-10.2011. PubMed DOI PMC
Glahn DC, Winkler AM, Kochunov P, et al. Genetic control over the resting brain. Proc Nat Acad Sci U S A. 2010;107(3):1223–28. 10.1073/pnas.0909969107. PubMed DOI PMC
Thompson PM, Ge T, Glahn DC et al. Genetics of the connectome. NeuroImage. 2013;80:475–88. 10.1016/j.neuroimage.2013.05.013. PubMed DOI PMC
van den Heuvel MP, van Soelen ILC, Stam CJ, et al. Genetic control of functional brain network efficiency in children. Eur Neuropsychopharmacol. 2013;23(1):19–23. 10.1016/j.euroneuro.2012.06.007. PubMed DOI
Barch DM, Burgess GC, Harms MP, et al. Function in the human connectome: Task-fMRI and individual differences in behavior. NeuroImage. 2013;80:169–89. 10.1016/j.neuroimage.2013.05.033. PubMed DOI PMC
Hariri AR, Tessitore A, Mattay VS, et al. The amygdala response to emotional stimuli: a comparison of faces and scenes. NeuroImage. 2002;17(1):317–23. 10.1006/nimg.2002.1179. PubMed DOI
Delgado MR, Nystrom LE, Fissell C, et al. Tracking the hemodynamic responses to reward and punishment in the striatum. J Neurophysiol. 2000;84(6):3072–77. 10.1152/jn.2000.84.6.3072. PubMed DOI
Binder JR, Gross WL, Allendorfer JB, et al. Mapping anterior temporal lobe language areas with fMRI: a multicenter normative study. NeuroImage. 2011;54(2):1465–75. 10.1016/j.neuroimage.2010.09.048. PubMed DOI PMC
Smith R, Keramatian K, Christoff K. Localizing the rostrolateral prefrontal cortex at the individual level. NeuroImage. 2007;36(4):1387–96. 10.1016/j.neuroimage.2007.04.032. PubMed DOI
Castelli F, Happé F, Frith U, et al. Movement and mind: a functional imaging study of perception and interpretation of complex intentional movement patterns. NeuroImage. 2000;12(3):314–25. 10.1006/nimg.2000.0612. PubMed DOI
Wheatley T, Milleville SC, Martin A. Understanding animate agents: distinct roles for the social network and mirror system. Psychol Sci. 2007;18(6):469–74. 10.1111/j.1467-9280.2007.01923.x. PubMed DOI
Downing PE, Jiang Y, Shuman M, et al. A cortical area selective for visual processing of the human body. Science. 2001;293(5539):2470–73. 10.1126/science.1063414. PubMed DOI
Eklund A, Nichols TE, Knutsson H. Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proc Nat Acad Sci U S A. 2016;113(28):7900–905. 10.1073/pnas.1602413113. PubMed DOI PMC
Moritz P, Nishihara R, Wang S et al. Ray: a distributed framework for emerging AI applications. In: Proceedings of the 13th USENIX Conference on Operating Systems Design and Implementation. OSDI’18. 2018:561–77. https://www.usenix.org/system/files/osdi18-moritz.pdf
WU-Minn HCP consortium , ed. 1200 Subjects Data Release Reference Manual. 2017.https://humanconnectome.org/storage/app/media/documentation/s1200/HCP_S1200_Release_Reference_Manual.pdf. Accessed 20 August 2023.
Almende BV, Thieurmel B. et al. visNetwork: network visualization using ‘vis.Js’ library. 2022. https://CRAN.R-project.org/package=visNetwork
R Core Team . R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2022.
Triarhou LC. A proposed number system for the 107 cortical areas of economo and Koskinas, and Brodmann area correlations. Stereotact Funct Neurosurg. 2007;85(5):204–15. 10.1159/000103259. PubMed DOI
D Patterson . Atlases. 2023. https://neuroimaging-core-docs.readthedocs.io/en/latest/pages/atlases.html. Accessed 19 May 2024.
Menon V. Salience network. In: Toga AW. ed. Brain mapping. Cambridge, Massachusetts: Elsevier Academic Press; 2015:597–611. 10.1016/B978-0-12-397025-1.00052-X. DOI
Peters SK, Dunlop K, Downar J. Cortico-striatal-thalamic loop circuits of the salience network: a central pathway in psychiatric disease and treatment. Front Syst Neurosci. 2016;10:1–23. 10.3389/fnsys.2016.00104. PubMed DOI PMC
Tomiyama H, Nakao T, Murayama K et al. Dysfunction between dorsal caudate and salience network associated with impaired cognitive flexibility in obsessive-compulsive disorder: a resting-state fMRI study. NeuroImage Clin. 2019;24:102004. 10.1016/j.nicl.2019.102004. PubMed DOI PMC
Tan Z, Li G, Zhang W, et al. Obese individuals show disrupted dynamic functional connectivity between basal ganglia and salience networks. Cereb Cortex. 2021;31(12):5676–85. 10.1093/cercor/bhab190. PubMed DOI PMC
García-García I, Jurado MÁ, Garolera M, et al. Alterations of the salience network in obesity: a resting-state fMRI study. Hum Brain Mapp. 2013;34(11):2786–97. 10.1002/hbm.22104. PubMed DOI PMC
Witt ST, van Ettinger-Veenstra H, Salo T, et al. What executive function network is that? An image-based meta-analysis of network labels. Brain Topogr. 2021;34(5):598–607. 10.1007/s10548-021-00847-z. PubMed DOI
Raichle ME. The brain’s default mode network. Annu Rev Neurosci. 2015;38(1):433–47. 10.1146/annurev-neuro-071013-014030. PubMed DOI
Fox MD, Snyder AZ, Vincent JL, et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A. 2005;102(27):9673–78. 10.1073/pnas.0504136102. PubMed DOI PMC
Shannon BJ, Raichle ME, Snyder AZ, et al. Premotor functional connectivity predicts impulsivity in juvenile offenders. Proc Nat Acad Sci U S A. 2011;108(27):11241–245. 10.1073/pnas.1108241108. PubMed DOI PMC
Wickham H. Ggplot2: elegant graphics for data analysis. 2nd ed. Cham, Switzerland: Springer; 2016.
Stoodley CJ, MacMore JP, Makris N, et al. Location of lesion determines motor vs. cognitive consequences in patients with cerebellar stroke. NeuroImage Clin. 2016;12:765–75. 10.1016/j.nicl.2016.10.013. PubMed DOI PMC
Smaers JB, Vanier DR. Brain size expansion in primates and humans is explained by a selective modular expansion of the cortico-cerebellar system. Cortex. 2019;118:292–305. 10.1016/j.cortex.2019.04.023. PubMed DOI
Balsters JH, Cussans E, Diedrichsen J, et al. Evolution of the cerebellar cortex: the selective expansion of prefrontal-projecting cerebellar lobules. NeuroImage. 2010;49(3):2045–52. 10.1016/j.neuroimage.2009.10.045. PubMed DOI PMC
Weaver AH. Reciprocal evolution of the cerebellum and neocortex in fossil humans. Proc Natl Acad Sci U S A. 2005;102(10):3576–80. 10.1073/pnas.0500692102. PubMed DOI PMC
Whiting BA, Barton RA. The evolution of the cortico-cerebellar complex in primates: anatomical connections predict patterns of correlated evolution. J Hum Evol. 2003;44(1):3–10. 10.1016/S0047-2484 (02)00162-8. PubMed DOI
King M, Hernandez-Castillo CR, Poldrack RA, et al. Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nat Neurosci. 2019;22(8):1371–78. 10.1038/s41593-019-0436-x. PubMed DOI PMC
Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44. 10.1016/j.cortex.2009.11.008. PubMed DOI PMC
Guell X, Schmahmann J. Cerebellar functional anatomy: a didactic summary based on human fMRI evidence. Cerebellum. 2020;19(1):1–5. 10.1007/s12311-019-01083-9. PubMed DOI
Sader M, Waiter GD, Williams JHG. The cerebellum plays more than one role in the dysregulation of appetite: review of structural evidence from typical and eating disorder populations. Brain Behav. 2023:13:(12):e3286. 10.1002/brb3.3286. PubMed DOI PMC
Berman SM, Paz-Filho G, Wong ML et al. Effects of leptin deficiency and replacement on cerebellar response to food-related cues. Cerebellum. 2013;12(1):59–67. 10.1007/s12311-012-0360-z. PubMed DOI PMC
Volkow ND, Wang GJ, Tomasi D, et al. Obesity and addiction: neurobiological overlaps. Obes Rev. 2013;14(1):2–18. 10.1111/j.1467-789X.2012.01031.x. PubMed DOI PMC
Carnell S, Benson L, Pantazatos SP, et al. Amodal brain activation and functional connectivity in response to high-energy-density food cues in obesity. Obesity. 2014;22(11):2370–78. 10.1002/oby.20859. PubMed DOI PMC
Tomasi D, Wang GJ, Wang R, et al. Overlapping patterns of brain activation to food and cocaine cues in cocaine abusers: association to striatal D2/D3 receptors. Hum Brain Mapp. 2015;36(1):120–36. 10.1002/hbm.22617. PubMed DOI PMC
Carta I, Chen CH, Schott AL et al. Cerebellar modulation of the reward circuitry and social behavior. Science. 2019;363(6424):eaav0581. 10.1126/science.aav0581. PubMed DOI PMC
Kostadinov D, Beau M, Blanco-Pozo M, et al. Predictive and reactive reward signals conveyed by climbing fiber inputs to cerebellar Purkinje cells. Nat Neurosci. 2019;22(6):950–62. 10.1038/s41593-019-0381-8. PubMed DOI PMC
Ernst TM, Brol AE, Gratz M, et al. The cerebellum is involved in processing of predictions and prediction errors in a fear conditioning paradigm. eLife. 2019;8:e46831. 10.7554/eLife.46831. PubMed DOI PMC
Milaneschi Y, Simmons WK, van Rossum EFC et al. Depression and obesity: evidence of shared biological mechanisms. Mol Psychiatr. 2019;24(1):18–33. 10.1038/s41380-018-0017-5. PubMed DOI
Gariepy G, Nitka D, Schmitz N. The association between obesity and anxiety disorders in the population: a systematic review and meta-analysis. Int J Obes. 2010;34(3):407–19. 10.1038/ijo.2009.252. PubMed DOI
Iosif CI, Bashir ZI, Apps R, et al. Cerebellar prediction and feeding behaviour. Cerebellum. 2023;22(5):1002–19. 10.1007/s12311-022-01476-3. PubMed DOI PMC
D’Mello AM, Gabrieli JDE, Nee DE. Evidence for hierarchical cognitive control in the human cerebellum. Curr Biol. 2020;30(10):1881–92. 10.1016/j.cub.2020.03.028. PubMed DOI PMC
Oldrati V, Schutter DJLG. Targeting the human cerebellum with transcranial direct current stimulation to modulate behavior: a meta-analysis. Cerebellum. 2018;17(2):228–36. 10.1007/s12311-017-0877-2. PubMed DOI PMC
Starowicz-Filip A, Prochwicz K, Kłosowska J, et al. Cerebellar functional lateralization from the perspective of clinical neuropsychology. Front Psychol. 2021;12.1–12. 10.3389/fpsyg.2021.775308. PubMed DOI PMC
Uddin LQ, Yeo BTT, Spreng RN. Towards a universal taxonomy of macro-scale functional human brain networks. Brain Topogr. 2019;32(6):926–42. 10.1007/s10548-019-00744-6. PubMed DOI PMC
Cristofori I, Cohen-Zimerman S, Grafman J. Executive functions. Handbook Clin Neurol. 2019;163:197–219. 10.1016/B978-0-12-804281-6.00011-2. PubMed DOI
Hernandez AR, Reasor JE, Truckenbrod LM, et al. Medial prefrontal-perirhinal cortical communication is necessary for flexible response selection. Neurobiol Learn Mem. 2017;137:36–47. 10.1016/j.nlm.2016.10.012. PubMed DOI PMC
Skranes J, Løhaugen GCC, Evensen KAI, et al. Entorhinal cortical thinning affects perceptual and cognitive functions in adolescents born preterm with very low birth weight (VLBW). Early Hum Dev. 2012;88(2):103–9. 10.1016/j.earlhumdev.2011.07.017. PubMed DOI
Izen SC, Chrastil ER, Stern CE. Resting state connectivity between medial temporal lobe regions and intrinsic cortical networks predicts performance in a path integration task. Front Hum Neurosci. 2018;12:415. 10.3389/fnhum.2018.00415. PubMed DOI PMC
Friedman NP, Robbins TW. The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology. 2022;47(1):72–89. 10.1038/s41386-021-01132-0. PubMed DOI PMC
Favieri F, Forte G, Casagrande M. The executive functions in overweight and obesity: a systematic review of neuropsychological cross-sectional and longitudinal studies. Front Psychol. 2019;10.1–27. 10.3389/fpsyg.2019.02126. PubMed DOI PMC
Smith E, Hay P, Campbell L, et al. A review of the association between obesity and cognitive function across the lifespan: implications for novel approaches to prevention and treatment. Obes Rev. 2011;12(9):740–55. 10.1111/j.1467-789X.2011.00920.x. PubMed DOI
Coppin G, Nolan-Poupart S, Jones-Gotman M, et al. Working memory and reward association learning impairments in obesity. Neuropsychologia. 2014;65:146–55. 10.1016/j.neuropsychologia.2014.10.004. PubMed DOI PMC
Dohle S, Diel K, Hofmann W. Executive functions and the self-regulation of eating behavior: a review. Appetite. 2018;124:4–9. 10.1016/j.appet.2017.05.041. PubMed DOI
Eichen DM, Pasquale EK, Twamley EW, et al. Targeting executive function for weight loss in adults with overweight or obesity. Physiol Behav. 2021;240:113540. 10.1016/j.physbeh.2021.113540. PubMed DOI PMC
Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(4):561–79. 10.1093/brain/121.4.561. PubMed DOI
Argyropoulos GPD, van Dun K, Adamaszek M, et al. The cerebellar cognitive affective/Schmahmann syndrome: a task force paper. Cerebellum. 2020;19(1):102–25. 10.1007/s12311-019-01068-8. PubMed DOI PMC
Herlin B, Navarro V, Dupont S. The temporal pole: from anatomy to function-a literature appraisal. J Chem Neuroanat. 2021;113:101925. 10.1016/j.jchemneu.2021.101925. PubMed DOI
Pascual B, Masdeu JC, Hollenbeck M, et al. Large-scale brain networks of the human left temporal pole: a functional connectivity MRI study. Cereb Cortex. 2015;25(3):680–702. 10.1093/cercor/bht260. PubMed DOI PMC
Patterson K, Nestor PJ, Rogers TT. Where do you know what you know? the representation of semantic knowledge in the human brain. Nat Rev Neurosci. 2007;8(12):976–87. 10.1038/nrn2277. PubMed DOI
Pobric G, Jefferies E, Ralph MAL. Amodal semantic representations depend on both anterior temporal lobes: evidence from repetitive transcranial magnetic stimulation. Neuropsychologia. 2010;48(5):1336–42. 10.1016/j.neuropsychologia.2009.12.036. PubMed DOI
Schroeter ML, Vogt B, Frisch S, et al. Dissociating behavioral disorders in early dementia—an FDG-PET study. Psychiatry Res Neuroimaging. 2011;194(3):235–44. 10.1016/j.pscychresns.2011.06.009. PubMed DOI
Schroeter ML, Vogt B, Frisch S et al. Executive deficits are related to the inferior frontal junction in early dementia. Brain. 2012;135(1):201–15. 10.1093/brain/awr311. PubMed DOI PMC
Zhu W, Tang W, Liang Y, et al. Aberrant functional connectivity of sensorimotor network and its relationship with executive dysfunction in bipolar disorder type I. Front Neurosci. 2022;15:1–9. 10.3389/fnins.2021.823550 PubMed DOI PMC
Kebets V, Holmes AJ, Orban C, et al. Somatosensory-motor dysconnectivity spans multiple transdiagnostic dimensions of psychopathology. Biol Psychiatr. 2019;86(10):779–91. 10.1016/j.biopsych.2019.06.013. PubMed DOI
Repp BH, Su YH. Sensorimotor synchronization: a review of recent research (2006–2012). Psychon Bull Rev. 2013;20(3):403–52. 10.3758/s13423-012-0371-2. PubMed DOI
Wiener M, Turkeltaub P, Coslett HB. The image of time: a voxel-wise meta-analysis. NeuroImage. 2010;49(2):1728–40. 10.1016/j.neuroimage.2009.09.064. PubMed DOI
Comstock DC, Hove MJ, Balasubramaniam R. Sensorimotor synchronization with auditory and visual modalities: behavioral and neural differences. Front Comput Neurosci. 2018;12:1–8. 10.3389/fncom.2018.00053. PubMed DOI PMC
Burgess JD, Lum JAG, Hohwy J et al. Echoes on the motor network: how internal motor control structures afford sensory experience. Brain Struct Funct. 2017;222(9):3865–88. 10.1007/s00429-017-1484-1. PubMed DOI
Guell X, Gabrieli JDE, Schmahmann JD. Embodied cognition and the cerebellum: perspectives from the dysmetria of thought and the universal cerebellar transform theories. Cortex. 2018;100:140–48. 10.1016/j.cortex.2017.07.005. PubMed DOI
Kawabata K, Bagarinao E, Watanabe H, et al. Functional connector hubs in the cerebellum. NeuroImage. 2022;257:119263. 10.1016/j.neuroimage.2022.119263. PubMed DOI
Mueller K, Sacher J, Arelin K, et al. Overweight and obesity are associated with neuronal injury in the human cerebellum and hippocampus in young adults: a combined MRI, serum marker and gene expression study. Transl Psychiat. 2012;2(12):e200. 10.1038/tp.2012.121. PubMed DOI PMC
Obradovic M, Sudar-Milovanovic E, Soskic S, et al. Leptin and obesity: role and clinical implication. Front Endocrinol. 2021;12:1–14. 10.3389/fendo.2021.585887. PubMed DOI PMC
Burguera B, Couce ME, Long J, et al. The long form of the leptin receptor (OB-Rb) is widely expressed in the human brain. Neuroendocrinology. 2000;71(3):187–95. 10.1159/000054536. PubMed DOI
Matochik JA, London ED, Yildiz BO, et al. Effect of leptin replacement on brain structure in genetically leptin-deficient adults. J Clin Endocrinol Metab. 2005;90(5):2851–54. 10.1210/jc.2004-1979. PubMed DOI
London ED, Berman SM, Chakrapani S, et al. Short-term plasticity of gray matter associated with leptin deficiency and replacement. J Clin Endocrinol Metab. 2011;96(8):E1212–220. 10.1210/jc.2011-0314. PubMed DOI PMC
Baicy K, London ED, Monterosso J, et al. Leptin replacement alters brain response to food cues in genetically leptin-deficient adults. Proc Natl Acad Sci U S A. 2007;104(46):18276–279. 10.1073/pnas.0706481104. PubMed DOI PMC
Fernandez L, Major BP, Teo WP et al. Assessing cerebellar brain inhibition (CBI) via transcranial magnetic stimulation (TMS): a systematic review. Neurosci Biobehav Rev. 2018;86:176–206. 10.1016/j.neubiorev.2017.11.018. PubMed DOI
Manto M, Argyropoulos GPD, Bocci T et al. Consensus paper: novel directions and next steps of non-invasive brain stimulation of the cerebellum in health and disease. Cerebellum. 2022;21(6):1092–122. 10.1007/s12311-021-01344-6. PubMed DOI
Sebastian R, Kim JH, Brenowitz R et al. Cerebellar neuromodulation improves naming in post-stroke aphasia. Brain Commun. 2020;2(2):fcaa179. 10.1093/braincomms/fcaa179. PubMed DOI PMC
Low AYT, Goldstein N, Gaunt JR, et al. Reverse-translational identification of a cerebellar satiation network. Nature. 2021;600(7888):269–73. 10.1038/s41586-021-04143-5. PubMed DOI PMC
Marron EM, Viejo-Sobera R, Cuatrecasas G et al. Prefronto-cerebellar neuromodulation affects appetite in obesity. Int J Obes. 2019;43(10):2119–24. 10.1038/s41366-018-0278-8. PubMed DOI PMC
van Galen KA, Ter Horst KW, Booij J, et al. The role of central dopamine and serotonin in human obesity: lessons learned from molecular neuroimaging studies. Metabolism Clin Exp. 2018;85:325–39. 10.1016/j.metabol.2017.09.007. PubMed DOI
van Galen KA, Schrantee A, ter Horst KW, et al. Brain responses to nutrients are severely impaired and not reversed by weight loss in humans with obesity: a randomized crossover study. Nat Metab. 2023;5(6):1059–72. 10.1038/s42255-023-00816-9. PubMed DOI
van der Zwaal EM, de Weijer BA, van de Giessen EM, et al. Striatal dopamine D2/3 receptor availability increases after long-term bariatric surgery-induced weight loss. Eur Neuropsychopharmacol. 2016;26(7):1190–200. 10.1016/j.euroneuro.2016.04.009. PubMed DOI
Zhang X, Ma N, Lin Q, et al. Body roundness index and all-cause mortality among US adults. JAMA Network Open. 2024;7(6):e2415051. 10.1001/jamanetworkopen.2024.15051. PubMed DOI PMC
Suliga E, Ciesla E, Głuszek-Osuch M et al. The usefulness of anthropometric indices to identify the risk of metabolic syndrome. Nutrients. 2019;11(11):2598. 10.3390/nu11112598. PubMed DOI PMC
Amirabdollahian F, Haghighatdoost F. Anthropometric indicators of adiposity related to body weight and body shape as cardiometabolic risk predictors in British young adults: superiority of waist-to-height ratio. J Obes. 2018;2018:8370304. 10.1155/2018/8370304. PubMed DOI PMC
Huxley R, Mendis S, Zheleznyakov E, et al. Body mass index, waist circumference and waist:hip ratio as predictors of cardiovascular risk—a review of the literature. Eur J Clin Nutr. 2010;64(1):16–22. 10.1038/ejcn.2009.68. PubMed DOI
O’Neill D. Measuring obesity in the absence of a gold standard. Econ Hum Biol. 2015;17:116–28. 10.1016/j.ehb.2015.02.002. PubMed DOI
Bachmann T, Mueller K, Schroeter ML, et al. Cerebellocerebral connectivity predicts body mass index: a new open-source Python-based framework for connectome-based predictive modeling [DOME-ML Annotations]. DOME-ML Registry. 2025. https://registry.dome-ml.org/review/pj6nprkh27.
Van Rossum G, Drake FL. The Python Language Reference. 2024. Accessed September 9, 2024.https://docs.python.org/3/reference/index.html.
Core R. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2024.https://www.r-project.org/
Hagberg AA, Schult DA, Swart PJ. Exploring network structure, dynamics, and function using NetworkX. In: Proceedings of the 7th Python in Science Conference. 2008:11–15. 10.25080/TCWV9851. DOI
Brett M, Markiewicz CJ, Hanke M et al. Nipy/Nibabel: 5.2.1. Zenodo; 2024. 10.5281/zenodo.10714563. Accessed 9 September 2024. DOI
Pandas The . Pandas-Dev/Pandas: Pandas. Zenodo; 2024. 10.5281/zenodo.10957263. Accessed 9 September 2024 DOI
Vallat R, Appelhoff S, Spaak E et al. Raphaelvallat/Pingouin: V0.5.5. Zenodo. 2024. 10.5281/zenodo.13683424. Accessed 9 September 2024. DOI
Sjoberg DD, Whiting K, Curry M et al. Reproducible summary tables with the gtsummary package. R J. 2021;13(1):570–80. 10.32614/RJ-2021-053. DOI
Bachmann T, Mueller K, Kusnezow S et al. Supporting data for “Cerebellocerebral Connectivity Predicts Body Mass Index: A New Open-Source Python-Based Framework for Connectome-Based Predictive Modeling.” GigaScience Database. 2025; 10.5524/102649. DOI