Unique clinical, morphological, and molecular characteristics of tumors associated with PSC-IBD
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
40102272
PubMed Central
PMC12018527
DOI
10.1007/s00428-025-04072-y
PII: 10.1007/s00428-025-04072-y
Knihovny.cz E-zdroje
- Klíčová slova
- Cholangiocarcinoma, Colorectal carcinoma, Crohn’s disease, Inflammatory bowel disease, Primary sclerosing cholangitis, Ulcerative colitis,
- MeSH
- cholangiokarcinom * patologie etiologie genetika MeSH
- idiopatické střevní záněty * komplikace patologie MeSH
- kolorektální nádory * patologie etiologie genetika MeSH
- lidé MeSH
- nádorové biomarkery genetika MeSH
- nádory žlučových cest * patologie etiologie genetika MeSH
- sklerozující cholangitida * komplikace patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- nádorové biomarkery MeSH
Primary sclerosing cholangitis (PSC) is a rare cholestatic liver disease characterized by chronic inflammation and progressive fibrosis of the biliary tree, leading to significant liver function impairment over time. There is a strong association with inflammatory bowel diseases (IBD), together representing a distinct and complex medical condition. Patients with PSC-IBD face a heightened risk of various cancers, particularly colorectal carcinoma (CRC) and cholangiocarcinoma (CCA) as the most common types. In this review, we aim to characterize the distinctive features of PSC-IBD-associated carcinomas. Cancer pathogenesis in PSC-IBD is shaped by various factors including dysregulated bile acid metabolism, gut dysbiosis, and unique immune responses. PSC-IBD-associated CRC is often right-sided and warrants vigilant monitoring due to its higher incidence and unique morphological features compared to CRC arising in the terrain of IBD alone. CCA shares substantial genetic similarities with extrahepatic CCA and poses diagnostic challenges since it is frequently detected at advanced stages due to symptom overlap with PSC. Besides, reliable predictive biomarkers for targeted therapy remain largely unexplored. The distinct molecular, genetic, and histopathological profiles of CRC and CCA in PSC-IBD underscore the complexity of these malignancies and highlight the need for continued research to develop precise therapeutic strategies.
Zobrazit více v PubMed
Karlsen TH, Folseraas T, Thorburn D, Vesterhus M (2017) Primary sclerosing cholangitis - a comprehensive review. J Hepatol 67:1298–1323 PubMed DOI
Chapman R, Fevery J, Kalloo A, Nagorney DM, Boberg KM, Shneider B, Gores GJ (2010) Diagnosis and management of primary sclerosing cholangitis. Hepatology 51:660–678 PubMed DOI
Sano H, Nakazawa T, Ando T et al (2011) Clinical characteristics of inflammatory bowel disease associated with primary sclerosing cholangitis. J Hepatobiliary Pancreat Sci 18:154–161 PubMed DOI
Björnsson E, Boberg KM, Cullen S, Fleming K, Clausen OP, Fausa O, Schrumpf E, Chapman RW (2002) Patients with small duct primary sclerosing cholangitis have a favourable long term prognosis. Gut 51:731 PubMed DOI PMC
Schaeffer DF, Win LL, Hafezi-Bakhtiari S, Cino M, Hirschfield GM, El-Zimaity H (2013) The phenotypic expression of inflammatory bowel disease in patients with primary sclerosing cholangitis differs in the distribution of colitis. Dig Dis Sci 58:2608–2614 PubMed DOI
Loftus EV, Harewood GC, Loftus CG, Tremaine WJ, Harmsen WS, Zinsmeister AR, Jewell DA, Sandborn WJ (2005) PSC-IBD: a unique form of inflammatory bowel disease associated with primary sclerosing cholangitis. Gut 54:91–96 PubMed DOI PMC
Mertz A, Nguyen NA, Katsanos KH, Kwok RM (2019) Primary sclerosing cholangitis and inflammatory bowel disease comorbidity: an update of the evidence. Ann Gastroenterol 32:124 PubMed PMC
Lundberg Båve A, Bergquist A, Bottai M, Warnqvist A, von Seth E, Nordenvall C (2021) Increased risk of cancer in patients with primary sclerosing cholangitis. Hepatol Int 15:1174–1182 PubMed DOI PMC
Yashiro M (2014) Ulcerative colitis-associated colorectal cancer. World J Gastroenterol: WJG 20:16389 PubMed DOI PMC
Murthy SK, Feuerstein JD, Nguyen GC, Velayos FS (2021) AGA clinical practice update on endoscopic surveillance and management of colorectal dysplasia in inflammatory bowel diseases: expert review. Gastroenterology 161:1043–1051.e4 PubMed DOI
Catanzaro E, Gringeri E, Burra P, Gambato M, (2023) Primary sclerosing cholangitis-associated cholangiocarcinoma: from pathogenesis to diagnostic and surveillance strategies. Cancers 15:4947. 10.3390/cancers15204947 PubMed PMC
Zheng HH, Jiang XL (2016) Increased risk of colorectal neoplasia in patients with primary sclerosing cholangitis and inflammatory bowel disease: a meta-analysis of 16 observational studies. Eur J Gastroenterol Hepatol 28:383–390 PubMed DOI
Zhang R, Lauwers GY, Choi WT (2022) Increased risk of non-conventional and invisible dysplasias in patients with primary sclerosing cholangitis and inflammatory bowel disease. J Crohns Colitis 16:1825–1834 PubMed DOI
Rutter M, Saunders B, Wilkinson K, Rumbles S, Schofield G, Kamm M, Williams C, Price A, Talbot I, Forbes A (2004) Severity of inflammation is a risk factor for colorectal neoplasia in ulcerative colitis. Gastroenterology 126:451–459 PubMed DOI
Itzkowitz SH, Yio X (2004) Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation Am J Physiol Gastrointest Liver Physiol. 10.1152/AJPGI.00079.2004 PubMed DOI
Frick A, Khare V, Paul G, Lang M, Ferk F, Knasmüller S, Beer A, Oberhuber G, Gasche C (2018) Overt increase of oxidative stress and DNA damage in murine and human colitis and colitis-associated neoplasia. Mol Cancer Res 16:634–642 PubMed DOI
Schottelius AJ, Dinter H (2006) Cytokines, NF-kappaB, microenvironment, intestinal inflammation and cancer. Cancer Treat Res 130:67–87 PubMed DOI
Shaw DG, Aguirre-Gamboa R, Vieira MC, et al (2023) Antigen-driven colonic inflammation is associated with development of dysplasia in primary sclerosing cholangitis. Nat Med 29(6):1520–1529. 10.1038/s41591-023-02372-x PubMed PMC
Wittek A, Steglich B, Casar C et al (2024) A gradient of intestinal inflammation in primary sclerosing cholangitis. Inflamm Bowel Dis 30:900–910 PubMed DOI
Sears CL, Geis AL, Housseau F (2014) Bacteroides fragilis subverts mucosal biology: from symbiont to colon carcinogenesis. J Clin Invest 124:4166–4172 PubMed DOI PMC
Cougnoux A, Dalmasso G, Martinez R et al (2014) Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut 63:1932–1942 PubMed DOI
Kummen M, Holm K, Anmarkrud JA et al (2017) The gut microbial profile in patients with primary sclerosing cholangitis is distinct from patients with ulcerative colitis without biliary disease and healthy controls. Gut 66:611–619 PubMed DOI
Dohlman AB, Klug J, Mesko M, Gao IH, Lipkin SM, Shen X, Iliev ID (2022) A pan-cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors. Cell 185:3807–3822.e12 PubMed DOI PMC
Nguyen TT, Ung TT, Kim NH, Do JY (2018) Role of bile acids in colon carcinogenesis. World J Clin Cases 6:577 PubMed DOI PMC
Claessen MMH, Lutgens MWMD, Van Buuren HR et al (2009) More right-sided IBD-associated colorectal cancer in patients with primary sclerosing cholangitis. Inflamm Bowel Dis 15:1331–1336 PubMed DOI
Krugliak Cleveland N, Rubin DT, Hart J et al (2018) Patients with ulcerative colitis and primary sclerosing cholangitis frequently have subclinical inflammation in the proximal colon. Clin Gastroenterol Hepatol 16:68 PubMed DOI PMC
Wang YN, Li J, Zheng WY et al (2017) Clinical characteristics of ulcerative colitis-related colorectal cancer in Chinese patients. J Dig Dis 18:684–690 PubMed DOI
Navaneethan U, Kochhar G, Venkatesh PGK, Bennett AE, Rizk M, Shen B, Kiran RP (2013) Random biopsies during surveillance colonoscopy increase dysplasia detection in patients with primary sclerosing cholangitis and ulcerative colitis. J Crohns Colitis 7:974–981 PubMed DOI
Grimsdottir S, Attauabi M, Kristine Dahl E, Burisch J, Seidelin JB (2023) Systematic review with meta-analysis: the impact of cancer treatments on the disease activity of inflammatory bowel diseases. J Crohns Colitis 17:1139–1153 PubMed DOI
Lu C, Schardey J, Zhang T, Crispin A, Wirth U, Karcz KW, Bazhin AV, Andrassy J, Werner J, Kühn F (2022) Survival outcomes and clinicopathological features in inflammatory bowel disease-associated colorectal cancer: a systematic review and meta-analysis. Ann Surg 276:E319–E330 PubMed DOI
Choi WT, Yozu M, Miller GC, Shih AR, Kumarasinghe P, Misdraji J, Harpaz N, Lauwers GY (2020) Nonconventional dysplasia in patients with inflammatory bowel disease and colorectal carcinoma: a multicenter clinicopathologic study. Mod Pathol 33:933–943 PubMed DOI
Kamarádová K, Vošmiková H, Rozkošová K, Ryška A, Tachecí I, Laco J (2019) Morphological, immunohistochemical and molecular features of inflammatory bowel disease associated colorectal carcinoma and associated mucosal lesions – single institution experience. Pathol Res Pract 215:730–737 PubMed DOI
Liu X, Goldblum JR, Zhao Z, Landau M, Heald B, Pai R, Lin J (2012) Distinct clinicohistologic features of inflammatory bowel disease-associated colorectal adenocarcinoma: in comparison with sporadic microsatellite-stable and Lynch syndrome-related colorectal adenocarcinoma. Am J Surg Pathol 36:1228–1233 PubMed DOI
Muzny DM, Bainbridge MN, Chang K et al (2012) Comprehensive molecular characterization of human colon and rectal cancer. Nature 487:330–337 PubMed DOI PMC
Zhang R, Rabinovitch PS, Mattis AN, Lauwers GY, Choi WT (2023) DNA content abnormality frequently develops in the right/proximal colon in patients with primary sclerosing cholangitis and inflammatory bowel disease and is highly predictive of subsequent detection of dysplasia. Histopathology 83:116–125 PubMed DOI
Increased p53 mutation load in noncancerous colon tissue from ulcerative colitis: a cancer-prone chronic inflammatory disease | Cancer Research | American Association for Cancer Research. https://aacrjournals.org/cancerres/article/60/13/3333/506396/Increased-p53-Mutation-Load-in-Noncancerous-Colon. Accessed 15 Sep 2024 PubMed
Brentnall TA, Crispin DA, Rabinovitch PS, Haggitt RC, Rubin CE, Stevens AC, Burmer GC (1994) Mutations in the p53 gene: an early marker of neoplastic progression in ulcerative colitis. Gastroenterology 107:369–378 PubMed DOI
Nagase H, Nakamura Y (1993) Mutations of the APC adenomatous polyposis coli) gene. Hum Mutat 2:425–434 PubMed DOI
Olafsson S, McIntyre RE, Coorens T et al (2020) Somatic evolution in non-neoplastic IBD-affected colon. Cell 182:672–684.e11 PubMed DOI PMC
Chatila WK, Walch H, Hechtman JF et al (2023) Integrated clinical and genomic analysis identifies driver events and molecular evolution of colitis-associated cancers. Nat Commun 14:110 PubMed DOI PMC
De Krijger M, Carvalho B, Rausch C et al (2022) genetic profiling of colorectal carcinomas of patients with primary sclerosing cholangitis and inflammatory bowel disease. Inflamm Bowel Dis 28:1309–1320 PubMed DOI PMC
Wohl P, Hucl T, Drastich P et al (2013) Epithelial markers of colorectal carcinogenesis in ulcerative colitis and primary sclerosing cholangitis. World J Gastroenterol 19:2234–2241 PubMed DOI PMC
Sepulveda AR, Hamilton SR, Allegra CJ, et al (2017) Molecular biomarkers for the evaluation of colorectal cancer: guideline summary from the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology. 101200/JOP2017022152 13:333–337 PubMed
Dubé PE, Yan F, Punit S, Girish N, McElroy SJ, Washington MK, Polk DB (2012) Epidermal growth factor receptor inhibits colitis-associated cancer in mice. J Clin Invest 122:2780 PubMed DOI PMC
Hsu HC, Thiam TK, Lu YJ et al (2016) Mutations of KRAS/NRAS/BRAF predict cetuximab resistance in metastatic colorectal cancer patients. Oncotarget 7:22257 PubMed DOI PMC
Le DT, Uram JN, Wang H et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372:2509–2520 PubMed DOI PMC
Idos GE, Kwok J, Bonthala N, Kysh L, Gruber SB, Qu C (2020) The prognostic implications of tumor infiltrating lymphocytes in colorectal cancer: a systematic review and meta-analysis. Sci Rep 10:3360 PubMed DOI PMC
Michael-Robinson JM, Pandeya N, Walsh MD, Biemer-Huttmann AE, Eri RD, Buttenshaw RL, Lincoln D, Clouston AD, Jaas JR, Radford-Smith GL (2006) Characterization of tumour-infiltrating lymphocytes and apoptosis in colitis-associated neoplasia: comparison with sporadic colorectal cancer. J Pathol 208:381–387 PubMed DOI
Lewis JT, Talwalkar JA, Rosen CB, Smyrk TC, Abraham SC (2010) Precancerous bile duct pathology in end-stage primary sclerosing cholangitis, with and without cholangiocarcinoma. Am J Surg Pathol 34:27–34 PubMed DOI
Chung BK, Karlsen TH, Folseraas T (2018) Cholangiocytes in the pathogenesis of primary sclerosing cholangitis and development of cholangiocarcinoma. Biochim Biophys Acta Mol Basis Dis 1864:1390–1400 PubMed DOI
Chazouilleres O, Beuers U, Bergquist A, Karlsen TH, Levy C, Samyn M, Schramm C, Trauner M (2022) EASL clinical practice guidelines on sclerosing cholangitis. J Hepatol 77:761–806 PubMed DOI
Ishii Y, Sasaki T, Serikawa M et al (2013) Elevated expression of cyclooxygenase-2 and microsomal prostaglandin E synthase-1 in primary sclerosing cholangitis: ιmplications for cholangiocarcinogenesis. Int J Oncol 43:1073–1079 PubMed DOI
Lieshout R, Kamp EJCA, Verstegen MMA et al (2023) Cholangiocarcinoma cell proliferation is enhanced in primary sclerosing cholangitis: a role for IL-17A. Int J Cancer 152:2607–2614 PubMed DOI
Grant AJ, Lalor PF, Salmi M, Jalkanen S, Adams DH (2002) Homing of mucosal lymphocytes to the liver in the pathogenesis of hepatic complications of inflammatory bowel disease. Lancet 359:150–157 PubMed DOI
de Krijger M, Visseren T, Wildenberg ME, Hooijer GKJ, Verstegen MMA, van der Laan LJW, de Jonge WJ, Verheij J, Ponsioen CY (2020) Characterization of gut-homing molecules in non-endstage livers of patients with primary sclerosing cholangitis and inflammatory bowel disease. J Transl Autoimmun. 10.1016/J.JTAUTO.2020.100054 PubMed DOI PMC
Graham JJ, Mukherjee S, Yuksel M et al (2021) Aberrant hepatic trafficking of gut-derived T cells is not specific to primary sclerosing cholangitis. Hepatology 75:518–530 PubMed DOI PMC
Kiziltas S (2016) Toll-like receptors in pathophysiology of liver diseases. World J Hepatol 8:1354 PubMed DOI PMC
Gulamhusein AF, Eaton JE, Tabibian JH, Atkinson EJ, Juran BD, Lazaridis KN (2016) Duration of inflammatory bowel disease is associated with increased risk of cholangiocarcinoma in patients with primary sclerosing cholangitis and IBD. Am J Gastroenterol 111:705 PubMed DOI PMC
Bajer L, Kverka M, Kostovcik M, Macinga P, Dvorak J, Stehlikova Z, Brezina J, Wohl P, Spicak J, Drastich P (2017) Distinct gut microbiota profiles in patients with primary sclerosing cholangitis and ulcerative colitis. World J Gastroenterol 23:4548–4558 PubMed DOI PMC
Rühlemann MC, Solovjeva MEL, Zenouzi R, Liwinski T, Kummen M, Lieb W, Hov JR, Schramm C, Franke A, Bang C (2020) Gut mycobiome of primary sclerosing cholangitis patients is characterised by an increase of Trichocladium griseum and Candida species. Gut 69:1890–1892 PubMed DOI PMC
Rawla P, Samant H (2023) Primary sclerosing cholangitis. StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL). Available from: https://www.ncbi.nlm.nih.gov/books/NBK537181/ PubMed
Trilianos P, Agnihotri A, Ucbilek E, Gurakar A (2016) Greater biosynthetic liver dysfunction in primary sclerosing cholangitis suggests co-existent or impending cholangiocarcinoma. http://www.xiahepublishing.com/ 4:1–4 PubMed PMC
Björnsson E, Lindqvist-Ottosson J, Asztely M, Olsson R (2004) Dominant strictures in patients with primary sclerosing cholangitis. Am J Gastroenterol 99:502–508 PubMed DOI
Gochanour E, Jayasekera C, Kowdley K (2020) Primary sclerosing cholangitis: epidemiology, genetics, diagnosis, and current management. Clin Liver Dis (Hoboken) 15:125–128 PubMed DOI PMC
Chahal D, Shamatutu C, Salh B, Davies J (2020) The impact of primary sclerosing cholangitis or inflammatory bowel disease on cholangiocarcinoma phenotype, therapy, and survival. JGH Open 4:1128 PubMed DOI PMC
Fevery J, Verslype C, Lai G, Aerts R, Van Steenbergen W (2007) Incidence, diagnosis, and therapy of cholangiocarcinoma in patients with primary sclerosing cholangitis. Dig Dis Sci 52:3123–3135 PubMed DOI
Nakanuma Y, Kakuda Y (2015) Pathologic classification of cholangiocarcinoma: new concepts. Best Pract Res Clin Gastroenterol 29:277–293 PubMed DOI
Carpino G, Cardinale V, Folseraas T et al (2019) Neoplastic transformation of the peribiliary stem cell niche in cholangiocarcinoma arisen in primary sclerosing cholangitis. Hepatology 69:622–638 PubMed DOI
Goeppert B, Folseraas T, Roessler S et al (2020) genomic characterization of cholangiocarcinoma in primary sclerosing cholangitis reveals therapeutic opportunities. Hepatology 72:1253–1266 PubMed DOI
Nakamura H, Arai Y, Totoki Y et al (2015) Genomic spectra of biliary tract cancer. Nat Genet 47:1003–1010 PubMed DOI
Churi CR, Shroff R, Wang Y et al (2014) Mutation profiling in cholangiocarcinoma: prognostic and therapeutic implications. PLoS ONE. 10.1371/JOURNAL.PONE.0115383 PubMed DOI PMC
Shibata T, Arai Y, Totoki Y (2018) Molecular genomic landscapes of hepatobiliary cancer. Cancer Sci 109:1282 PubMed DOI PMC
Jusakul A, Cutcutache I, Yong CH et al (2017) Whole-genome and epigenomic landscapes of etiologically distinct subtypes of cholangiocarcinoma. Cancer Discov 7:1116–1135 PubMed DOI PMC
Grimsrud MM, Forster M, Goeppert B et al (2024) Whole-exome sequencing reveals novel cancer genes and actionable targets in biliary tract cancers in primary sclerosing cholangitis. Hepatol Commun. 10.1097/HC9.0000000000000461 PubMed DOI PMC
Chmiel P, Gęca K, Rawicz-Pruszyński K, Polkowski WP, Skórzewska M (2022) FGFR inhibitors in cholangiocarcinoma—a novel yet primary approach: where do we stand now and where to head next in targeting this axis? Cells 11:3929 PubMed DOI PMC
Sumbly V, Landry I, Rizzo V (2022) Ivosidenib for IDH1 mutant cholangiocarcinoma: a narrative review. Cureus 14 PubMed PMC
Rizzo A, Ricci AD, Brandi G (2021) Detecting and targeting NTRK gene fusions in cholangiocarcinoma: news and perspectives. Expert Rev Precis Med Drug Dev 6:225–227 DOI
Mody K, Starr J, Saul M, Poorman K, Weinberg BA, Salem ME, VanderWalde A, Shields AF (2019) Patterns and genomic correlates of PD-L1 expression in patients with biliary tract cancers. J Gastrointest Oncol 10:1099 PubMed DOI PMC
Javle M, Borad MJ, Azad NS et al (2021) Pertuzumab and trastuzumab for HER2-positive, metastatic biliary tract cancer (MyPathway): a multicentre, open-label, phase 2a, multiple basket study. Lancet Oncol 22:1290–1300 PubMed DOI