Mechanism of Action of circRNA/miRNA Network in DLBCL

. 2025 Mar 04 ; 11 (2) : . [epub] 20250304

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40126346

Circular RNAs (circRNAs) make up approximately 10% of the human transcriptome. CircRNAs belong to the broad group of non-coding RNAs and characteristically are formed by backsplicing into a stable circular loop. Their main role is to regulate transcription through the inhibition of miRNAs' expression, termed miRNA sponging. CircRNAs promote tumorigenesis/lymphomagenesis by competitively binding to miRNAs at miRNA binding sites. In diffuse large B-cell lymphoma (DLBCL), several circRNAs have been identified and their expression is related to both progression and response to therapy. DLBCL is the most prevalent and aggressive subtype of B-cell lymphomas and accounts for about 25% to 30% of all non-Hodgkin lymphomas. DLBCL displays great heterogeneity concerning histopathology, biology, and genetics. Patients who have relapsed or have refractory disease after first-line therapy have a very poor prognosis, demonstrating an important unmet need for new treatment options. As more circRNAs are identified in the future, we will better understand their biological roles and potential use in treating cancer, including DLBCL. For example, circAmotl1 promotes nuclear translocation of MYC and upregulation of translational targets of MYC, thus enhancing lymphomagenesis. Another example is circAPC, which is significantly downregulated in DLBCL and correlates with disease aggressiveness and poor prognosis. CircAPC increases expression of the host gene adenomatous polyposis coli (APC), and in doing so inactivates the canonical Wnt/β-catenin signaling and restrains DLBCL growth. MiRNAs belong to the non-coding regulatory molecules that significantly contribute to lymphomagenesis through their target mRNAs. In DLBCL, among the highly expressed miRNAs, are miR-155-5p and miR-21-5p, which regulate NF-ĸB and PI3K/AKT signaling pathways. The aim of this review is to describe the function and mechanism of regulation of circRNAs on miRNAs' expression in DLBCL. This will help us to better understand the regulatory network of circRNA/miRNA/mRNA, and to propose novel therapeutic targets to treat DLBCL.

Zobrazit více v PubMed

Martelli M., Ferreri A.J.M., Agostinelli C., Di Rocco A., Pfreundschuh M., Pileri S.A. Diffuse large B-cell lymphoma. Crit. Rev. Oncol. Hematol. 2013;87:146–171. doi: 10.1016/j.critrevonc.2012.12.009. PubMed DOI

Crump M., Neelapu S.S., Farooq U., van den Neste E., Kuruvilla J., Westin J., Link B.K., Hay A., Cerhan J.R., Zhu L., et al. Outcomes in refractory diffuse large B-cell lymphoma: Results from the international SCHOLAR-1 study. Blood. 2017;130:1800–1808. doi: 10.1182/blood-2017-03-769620. PubMed DOI PMC

Chatterjee N., Hartge P., Cerhan J.R., Cozen W., Davis S., Ishibe N., Colt J., Goldin L., Severson R.K. Risk of Non-Hodgkin’s Lymphoma and Family History of Lymphatic, Hematologic, and Other Cancers. Cancer Epidemiol. Biomark. Prev. 2004;13:1415–1421. doi: 10.1158/1055-9965.1415.13.9. PubMed DOI

Swertlow S.H., Harris L.N., Jaffe E.S. World Health Organization Classification of Tumours. WHO; Geneva, Switzerland: 2017.

Chiu Y.F., Ponlachantra K., Sugden B. How Epstein Barr Virus Causes Lymphomas. Viruses. 2024;16:1744. doi: 10.3390/v16111744. PubMed DOI PMC

Anastasiadou E., Stroopinsky D., Alimperti S., Jiao A.L., Pyzer A.R., Cippitelli C., Pepe G., Severa M., Rosenblatt J., Etna M.P., et al. Epstein-Barr virus-encoded EBNA2 alters immune checkpoint PD-L1 expression by downregulating miR-34a in B-cell lymphomas. Leukemia. 2019;33:132–147. doi: 10.1038/s41375-018-0178-x. PubMed DOI PMC

Sommermann T., Yasuda T., Ronen J., Wirtz T., Weber T., Sack U., Caeser R., Zhang J., Li X., Chu V.T., et al. Functional interplay of Epstein-Barr virus oncoproteins in a mouse model of B cell lymphomagenesis. Proc. Natl. Acad. Sci. USA. 2020;117:14421–14432. doi: 10.1073/pnas.1921139117. PubMed DOI PMC

A predictive model for aggressive non-Hodgkin’s lymphoma. N. Engl. J. Med. 1993;329:987–994. doi: 10.1056/NEJM199309303291402. PubMed DOI

Harkins R.A., Chang A., Patel S.P., Lee M.J., Goldstein J.S., Merdan S., Flowers C.R., Koff J.L. Remaining challenges in predicting patient outcomes for diffuse large B-cell lymphoma. Expert. Rev. Hematol. 2019;12:959–973. doi: 10.1080/17474086.2019.1660159. PubMed DOI PMC

Jelicic J., Juul-Jensen K., Bukumiric Z., Roost Clausen M., Ludvigsen Al-Mashhadi A., Pedersen R.S., Poulsen C.B., Brown P., El-Galaly T.C., Larsen T.S. Prognostic indices in diffuse large B-cell lymphoma: A population-based comparison and validation study of multiple models. Blood Cancer J. 2023;13:157. doi: 10.1038/s41408-023-00930-7. PubMed DOI PMC

Alizadeh A.A., Eisen M.B., Davis R.E., Ma C., Lossos I.S., Rosenwald A., Boldrick J.C., Sabet H., Tran T., Yu X., et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403:503–511. doi: 10.1038/35000501. PubMed DOI

Küppers R., Dalla-Favera R. Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene. 2001;20:5580–5594. doi: 10.1038/sj.onc.1204640. PubMed DOI

Rosenwald A., Bens S., Advani R., Barrans S., Copie-Bergman C., Elsensohn M.-H., Natkunam Y., Calaminic M., Sander B., Baia M., et al. Prognostic Significance of MYC Rearrangement and Translocation Partner in Diffuse Large B-Cell Lymphoma: A Study by the Lunenburg Lymphoma Biomarker Consortium. J. Clin. Oncol. 2019;37:3359–3368. doi: 10.1200/JCO.19.00743. PubMed DOI

Hans C.P., Weisenburger D.D., Greiner T.C., Gascoyne R.D., Delabie J., Ott G., Muller-Hermelink H.K., Campo E., Braziel R.T., Jaffe E.S., et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103:275–282. doi: 10.1182/blood-2003-05-1545. PubMed DOI

Pasqualucci L., Dalla-Favera R. The genetic landscape of diffuse large B-cell lymphoma. Semin. Hematol. 2015;52:67–76. doi: 10.1053/j.seminhematol.2015.01.005. PubMed DOI PMC

Chapuy B., Stewart C., Dunford A.J., Kim J., Kamburov A., Redd R.A., Lawrence M.S., Roemer M.G.M., Li A.J., Ziepert M., et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat. Med. 2018;24:679–690. doi: 10.1038/s41591-018-0016-8. PubMed DOI PMC

Alaggio R., Amador C., Anagnostopoulos I., Attygalle A.D., Araujo I.B.d.O., Berti E., Bhagat G., Borges A.M., Boyer D., Calaminico M., et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia. 2022;36:1720–1748. doi: 10.1038/s41375-022-01620-2. PubMed DOI PMC

de Leval L., Alizadeh A.A., Bergsagel P.L., Campo E., Davies A., Dogan A., Fitzgibbon J., Horwitz S.M., Melnick A.M., Morice W.G., et al. Genomic profiling for clinical decision making in lymphoid neoplasms. Blood. 2022;140:2193–2227. doi: 10.1182/blood.2022015854. PubMed DOI PMC

Scott D.W., King R.L., Staiger A.M., Ben-Neriah S., Jiang A., Horn H., Mottok A., Farinha P., Slack G.W., Ennishi D., et al. High-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements with diffuse large B-cell lymphoma morphology. Blood. 2018;131:2060–2064. doi: 10.1182/blood-2017-12-820605. PubMed DOI PMC

Ennishi D., Jiang A., Boyle M., Collinge B., Grande B.M., Ben-Neriah S., Rushton C., Tang J., Thomas N., Slack G.W., et al. Double-Hit Gene Expression Signature Defines a Distinct Subgroup of Germinal Center B-Cell-Like Diffuse Large B-Cell Lymphoma. J. Clin. Oncol. 2019;37:190–201. doi: 10.1200/JCO.18.01583. PubMed DOI PMC

Cucco F., Barrans S., Sha C., Clipson A., Crouch S., Dobson R., Chen Z., Thompson J.S., Care M.A., Cummin T., et al. Distinct genetic changes reveal evolutionary history and heterogeneous molecular grade of DLBCL with MYC/BCL2 double-hit. Leukemia. 2020;34:1329–1341. doi: 10.1038/s41375-019-0691-6. PubMed DOI PMC

Vodicka P., Klener P., Trneny M. Diffuse Large B-Cell Lymphoma (DLBCL): Early Patient Management and Emerging Treatment Options. Onco Targets Ther. 2022;15:1481–1501. doi: 10.2147/OTT.S326632. PubMed DOI PMC

Tavakkoli M., Barta S.K. 2024 Update: Advances in the risk stratification and management of large B-cell lymphoma. Am. J. Hematol. 2023;98:1791–1805. doi: 10.1002/ajh.27075. PubMed DOI

Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–854. doi: 10.1016/0092-8674(93)90529-Y. PubMed DOI

Wightman B., Ha I., Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75:855–862. doi: 10.1016/0092-8674(93)90530-4. PubMed DOI

Lau N.C., Lim L.P., Weinstein E.G., Bartel D.P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 2001;294:858–862. doi: 10.1126/science.1065062. PubMed DOI

Lee R.C., Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science. 2001;294:862–864. doi: 10.1126/science.1065329. PubMed DOI

Lagos-Quintana M., Rauhut R., Lendeckel W., Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294:853–858. doi: 10.1126/science.1064921. PubMed DOI

Vishnoi A., Rani S. miRNA Biogenesis and Regulation of Diseases: An Updated Overview. Methods Mol. Biol. 2023;2595:1–12. PubMed

Gulyaeva L.F., Kushlinskiy N.E. Regulatory mechanisms of microRNA expression. J. Transl. Med. 2016;14:143. doi: 10.1186/s12967-016-0893-x. PubMed DOI PMC

Cui Y., Qi Y., Ding L., Ding S., Han Z., Wang Y., Du P. miRNA dosage control in development and human disease. Trends Cell Biol. 2024;34:31–47. doi: 10.1016/j.tcb.2023.05.009. PubMed DOI

Ryan B., Joilin G., Williams J.M. Plasticity-related microRNA and their potential contribution to the maintenance of long-term potentiation. Front. Mol. Neurosci. 2015;8:4. doi: 10.3389/fnmol.2015.00004. PubMed DOI PMC

Cimmino A., Calin G.A., Fabbri M., Iorio M.V., Ferracin M., Shimizu M., Wojcik S.E., Aqeilan R.I., Zupo S., Dono M., et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA. 2005;102:13944–13949. doi: 10.1073/pnas.0506654102. PubMed DOI PMC

Fang C., Zhu D.-X., Dong H.-J., Zhou Z.-J., Wang Y.-H., Liu L., Fan L., Miao K.R., Liu P., Xu W., et al. Serum microRNAs are promising novel biomarkers for diffuse large B cell lymphoma. Ann. Hematol. 2012;91:553–559. doi: 10.1007/s00277-011-1350-9. PubMed DOI

Alsaadi M., Khan M.Y., Dalhat M.H., Bahashwan S., Khan M.U., Albar A., Almehdar H., Qadri I. Dysregulation of miRNAs in DLBCL: Causative Factor for Pathogenesis, Diagnosis and Prognosis. Diagnostics. 2021;11:1739. doi: 10.3390/diagnostics11101739. PubMed DOI PMC

Regazzo G., Vari G., Marchesi F., Sacconi A., Palombi F., Novello M., Papa E., Tomassi M., Pisani F., Mengarelli A., et al. Identification of a Circulating Serum miRNA Signature as a Predictive Biomarker and Potential Therapeutic Target in Diffuse Large B-Cell Lymphoma. Blood. 2024;144((Suppl. S1)):6216. doi: 10.1182/blood-2024-203384. DOI

Larrabeiti-Etxebarria A., Lopez-Santillan M., Santos-Zorrozua B., Lopez-Lopez E., Garcia-Orad A. Systematic Review of the Potential of MicroRNAs in Diffuse Large B Cell Lymphoma. Cancers. 2019;11:144. doi: 10.3390/cancers11020144. PubMed DOI PMC

Koumpis E., Georgoulis V., Papathanasiou K., Papoudou-Bai A., Kanavaros P., Kolettas E., Hatzimichael E. The Role of microRNA-155 as a Biomarker in Diffuse Large B-Cell Lymphoma. Biomedicines. 2024;12:2658. doi: 10.3390/biomedicines12122658. PubMed DOI PMC

Filho E.H.C.N., Zancheta S.B., Barros Silva PG de Rodríguez Burbano R.M., Rabenhorst S.H.B. Prognostic impact of miR-125b and miR-155b and their relationship with MYC and TP53 in diffuse large B-cell lymphoma: Cell-of-origin classification matters. J. Clin. Exp. Hematop. 2023;63:164–172. doi: 10.3960/jslrt.23009. PubMed DOI PMC

Larrabeiti-Etxebarria A., Bilbao-Aldaiturriaga N., Arzuaga-Mendez J., Martin-Arruti M., Cozzuto L., Gaafar A., Ruiz-Diaz I., Guerra I., Martin-Guerrero I., Lopez-Lopez E., et al. microRNA sequencing for biomarker detection in the diagnosis, classification and prognosis of Diffuse Large B Cell Lymphoma. Sci. Rep. 2023;13:12159. doi: 10.1038/s41598-023-39271-7. PubMed DOI PMC

Huang X., Gui A., Zhou Y., Xia Z., Liu W., Zuo J., Yang L., Zhang Q. Serum miR-146a level is a potential biomarker in predicting the outcome of diffuse large B-cell lymphoma. Asia Pac. J. Clin. Oncol. 2023;19:e283–e290. doi: 10.1111/ajco.13911. PubMed DOI

Capel B., Swain A., Nicolis S., Hacker A., Walter M., Koopman P., Goodfellow P., Lowel-Badge R. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell. 1993;73:1019–1030. doi: 10.1016/0092-8674(93)90279-Y. PubMed DOI

Cocquerelle C., Daubersies P., Majérus M.A., Kerckaert J.P., Bailleul B. Splicing with inverted order of exons occurs proximal to large introns. EMBO J. 1992;11:1095–1098. doi: 10.1002/j.1460-2075.1992.tb05148.x. PubMed DOI PMC

Kolakofsky D. Isolation and characterization of Sendai virus DI-RNAs. Cell. 1976;8:547–555. doi: 10.1016/0092-8674(76)90223-3. PubMed DOI

Matsumoto Y., Fishel R., Wickner R.B. Circular single-stranded RNA replicon in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 1990;87:7628–7632. doi: 10.1073/pnas.87.19.7628. PubMed DOI PMC

Zafiropoulos A., Andersson E., Krambovitis E., Borrebaeck C.A. Induction of antigen-specific isotype switching by in vitro immunization of human naive B lymphocytes. J. Immunol. Methods. 1997;200:181–190. doi: 10.1016/S0022-1759(96)00207-4. PubMed DOI

Cocquerelle C., Mascrez B., Hétuin D., Bailleul B. Mis-splicing yields circular RNA molecules. FASEB J. 1993;7:155–160. doi: 10.1096/fasebj.7.1.7678559. PubMed DOI

Kos A., Dijkema R., Arnberg A.C., van der Meide P.H., Schellekens H. The hepatitis delta (delta) virus possesses a circular RNA. Nature. 1986;323:558–560. doi: 10.1038/323558a0. PubMed DOI

Nigro J.M., Cho K.R., Fearon E.R., Kern S.E., Ruppert J.M., Oliner J.D., Kinzler K.W., Vogelstein B. Scrambled exons. Cell. 1991;64:607–613. doi: 10.1016/0092-8674(91)90244-S. PubMed DOI

Zaphiropoulos P.G. Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: Correlation with exon skipping. Proc. Natl. Acad. Sci. USA. 1996;93:6536–6541. doi: 10.1073/pnas.93.13.6536. PubMed DOI PMC

Zaphiropoulos P.G. Differential expression of cytochrome P450 2C24 transcripts in rat kidney and prostate: Evidence indicative of alternative and possibly trans splicing events. Biochem. Biophys. Res. Commun. 1993;192:778–786. doi: 10.1006/bbrc.1993.1482. PubMed DOI

Di Timoteo G., Rossi F., Bozzoni I. Circular RNAs in cell differentiation and development. Development. 2020;147:dev182725. doi: 10.1242/dev.182725. PubMed DOI

Wang Y., Wang Z. Efficient backsplicing produces translatable circular mRNAs. RNA. 2015;21:172–179. doi: 10.1261/rna.048272.114. PubMed DOI PMC

Li Z., Huang C., Bao C., Chen L., Lin M., Wang X., Zhong G., Yu B., Hu W., Dai L., et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 2015;22:256–264. doi: 10.1038/nsmb.2959. PubMed DOI

Zaiou M. Circular RNAs as Potential Biomarkers and Therapeutic Targets for Metabolic Diseases. Adv. Exp. Med. Biol. 2019;1134:177–191. PubMed

Starke S., Jost I., Rossbach O., Schneider T., Schreiner S., Hung L.-H., Bindereif A. Exon circularization requires canonical splice signals. Cell Rep. 2015;10:103–111. doi: 10.1016/j.celrep.2014.12.002. PubMed DOI

Aufiero S., Reckman Y.J., Pinto Y.M., Creemers E.E. Circular RNAs open a new chapter in cardiovascular biology. Nat. Rev. Cardiol. 2019;16:503–514. doi: 10.1038/s41569-019-0185-2. PubMed DOI

Bachmayr-Heyda A., Reiner A.T., Auer K., Sukhbaatar N., Aust S., Bachleitner-Hofmann T., Mesteri I., Grunt T.W., Zeillinger R., Pils D. Correlation of circular RNA abundance with proliferation--exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci. Rep. 2015;5:8057. doi: 10.1038/srep08057. PubMed DOI PMC

Patop I.L., Wüst S., Kadener S. Past, present, and future of circRNAs. EMBO J. 2019;38:e100836. doi: 10.15252/embj.2018100836. PubMed DOI PMC

Du X., Cardie C. Identifying Where to Focus in Reading Comprehension for Neural Question Generation; Association for Computational Linguistics; Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing; Stroudsburg, PA, USA. 7–11 September 2017; pp. 2067–2073.

Nicolet B.P., Engels S., Aglialoro F., van den Akker E., von Lindern M., Wolkers M.C. Circular RNA expression in human hematopoietic cells is widespread and cell-type specific. Nucleic Acids Res. 2018;46:8168–8180. doi: 10.1093/nar/gky721. PubMed DOI PMC

Suzuki H., Zuo Y., Wang J., Zhang M.Q., Malhotra A., Mayeda A. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res. 2006;34:e63. doi: 10.1093/nar/gkl151. PubMed DOI PMC

Huang A., Zheng H., Wu Z., Chen M., Huang Y. Circular RNA-protein interactions: Functions, mechanisms, and identification. Theranostics. 2020;10:3503–3517. doi: 10.7150/thno.42174. PubMed DOI PMC

Vincent H.A., Deutscher M.P. Substrate recognition and catalysis by the exoribonuclease RNase R. J. Biol. Chem. 2006;281:29769–29775. doi: 10.1074/jbc.M606744200. PubMed DOI

Hansen T.B., Wiklund E.D., Bramsen J.B., Villadsen S.B., Statham A.L., Clark S.J., Kjems J. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 2011;30:4414–4422. doi: 10.1038/emboj.2011.359. PubMed DOI PMC

Conlon E.G., Manley J.L. RNA-binding proteins in neurodegeneration: Mechanisms in aggregate. Genes. Dev. 2017;31:1509–1528. doi: 10.1101/gad.304055.117. PubMed DOI PMC

van Strijp D., Vulders R.C.M., Larsen N.A., Schira J., Baerlocher L., van Driel M.A., Pødenphant M., Hansen T.S., Kristensen A., Mir K.U., et al. Complete sequence-based pathway analysis by differential on-chip DNA and RNA extraction from a single cell. Sci. Rep. 2017;7:11030. doi: 10.1038/s41598-017-10704-4. PubMed DOI PMC

Han D., Li J., Wang H., Su X., Hou J., Gu Y., Qian C., Lin Y., Liu X., Huang M., et al. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology. 2017;66:1151–1164. doi: 10.1002/hep.29270. PubMed DOI

Pan J., Hu S., Ren X., Hu H., Deng X., Yu B., Cobos I., Chen X. Whole-Transcriptome Profiling and circRNA-miRNA-mRNA Regulatory Networks in B-Cell Development. Front. Immunol. 2022;13:812924. doi: 10.3389/fimmu.2022.812924. PubMed DOI PMC

Hu Y., Zhao Y., Shi C., Ren P., Wei B., Guo Y., Ma J. A circular RNA from APC inhibits the proliferation of diffuse large B-cell lymphoma by inactivating Wnt/β-catenin signaling via interacting with TET1 and miR-888. Aging. 2019;11:8068–8084. doi: 10.18632/aging.102122. PubMed DOI PMC

Zhao C.-X., Yan Z.-X., Wen J.-J., Di Fu Xu P.-P., Wang L., Cheng S., Hu J.-D., Zhao W.-L. CircEAF2 counteracts Epstein-Barr virus-positive diffuse large B-cell lymphoma progression via miR-BART19-3p/APC/β-catenin axis. Mol. Cancer. 2021;20:153. doi: 10.1186/s12943-021-01458-9. PubMed DOI PMC

Zhou J., Xu M., Chen Z., Huang L., Wu Z., Huang Z., Liu L. circ_SPEF2 Regulates the Balance of Treg Cells by Regulating miR-16-5p/BACH2 in Lymphoma and Participates in the Immune Response. Tissue Eng. Regen. Med. 2023;20:1145–1159. doi: 10.1007/s13770-023-00585-2. PubMed DOI PMC

Ichikawa S., Fukuhara N., Katsushima H., Takahashi T., Yamamoto J., Yokoyama H., Osamu Sasaki O., Fukuhara O., Nomur J., Ishizawa K., et al. Association between BACH2 expression and clinical prognosis in diffuse large B-cell lymphoma. Cancer Sci. 2014;105:437–444. doi: 10.1111/cas.12361. PubMed DOI PMC

Wang J., Ku X., Ma Q., Li H., Huang S., Mao L., Yu F., Jin J., Yan W. Hsa_circ_0007099 and PIP4K2A coexpressed in diffuse large B-cell lymphoma with clinical significance. Genes. Dis. 2024;11:101056. doi: 10.1016/j.gendis.2023.06.025. PubMed DOI PMC

Liu W., Lei L., Liu X., Ye S. CircRNA_OTUD7A upregulates FOXP1 expression to facilitate the progression of diffuse large B-cell lymphoma via acting as a sponge of miR-431-5p. Genes Genom. 2021;43:653–667. doi: 10.1007/s13258-021-01094-z. PubMed DOI

Lin D., Wang Y., Lei L., Lin C. Circ_0003645 serves as miR-335-5p sponge to promote the biological process of diffuse large B-cell lymphoma by upregulating NFIB. Autoimmunity. 2022;55:127–135. doi: 10.1080/08916934.2021.2023863. PubMed DOI

Chen X., Xie X., Zhou W. CircCFL1/MiR-107 Axis Targeting HMGB1 Promotes the Malignant Progression of Diffuse Large B-Cell Lymphoma Tumors. Cancer Manag. Res. 2020;12:9351–9362. doi: 10.2147/CMAR.S263222. PubMed DOI PMC

Wang X., Du W., Zhang X., Li P. The Influence of Different Disease States on Rituximab Pharmacokinetics. Curr. Drug Metab. 2020;21:938–946. doi: 10.2174/1389200221666200719004035. PubMed DOI

Dong L., Huang J., Gao X., Du J., Wang Y., Zhao L. CircPCBP2 promotes the stemness and chemoresistance of DLBCL via targeting miR-33a/b to disinhibit PD-L1. Cancer Sci. 2022;113:2888–2903. doi: 10.1111/cas.15402. PubMed DOI PMC

Wang X., Li J., Dong K., Lin F., Long M., Ouyang Y., Wei J., Chen X., Weng Y., He T., et al. Tumor suppressor miR-34a targets PD-L1 and functions as a potential immunotherapeutic target in acute myeloid leukemia. Cell Signal. 2015;27:443–452. doi: 10.1016/j.cellsig.2014.12.003. PubMed DOI

Decruyenaere P., Giuili E., Verniers K., Anckaert J., Grove K de van der Linden M., Deeren D., Van Dorpe J., Offner F., Vandesompele J. Exploring the cell-free total RNA transcriptome in diffuse large B-cell lymphoma and primary mediastinal B-cell lymphoma patients as biomarker source in blood plasma liquid biopsies. Front. Oncol. 2023;13:1221471. doi: 10.3389/fonc.2023.1221471. PubMed DOI PMC

Wang T., Chen Z., Li C., Zhang W., Huang W., Xue J., Wang J., Li S. PAX5 and circ1857 affected DLBCL progression and B-cell proliferation through regulating GINS1. Cancer Sci. 2023;114:3203–3215. doi: 10.1111/cas.15856. PubMed DOI PMC

Yang Q., Du W.W., Wu N., Yang W., Awan F.M., Fang L., Ma J., Li X., Zeng Y., Yang Z., et al. A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation. Cell Death Differ. 2017;24:1609–1620. doi: 10.1038/cdd.2017.86. PubMed DOI PMC

Singh S., Sinha T., Panda A.C. Regulation of microRNA by circular RNA. Wiley Interdiscip. Rev. RNA. 2023;15:e1820. doi: 10.1002/wrna.1820. PubMed DOI

Kim W.R., Park E.G., Du Lee H., Lee Y.J., Bae W.H., Kim H.-S. The Tumorigenic Role of Circular RNA-MicroRNA Axis in Cancer. Int. J. Mol. Sci. 2023;24:3050. doi: 10.3390/ijms24033050. PubMed DOI PMC

Decruyenaere P., Offner F., Vandesompele J. Circulating RNA biomarkers in diffuse large B-cell lymphoma: A systematic review. Exp. Hematol. Oncol. 2021;10:13. doi: 10.1186/s40164-021-00208-3. PubMed DOI PMC

Zhao X., van den Berg A., Winkle M., Koerts J., Seitz A., de Jong D., Rutgers B., van der Sluis T., Bakker E., Kluiver J. Proliferation-promoting roles of linear and circular PVT1 are independent of their ability to bind miRNAs in B-cell lymphoma. Pt 2Int. J. Biol. Macromol. 2023;253:126744. doi: 10.1016/j.ijbiomac.2023.126744. PubMed DOI

Belter A., Popenda M., Sajek M., Woźniak T., Naskręt-Barciszewska M.Z., Szachniuk M., Jurga S., Barcizsewski J. A new molecular mechanism of RNA circularization and the microRNA sponge formation. J. Biomol. Struct. Dyn. 2022;40:3038–3045. doi: 10.1080/07391102.2020.1844802. PubMed DOI

Wu W., Ji P., Zhao F. CircAtlas: An. integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes. Genome Biol. 2020;21:101. doi: 10.1186/s13059-020-02018-y. PubMed DOI PMC

Bonizzato A., Gaffo E., Te Kronnie G., Bortoluzzi S. CircRNAs in hematopoiesis and hematological malignancies. Blood Cancer J. 2016;6:e483. doi: 10.1038/bcj.2016.81. PubMed DOI PMC

Du W.W., Yang W., Liu E., Yang Z., Dhaliwal P., Yang B.B. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 2016;44:2846–2858. doi: 10.1093/nar/gkw027. PubMed DOI PMC

Hornsveld M., Dansen T.B., Derksen P.W., Burgering B.M.T. Re-evaluating the role of FOXOs in cancer. Semin. Cancer Biol. 2018;50:90–100. doi: 10.1016/j.semcancer.2017.11.017. PubMed DOI

Lees J., Hay J., Moles M.W., Michie A.M. The discrete roles of individual FOXO transcription factor family members in B-cell malignancies. Front. Immunol. 2023;14:1179101. doi: 10.3389/fimmu.2023.1179101. PubMed DOI PMC

Kapoor I., Li Y., Sharma A., Zhu H., Bodo J., Xu W., Hsi E.D., Hill B.T., Almasan A. Resistance to BTK inhibition by ibrutinib can be overcome by preventing FOXO3a nuclear export and PI3K/AKT activation in B-cell lymphoid malignancies. Cell Death Dis. 2019;10:924. doi: 10.1038/s41419-019-2158-0. PubMed DOI PMC

Golovina E., Heizer T., Daumova L., Bajecny M., Fontana S., Griggio V., Jones R., Coscia M., Riganti C., Vargova K.S. MiR-155 deficiency and hypoxia results in metabolism switch in the leukemic B-cells. Cancer Cell Int. 2024;24:251. doi: 10.1186/s12935-024-03437-8. PubMed DOI PMC

Zheng X., Rui H., Liu Y., Dong J. Proliferation and Apoptosis of B-Cell Lymphoma Cells under Targeted Regulation of FOXO3 by miR-155. Mediterr. J. Hematol. Infect. Dis. 2020;12:e2020073. doi: 10.4084/mjhid.2020.073. PubMed DOI PMC

Duk M.A., Samsonova M.G. The Pros and Cons of Circular RNAs as miRNA Sponges. Biophysics. 2021;66:8–16. doi: 10.1134/S0006350921010036. DOI

Hansen T.B., Kjems J., Damgaard C.K. Circular RNA and miR-7 in cancer. Cancer Res. 2013;73:5609–5612. doi: 10.1158/0008-5472.CAN-13-1568. PubMed DOI

Zhou W., Wu C., Wang J. Circular RNA circ_0000877 serves as a miR-671-5p sponge to regulate diffuse large B-cell lymphoma development via HK2. Mol. Cell. Toxicol. 2023;19:579–590. doi: 10.1007/s13273-022-00292-4. DOI

Li F., Zhang L., Li W., Deng J., Zheng J., An M., Lu J., Zhou Y. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway. Oncotarget. 2015;6:6001–6013. doi: 10.18632/oncotarget.3469. PubMed DOI PMC

Huang Y., Zhu Q. Mechanisms Regulating Abnormal Circular RNA Biogenesis in Cancer. Cancers. 2021;13:4185. doi: 10.3390/cancers13164185. PubMed DOI PMC

Liu C.-X., Chen L.-L. Expanded regulation of circular RNA translation. Mol. Cell. 2021;81:4111–4113. doi: 10.1016/j.molcel.2021.09.023. PubMed DOI

Paramasivam A., Vijayashree Priyadharsini J. Novel insights into m6A modification in circular RNA and implications for immunity. Cell Mol. Immunol. 2020;17:668–669. doi: 10.1038/s41423-020-0387-x. PubMed DOI PMC

Conn S.J., Pillman K.A., Toubia J., Conn V.M., Salmanidis M., Phillips C.A., Roslan S., Schreiber A.W., Gregory P.A., Goodall G.J. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160:1125–1134. doi: 10.1016/j.cell.2015.02.014. PubMed DOI

Rybak-Wolf A., Stottmeister C., Glažar P., Jens M., Pino N., Giusti S., Hanan M., Behm M., Bartok O., Ashwal-Fluss R., et al. Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. Mol. Cell. 2015;58:870–885. doi: 10.1016/j.molcel.2015.03.027. PubMed DOI

Gilmore T.D. Introduction to NF-kappaB: Players, pathways, perspectives. Oncogene. 2006;25:6680–6684. doi: 10.1038/sj.onc.1209954. PubMed DOI

Schmitz R., Wright G.W., Da Huang W., Johnson C.A., Phelan J.D., Wang J.Q., Roulland S., Kasbekar M., Young R.M., Shaffer A.L., et al. Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2018;378:1396–1407. doi: 10.1056/NEJMoa1801445. PubMed DOI PMC

Mann M., Mehta A., Zhao J.L., Lee K., Marinov G.K., Garcia-Flores Y., Lu L.F., Rudensky A.I., Baltimore D. An NF-κB-microRNA regulatory network tunes macrophage inflammatory responses. Nat. Commun. 2017;8:851. doi: 10.1038/s41467-017-00972-z. PubMed DOI PMC

Carreras J., Hamoudi R. Anomaly Detection and Artificial Intelligence Identified the Pathogenic Role of Apoptosis and RELB Proto-Oncogene, NF-kB Subunit in Diffuse Large B-Cell Lymphoma. BioMedInformatics. 2024;4:1480–1505. doi: 10.3390/biomedinformatics4020081. DOI

Werner M., Hobeika E., Jumaa H. Role of PI3K in the generation and survival of B cells. Immunol. Rev. 2010;237:55–71. doi: 10.1111/j.1600-065X.2010.00934.x. PubMed DOI

Shen Q., Zheng G., Zhou Y., Tong J., Xu S., Gao H., Zhang X., Fu Q. CircRNA circ_0092314 Induces Epithelial-Mesenchymal Transition of Pancreatic Cancer Cells via Elevating the Expression of S100P by Sponging miR-671. Front. Oncol. 2021;11:675442. doi: 10.3389/fonc.2021.675442. PubMed DOI PMC

Karube K., Campo E. MYC alterations in diffuse large B-cell lymphomas. Semin. Hematol. 2015;52:97–106. doi: 10.1053/j.seminhematol.2015.01.009. PubMed DOI

Guarnerio J., Bezzi M., Jeong J.C., Paffenholz S.V., Berry K., Naldini M.M., Lo-Coco F., Tay Y., Beck A.H., Pandolf P.P. Oncogenic Role of Fusion-circRNAs Derived from Cancer-Associated Chromosomal Translocations. Cell. 2016;165:289–302. doi: 10.1016/j.cell.2016.03.020. PubMed DOI

Nusse R., Brown A., Papkoff J., Scambler P., Shackleford G., McMahon A., Moon R., Varmus H. A new nomenclature for int-1 and related genes: The Wnt gene family. Cell. 1991;64:231. doi: 10.1016/0092-8674(91)90633-A. PubMed DOI

Bailleul B. During in vivo maturation of eukaryotic nuclear mRNA, splicing yields excised exon circles. Nucleic Acids Res. 1996;24:1015–1019. doi: 10.1093/nar/24.6.1015. PubMed DOI PMC

He A.T., Liu J., Li F., Yang B.B. Targeting circular RNAs as a therapeutic approach: Current strategies and challenges. Signal Transduct. Target. Ther. 2021;6:185. doi: 10.1038/s41392-021-00569-5. PubMed DOI PMC

Schultz N., Marenstein D.R., Angelis DA de Wang W.-Q., Nelander S., Jacobsen A., Marks D.S., Massagué J., Sander C. Off-target effects dominate a large-scale RNAi screen for modulators of the TGF-β pathway and reveal microRNA regulation of TGFBR2. Silence. 2011;2:3. doi: 10.1186/1758-907X-2-3. PubMed DOI PMC

Li S., Li X., Xue W., Zhang L., Yang L.-Z., Cao S.-M., Lei Y.N., Liu C.X., Guo S.K., Shan L., et al. Screening for functional circular RNAs using the CRISPR-Cas13 system. Nat. Methods. 2021;18:51–59. doi: 10.1038/s41592-020-01011-4. PubMed DOI

Dancy J.G., Wadajkar A.S., Connolly N.P., Galisteo R., Ames H.M., Peng S., Tran N.L., Goloubeva O.G., Woodworth G.F., Winkles J.A., et al. Decreased nonspecific adhesivity, receptor-targeted therapeutic nanoparticles for primary and metastatic breast cancer. Sci. Adv. 2020;6:eaax3931. doi: 10.1126/sciadv.aax3931. PubMed DOI PMC

Fodde R., Brabletz T. Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Curr. Opin. Cell Biol. 2007;19:150–158. doi: 10.1016/j.ceb.2007.02.007. PubMed DOI

Song G., Gu L., Li J., Tang Z., Liu H., Chen B., Sun X., He B., Pan Y., Wang S., et al. Serum microRNA expression profiling predict response to R-CHOP treatment in diffuse large B cell lymphoma patients. Ann. Hematol. 2014;93:1735–1743. doi: 10.1007/s00277-014-2111-3. PubMed DOI

Sims G.P., Rowe D.C., Rietdijk S.T., Herbst R., Coyle A.J. HMGB1 and RAGE in inflammation and cancer. Annu. Rev. Immunol. 2010;28:367–388. doi: 10.1146/annurev.immunol.021908.132603. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...