Cap analysis of gene expression reveals alternative promoter usage in a rat model of hypertension
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články
PubMed
34996843
PubMed Central
PMC8742872
DOI
10.26508/lsa.202101234
PII: 5/4/e202101234
Knihovny.cz E-zdroje
- MeSH
- genetická transkripce genetika MeSH
- hypertenze * genetika metabolismus MeSH
- krysa rodu Rattus MeSH
- potkani inbrední SHR MeSH
- promotorové oblasti (genetika) genetika MeSH
- sekvenční analýza RNA metody MeSH
- stanovení celkové genové exprese metody MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The role of alternative promoter usage in tissue-specific gene expression has been well established; however, its role in complex diseases is poorly understood. We performed cap analysis of gene expression (CAGE) sequencing from the left ventricle of a rat model of hypertension, the spontaneously hypertensive rat (SHR), and a normotensive strain, Brown Norway to understand the role of alternative promoter usage in complex disease. We identified 26,560 CAGE-defined transcription start sites in the rat left ventricle, including 1,970 novel cardiac transcription start sites. We identified 28 genes with alternative promoter usage between SHR and Brown Norway, which could lead to protein isoforms differing at the amino terminus between two strains and 475 promoter switching events altering the length of the 5' UTR. We found that the shift in Insr promoter usage was significantly associated with insulin levels and blood pressure within a panel of HXB/BXH recombinant inbred rat strains, suggesting that hyperinsulinemia due to insulin resistance might lead to hypertension in SHR. Our study provides a preliminary evidence of alternative promoter usage in complex diseases.
Charité Universitätsmedizin Berlin Germany
DZHK Partner Site Berlin Berlin Germany
Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
Princess Máxima Center for Pediatric Oncology Utrecht Netherlands
Zobrazit více v PubMed
Aitman TJ, Critser JK, Cuppen E, Dominiczak A, Fernandez-Suarez XM, Flint J, Gauguier D, Geurts AM, Gould M, Harris PC, et al. (2008) Progress and prospects in rat genetics: A community view. Nat Genet 40: 516–522. 10.1038/ng.147 PubMed DOI
Araki E, Shimada F, Fukushima H, Mori M, Shichiri M, Ebina Y (1989) Characterization of the promoter region of the human insulin receptor gene. Diabetes Res Clin Pract 7: S31–S33. 10.1016/0168-8227(89)90085-5 PubMed DOI
Atanur SS, Birol I, Guryev V, Hirst M, Hummel O, Morrissey C, Behmoaras J, Fernandez-Suarez XM, Johnson MD, McLaren WM, et al. (2010) The genome sequence of the spontaneously hypertensive rat: Analysis and functional significance. Genome Res 20: 791–803. 10.1101/gr.103499.109 PubMed DOI PMC
Atanur SS, Diaz AG, Maratou K, Sarkis A, Rotival M, Game L, Tschannen MR, Kaisaki PJ, Otto GW, Ma MC, et al. (2013) Genome sequencing reveals loci under artificial selection that underlie disease phenotypes in the laboratory rat. Cell 154: 691–703. 10.1016/j.cell.2013.06.040 PubMed DOI PMC
Ayoubi TA, Van De Ven WJ (1996) Regulation of gene expression by alternative promoters. FASEB J 10: 453–460. 10.1096/fasebj.10.4.8647344 PubMed DOI
Belfiore A, Malaguarnera R, Vella V, Lawrence MC, Sciacca L, Frasca F, Morrione A, Vigneri R (2017) Insulin receptor isoforms in physiology and disease: An updated view. Endocr Rev 38: 379–431. 10.1210/er.2017-00073 PubMed DOI PMC
Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R, Ravasi T, Lenhard B, Wells C, et al. (2005) The transcriptional landscape of the mammalian genome. Science 309: 1559–1563. 10.1126/science.1112014 PubMed DOI
Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J, Semple CA, Taylor MS, Engström PG, Frith MC, et al. (2006) Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet 38: 626–635. 10.1038/ng1789 PubMed DOI
Clausen AG, Vad OB, Andersen JH, Olesen MS (2021) Loss-of-function variants in the SYNPO2L gene are associated with atrial fibrillation. Front Cardiovasc Med 8: 650667. 10.3389/fcvm.2021.650667 PubMed DOI PMC
Demircioğlu D, Cukuroglu E, Kindermans M, Nandi T, Calabrese C, Fonseca NA, Kahles A, Lehmann KV, Stegle O, Brazma A, et al. (2019) A pan-cancer transcriptome analysis reveals pervasive regulation through alternative promoters. Cell 178: 1465–1477.e17. 10.1016/j.cell.2019.08.018 PubMed DOI
Depristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, Del Angel G, Rivas MA, Hanna M, et al. (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43: 491–498. 10.1038/ng.806 PubMed DOI PMC
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29: 15–21. 10.1093/bioinformatics/bts635 PubMed DOI PMC
Durbin MD, O’Kane J, Lorentz S, Firulli AB, Ware SM (2020) SHROOM3 is downstream of the planar cell polarity pathway and loss-of-function results in congenital heart defects. Dev Biol 464: 124–136. 10.1016/j.ydbio.2020.05.013 PubMed DOI PMC
Dvir S, Velten L, Sharon E, Zeevi D, Carey LB, Weinberger A, Segal E (2013) Deciphering the rules by which 5′-UTR sequences affect protein expression in yeast. Proc Natl Acad Sci U S A 110: E2792–E2801. 10.1073/pnas.1222534110 PubMed DOI PMC
Feng G, Tong M, Xia B, Luo GZ, Wang M, Xie D, Wan H, Zhang Y, Zhou Q, Wang XJ (2016) Ubiquitously expressed genes participate in cell-specific functions via alternative promoter usage. EMBO Rep 17: 1304–1313. 10.15252/embr.201541476 PubMed DOI PMC
Forrest ARR, Kawaji H, Rehli M, Baillie JK, de Hoon MJ, Haberle V, Lassmann T, Kulakovskiy IV, Lizio M, Itoh M, et al. (2014) A promoter-level mammalian expression atlas. Nature 507: 462–470. 10.1038/nature13182 PubMed DOI PMC
Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S, Scott G, Steffen D, Worley KC, Burch PE, et al. (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428: 493–521. 10.1038/nature02426 PubMed DOI
Haberle V, Li N, Hadzhiev Y, Plessy C, Previti C, Nepal C, Gehrig J, Dong X, Akalin A, Suzuki AM, et al. (2014) Two independent transcription initiation codes overlap on vertebrate core promoters. Nature 507: 381–385. 10.1038/nature12974 PubMed DOI PMC
Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38: 576–589. 10.1016/j.molcel.2010.05.004 PubMed DOI PMC
Hinnebusch AG, Ivanov IP, Sonenberg N (2016) Translational control by 5′-untranslated regions of eukaryotic mRNAs. Science 352: 1413–1416. 10.1126/science.aad9868 PubMed DOI PMC
Howe KL, Achuthan P, Allen J, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, Azov AG, Bennett R, Bhai J, et al. (2021) Ensembl 2021. Nucleic Acids Res 49: D884–D891. 10.1093/nar/gkaa942 PubMed DOI PMC
Hsieh YY, Lin YJ, Chang CC, Chen DY, Hsu CM, Wang YK, Hsu KH, Tsai FJ (2010) Human lymphocyte antigen B-associated transcript 2, 3, and 5 polymorphisms and haplotypes are associated with susceptibility of Kawasaki disease and coronary artery aneurysm. J Clin Lab Anal 24: 262–268. 10.1002/jcla.20409 PubMed DOI PMC
Hubner N, Wallace CA, Zimdahl H, Petretto E, Schulz H, Maciver F, Mueller M, Hummel O, Monti J, Zidek V, et al. (2005) Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat Genet 37: 243–253. 10.1038/ng1522 PubMed DOI
Jia L, Mao Y, Ji Q, Dersh D, Yewdell JW, Qian SB (2020) Decoding mRNA translatability and stability from the 5′ UTR. Nat Struct Mol Biol 27: 814–821. 10.1038/s41594-020-0465-x PubMed DOI
Jin JJ, Nakura J, Wu Z, Yamamoto M, Abe M, Tabara Y, Yamamoto Y, Igase M, Kohara K, Miki T (2003) Association of endothelin-1 gene variant with hypertension. Hypertension 41: 163–167. 10.1161/01.hyp.0000043680.75107.cf PubMed DOI
Johnson MD, Mueller M, Adamowicz-Brice M, Collins MJ, Gellert P, Maratou K, Srivastava PK, Rotival M, Butt S, Game L, et al. (2014) Genetic analysis of the cardiac methylome at single nucleotide resolution in a model of human cardiovascular disease. PLoS Genet 10: e1004813. 10.1371/journal.pgen.1004813 PubMed DOI PMC
Kuneš J, Dobesová Z, Musilová A, Zídek V, Vorlícek J, Pravenec M, Kren V, Zicha J (2008) Hemodynamic characterization of recombinant inbred strains: Twenty years later. Hypertens Res 31: 1659–1668. 10.1291/hypres.31.1659 PubMed DOI
Kuneš J, Kren V, Pravenec M, Zicha J (1994) Use of recombinant inbred strains for evaluation of intermediate phenotypes in spontaneous hypertension. Clin Exp Pharmacol Physiol 21: 903–906. 10.1111/j.1440-1681.1994.tb02463.x PubMed DOI
Li H (2011) A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics 27: 2987–2993. 10.1093/bioinformatics/btr509 PubMed DOI PMC
Litviňuková M, Talavera-López C, Maatz H, Reichart D, Worth CL, Lindberg EL, Kanda M, Polanski K, Heinig M, Lee M, et al. (2020) Cells of the adult human heart. Nature 588: 466–472. 10.1038/s41586-020-2797-4 PubMed DOI PMC
Lizio M, Mukarram AK, Ohno M, Watanabe S, Itoh M, Hasegawa A, Lassmann T, Severin J, Harshbarger J, Abugessaisa I, et al. (2017) Monitoring transcription initiation activities in rat and dog. Sci Data 4: 170173. 10.1038/sdata.2017.173 PubMed DOI PMC
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15: 550. 10.1186/s13059-014-0550-8 PubMed DOI PMC
Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17: 10–12. 10.14806/ej.17.1.200 DOI
Materna SC, Sinha T, Barnes RM, Lammerts van Bueren K, Black BL (2019) Cardiovascular development and survival require Mef2c function in the myocardial but not the endothelial lineage. Dev Biol 445: 170–177. 10.1016/j.ydbio.2018.12.002 PubMed DOI PMC
McKeon C, Moncada V, Pham T, Salvatore P, Kadowaki T, Accili D, Taylor SI (1990) Structural and functional analysis of the insulin receptor promoter. Mol Endocrinol 4: 647–656. 10.1210/mend-4-4-647 PubMed DOI
Murata M, Nishiyori-Sueki H, Kojima-Ishiyama M, Carninci P, Hayashizaki Y, Itoh M (2014) Detecting expressed genes using CAGE. Methods Mol Biol 1164: 67–85. 10.1007/978-1-4939-0805-9_7 PubMed DOI
Musso C, Cochran E, Moran SA, Skarulis MC, Oral EA, Taylor S, Gorden P (2004) Clinical course of genetic diseases of the insulin receptor (type A and rabson-mendenhall syndromes): A 30-year prospective. Medicine (Baltimore) 83: 209–222. 10.1097/01.md.0000133625.73570.54 PubMed DOI
Nagarajan A, Petersen MC, Nasiri AR, Butrico G, Fung A, Ruan HB, Kursawe R, Caprio S, Thibodeau J, Bourgeois-Daigneault MC, et al. (2016) MARCH1 regulates insulin sensitivity by controlling cell surface insulin receptor levels. Nat Commun 7: 12639. 10.1038/ncomms12639 PubMed DOI PMC
Nepal C, Hadzhiev Y, Balwierz P, Tarifeño-Saldivia E, Cardenas R, Wragg JW, Suzuki AM, Carninci P, Peers B, Lenhard B, et al. (2020) Dual-initiation promoters with intertwined canonical and TCT/TOP transcription start sites diversify transcript processing. Nat Commun 11: 168. 10.1038/s41467-019-13687-0 PubMed DOI PMC
Nikolov DB, Burley SK (1997) RNA polymerase II transcription initiation: A structural view. Proc Natl Acad Sci U S A 94: 15–22. 10.1073/pnas.94.1.15 PubMed DOI PMC
Nutter CA, Jaworski EA, Verma SK, Deshmukh V, Wang Q, Botvinnik OB, Lozano MJ, Abass IJ, Ijaz T, Brasier AR, et al. (2016) Dysregulation of RBFOX2 is an early event in cardiac pathogenesis of diabetes. Cell Rep 15: 2200–2213. 10.1016/j.celrep.2016.05.002 PubMed DOI PMC
Payankaulam S, Raicu AM, Arnosti DN (2019) Transcriptional regulation of INSR, the insulin receptor gene. Genes (Basel) 10: 984. 10.3390/genes10120984 PubMed DOI PMC
Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33: 290–295. 10.1038/nbt.3122 PubMed DOI PMC
Petretto E, Mangion J, Dickens NJ, Cook SA, Kumaran MK, Lu H, Fischer J, Maatz H, Kren V, Pravenec M, et al. (2006) Heritability and tissue specificity of expression quantitative trait loci. PLoS Genet 2: e172. 10.1371/journal.pgen.0020172 PubMed DOI PMC
Poplin R, Ruano-Rubio V, DePristo MA, Fennell TJ, Carneiro MO, Van der Auwera GA, Kling DE, Gauthier LD, Levy-Moonshine A, Roazen D, et al. (2017) Scaling accurate genetic variant discovery to tens of thousands of samples. BioRxiv: 201178. 10.1101/201178. (Preprint posted July 24, 2018). DOI
Pravenec M, Křen V, Landa V, Mlejnek P, Musilová A, Šilhavý J, Šimáková M, Zídek V (2014) Recent progress in the genetics of spontaneously hypertensive rats. Physiol Res 63: S1–S8. 10.33549/physiolres.932622 PubMed DOI
Pravenec M, Zídek V, Musilová A, Simáková M, Kostka V, Mlejnek P, Kren V, Krenova D, Bílá V, Míková B, et al. (2002) Genetic analysis of metabolic defects in the spontaneously hypertensive rat. Mamm Genome 13: 253–258. 10.1007/s00335-001-2078-Y PubMed DOI
Quinlan AR, Hall IM (2010) BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics 26: 841–842. 10.1093/bioinformatics/btq033 PubMed DOI PMC
Rintisch C, Heinig M, Bauerfeind A, Schafer S, Mieth C, Patone G, Hummel O, Chen W, Cook S, Cuppen E, et al. (2014) Natural variation of histone modification and its impact on gene expression in the rat genome. Genome Res 24: 942–953. 10.1101/gr.169029.113 PubMed DOI PMC
Ros P, Colino-Alcol E, Grasso V, Barbetti F, Argente J (2015) [Severe type A insulin resistance syndrome due to a mutation in the insulin receptor gene]. An Pediatr (Barc) 82: e30–e34. 10.1016/j.anpedi.2014.03.008 PubMed DOI
Simonis M, Atanur SS, Linsen S, Guryev V, Ruzius FP, Game L, Lansu N, de Bruijn E, van Heesch S, Jones SJ, et al. (2012) Genetic basis of transcriptome differences between the founder strains of the rat HXB/BXH recombinant inbred panel. Genome Biol 13: r31. 10.1186/gb-2012-13-4-r31 PubMed DOI PMC
Soleimani M (2015) Insulin resistance and hypertension: New insights. Kidney Int 87: 497–499. 10.1038/ki.2014.392 PubMed DOI
Strausberg RL, Levy S (2007) Promoting transcriptome diversity. Genome Res 17: 965–968. 10.1101/gr.6499807 PubMed DOI
Talman V, Kivelä R (2018) Cardiomyocyte-endothelial cell interactions in cardiac remodeling and regeneration. Front Cardiovasc Med 5: 101. 10.3389/fcvm.2018.00101 PubMed DOI PMC
Vavouri T, Lehner B (2012) Human genes with CpG island promoters have a distinct transcription-associated chromatin organization. Genome Biol 13: R110–R112. 10.1186/gb-2012-13-11-r110 PubMed DOI PMC
Witte F, Ruiz-Orera J, Mattioli CC, Blachut S, Adami E, Schulz JF, Schneider-Lunitz V, Hummel O, Patone G, Mücke MB, et al. (2021) A trans locus causes a ribosomopathy in hypertrophic hearts that affects mRNA translation in a protein length-dependent fashion. Genome Biol 22: 191. 10.1186/s13059-021-02397-w PubMed DOI PMC
Xu J, Gu W, Ji K, Xu Z, Zhu H, Zheng W (2018) Sequence analysis and structure prediction of ABHD16A and the roles of the ABHD family members in human disease. Open Biol 8: 180017. 10.1098/rsob.180017 PubMed DOI PMC
Yasuda H, Kamide K, Takiuchi S, Matayoshi T, Hanada H, Kada A, Yang J, Miwa Y, Yoshii M, Horio T, et al. (2007) Association of single nucleotide polymorphisms in endothelin family genes with the progression of atherosclerosis in patients with essential hypertension. J Hum Hypertens 21: 883–892. 10.1038/sj.jhh.1002234 PubMed DOI
Yuan F, Qiu ZH, Wang XH, Sun YM, Wang J, Li RG, Liu H, Zhang M, Shi HY, Zhao L, et al. (2018) MEF2C loss-of-function mutation associated with familial dilated cardiomyopathy. Clin Chem Lab Med 56: 502–511. 10.1515/cclm-2017-0461 PubMed DOI
Zhou M-S, Schulman IH, Zeng Q (2012) Link between the renin–angiotensin system and insulin resistance: Implications for cardiovascular disease. Vasc Med 17: 330–341. 10.1177/1358863X12450094 PubMed DOI
Zhou MS, Wang A, Yu H (2014) Link between insulin resistance and hypertension: What is the evidence from evolutionary biology? Diabetol Metab Syndr 6: 12–18. 10.1186/1758-5996-6-12 PubMed DOI PMC