Mechanism of Action of circRNA/miRNA Network in DLBCL
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
40126346
PubMed Central
PMC11932212
DOI
10.3390/ncrna11020022
PII: ncrna11020022
Knihovny.cz E-zdroje
- Klíčová slova
- B-cells, circRNA, gene expression, lymphoma, miRNA,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Circular RNAs (circRNAs) make up approximately 10% of the human transcriptome. CircRNAs belong to the broad group of non-coding RNAs and characteristically are formed by backsplicing into a stable circular loop. Their main role is to regulate transcription through the inhibition of miRNAs' expression, termed miRNA sponging. CircRNAs promote tumorigenesis/lymphomagenesis by competitively binding to miRNAs at miRNA binding sites. In diffuse large B-cell lymphoma (DLBCL), several circRNAs have been identified and their expression is related to both progression and response to therapy. DLBCL is the most prevalent and aggressive subtype of B-cell lymphomas and accounts for about 25% to 30% of all non-Hodgkin lymphomas. DLBCL displays great heterogeneity concerning histopathology, biology, and genetics. Patients who have relapsed or have refractory disease after first-line therapy have a very poor prognosis, demonstrating an important unmet need for new treatment options. As more circRNAs are identified in the future, we will better understand their biological roles and potential use in treating cancer, including DLBCL. For example, circAmotl1 promotes nuclear translocation of MYC and upregulation of translational targets of MYC, thus enhancing lymphomagenesis. Another example is circAPC, which is significantly downregulated in DLBCL and correlates with disease aggressiveness and poor prognosis. CircAPC increases expression of the host gene adenomatous polyposis coli (APC), and in doing so inactivates the canonical Wnt/β-catenin signaling and restrains DLBCL growth. MiRNAs belong to the non-coding regulatory molecules that significantly contribute to lymphomagenesis through their target mRNAs. In DLBCL, among the highly expressed miRNAs, are miR-155-5p and miR-21-5p, which regulate NF-ĸB and PI3K/AKT signaling pathways. The aim of this review is to describe the function and mechanism of regulation of circRNAs on miRNAs' expression in DLBCL. This will help us to better understand the regulatory network of circRNA/miRNA/mRNA, and to propose novel therapeutic targets to treat DLBCL.
Zobrazit více v PubMed
Martelli M., Ferreri A.J.M., Agostinelli C., Di Rocco A., Pfreundschuh M., Pileri S.A. Diffuse large B-cell lymphoma. Crit. Rev. Oncol. Hematol. 2013;87:146–171. doi: 10.1016/j.critrevonc.2012.12.009. PubMed DOI
Crump M., Neelapu S.S., Farooq U., van den Neste E., Kuruvilla J., Westin J., Link B.K., Hay A., Cerhan J.R., Zhu L., et al. Outcomes in refractory diffuse large B-cell lymphoma: Results from the international SCHOLAR-1 study. Blood. 2017;130:1800–1808. doi: 10.1182/blood-2017-03-769620. PubMed DOI PMC
Chatterjee N., Hartge P., Cerhan J.R., Cozen W., Davis S., Ishibe N., Colt J., Goldin L., Severson R.K. Risk of Non-Hodgkin’s Lymphoma and Family History of Lymphatic, Hematologic, and Other Cancers. Cancer Epidemiol. Biomark. Prev. 2004;13:1415–1421. doi: 10.1158/1055-9965.1415.13.9. PubMed DOI
Swertlow S.H., Harris L.N., Jaffe E.S. World Health Organization Classification of Tumours. WHO; Geneva, Switzerland: 2017.
Chiu Y.F., Ponlachantra K., Sugden B. How Epstein Barr Virus Causes Lymphomas. Viruses. 2024;16:1744. doi: 10.3390/v16111744. PubMed DOI PMC
Anastasiadou E., Stroopinsky D., Alimperti S., Jiao A.L., Pyzer A.R., Cippitelli C., Pepe G., Severa M., Rosenblatt J., Etna M.P., et al. Epstein-Barr virus-encoded EBNA2 alters immune checkpoint PD-L1 expression by downregulating miR-34a in B-cell lymphomas. Leukemia. 2019;33:132–147. doi: 10.1038/s41375-018-0178-x. PubMed DOI PMC
Sommermann T., Yasuda T., Ronen J., Wirtz T., Weber T., Sack U., Caeser R., Zhang J., Li X., Chu V.T., et al. Functional interplay of Epstein-Barr virus oncoproteins in a mouse model of B cell lymphomagenesis. Proc. Natl. Acad. Sci. USA. 2020;117:14421–14432. doi: 10.1073/pnas.1921139117. PubMed DOI PMC
A predictive model for aggressive non-Hodgkin’s lymphoma. N. Engl. J. Med. 1993;329:987–994. doi: 10.1056/NEJM199309303291402. PubMed DOI
Harkins R.A., Chang A., Patel S.P., Lee M.J., Goldstein J.S., Merdan S., Flowers C.R., Koff J.L. Remaining challenges in predicting patient outcomes for diffuse large B-cell lymphoma. Expert. Rev. Hematol. 2019;12:959–973. doi: 10.1080/17474086.2019.1660159. PubMed DOI PMC
Jelicic J., Juul-Jensen K., Bukumiric Z., Roost Clausen M., Ludvigsen Al-Mashhadi A., Pedersen R.S., Poulsen C.B., Brown P., El-Galaly T.C., Larsen T.S. Prognostic indices in diffuse large B-cell lymphoma: A population-based comparison and validation study of multiple models. Blood Cancer J. 2023;13:157. doi: 10.1038/s41408-023-00930-7. PubMed DOI PMC
Alizadeh A.A., Eisen M.B., Davis R.E., Ma C., Lossos I.S., Rosenwald A., Boldrick J.C., Sabet H., Tran T., Yu X., et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403:503–511. doi: 10.1038/35000501. PubMed DOI
Küppers R., Dalla-Favera R. Mechanisms of chromosomal translocations in B cell lymphomas. Oncogene. 2001;20:5580–5594. doi: 10.1038/sj.onc.1204640. PubMed DOI
Rosenwald A., Bens S., Advani R., Barrans S., Copie-Bergman C., Elsensohn M.-H., Natkunam Y., Calaminic M., Sander B., Baia M., et al. Prognostic Significance of MYC Rearrangement and Translocation Partner in Diffuse Large B-Cell Lymphoma: A Study by the Lunenburg Lymphoma Biomarker Consortium. J. Clin. Oncol. 2019;37:3359–3368. doi: 10.1200/JCO.19.00743. PubMed DOI
Hans C.P., Weisenburger D.D., Greiner T.C., Gascoyne R.D., Delabie J., Ott G., Muller-Hermelink H.K., Campo E., Braziel R.T., Jaffe E.S., et al. Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. Blood. 2004;103:275–282. doi: 10.1182/blood-2003-05-1545. PubMed DOI
Pasqualucci L., Dalla-Favera R. The genetic landscape of diffuse large B-cell lymphoma. Semin. Hematol. 2015;52:67–76. doi: 10.1053/j.seminhematol.2015.01.005. PubMed DOI PMC
Chapuy B., Stewart C., Dunford A.J., Kim J., Kamburov A., Redd R.A., Lawrence M.S., Roemer M.G.M., Li A.J., Ziepert M., et al. Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat. Med. 2018;24:679–690. doi: 10.1038/s41591-018-0016-8. PubMed DOI PMC
Alaggio R., Amador C., Anagnostopoulos I., Attygalle A.D., Araujo I.B.d.O., Berti E., Bhagat G., Borges A.M., Boyer D., Calaminico M., et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia. 2022;36:1720–1748. doi: 10.1038/s41375-022-01620-2. PubMed DOI PMC
de Leval L., Alizadeh A.A., Bergsagel P.L., Campo E., Davies A., Dogan A., Fitzgibbon J., Horwitz S.M., Melnick A.M., Morice W.G., et al. Genomic profiling for clinical decision making in lymphoid neoplasms. Blood. 2022;140:2193–2227. doi: 10.1182/blood.2022015854. PubMed DOI PMC
Scott D.W., King R.L., Staiger A.M., Ben-Neriah S., Jiang A., Horn H., Mottok A., Farinha P., Slack G.W., Ennishi D., et al. High-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements with diffuse large B-cell lymphoma morphology. Blood. 2018;131:2060–2064. doi: 10.1182/blood-2017-12-820605. PubMed DOI PMC
Ennishi D., Jiang A., Boyle M., Collinge B., Grande B.M., Ben-Neriah S., Rushton C., Tang J., Thomas N., Slack G.W., et al. Double-Hit Gene Expression Signature Defines a Distinct Subgroup of Germinal Center B-Cell-Like Diffuse Large B-Cell Lymphoma. J. Clin. Oncol. 2019;37:190–201. doi: 10.1200/JCO.18.01583. PubMed DOI PMC
Cucco F., Barrans S., Sha C., Clipson A., Crouch S., Dobson R., Chen Z., Thompson J.S., Care M.A., Cummin T., et al. Distinct genetic changes reveal evolutionary history and heterogeneous molecular grade of DLBCL with MYC/BCL2 double-hit. Leukemia. 2020;34:1329–1341. doi: 10.1038/s41375-019-0691-6. PubMed DOI PMC
Vodicka P., Klener P., Trneny M. Diffuse Large B-Cell Lymphoma (DLBCL): Early Patient Management and Emerging Treatment Options. Onco Targets Ther. 2022;15:1481–1501. doi: 10.2147/OTT.S326632. PubMed DOI PMC
Tavakkoli M., Barta S.K. 2024 Update: Advances in the risk stratification and management of large B-cell lymphoma. Am. J. Hematol. 2023;98:1791–1805. doi: 10.1002/ajh.27075. PubMed DOI
Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75:843–854. doi: 10.1016/0092-8674(93)90529-Y. PubMed DOI
Wightman B., Ha I., Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell. 1993;75:855–862. doi: 10.1016/0092-8674(93)90530-4. PubMed DOI
Lau N.C., Lim L.P., Weinstein E.G., Bartel D.P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 2001;294:858–862. doi: 10.1126/science.1065062. PubMed DOI
Lee R.C., Ambros V. An extensive class of small RNAs in Caenorhabditis elegans. Science. 2001;294:862–864. doi: 10.1126/science.1065329. PubMed DOI
Lagos-Quintana M., Rauhut R., Lendeckel W., Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294:853–858. doi: 10.1126/science.1064921. PubMed DOI
Vishnoi A., Rani S. miRNA Biogenesis and Regulation of Diseases: An Updated Overview. Methods Mol. Biol. 2023;2595:1–12. PubMed
Gulyaeva L.F., Kushlinskiy N.E. Regulatory mechanisms of microRNA expression. J. Transl. Med. 2016;14:143. doi: 10.1186/s12967-016-0893-x. PubMed DOI PMC
Cui Y., Qi Y., Ding L., Ding S., Han Z., Wang Y., Du P. miRNA dosage control in development and human disease. Trends Cell Biol. 2024;34:31–47. doi: 10.1016/j.tcb.2023.05.009. PubMed DOI
Ryan B., Joilin G., Williams J.M. Plasticity-related microRNA and their potential contribution to the maintenance of long-term potentiation. Front. Mol. Neurosci. 2015;8:4. doi: 10.3389/fnmol.2015.00004. PubMed DOI PMC
Cimmino A., Calin G.A., Fabbri M., Iorio M.V., Ferracin M., Shimizu M., Wojcik S.E., Aqeilan R.I., Zupo S., Dono M., et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA. 2005;102:13944–13949. doi: 10.1073/pnas.0506654102. PubMed DOI PMC
Fang C., Zhu D.-X., Dong H.-J., Zhou Z.-J., Wang Y.-H., Liu L., Fan L., Miao K.R., Liu P., Xu W., et al. Serum microRNAs are promising novel biomarkers for diffuse large B cell lymphoma. Ann. Hematol. 2012;91:553–559. doi: 10.1007/s00277-011-1350-9. PubMed DOI
Alsaadi M., Khan M.Y., Dalhat M.H., Bahashwan S., Khan M.U., Albar A., Almehdar H., Qadri I. Dysregulation of miRNAs in DLBCL: Causative Factor for Pathogenesis, Diagnosis and Prognosis. Diagnostics. 2021;11:1739. doi: 10.3390/diagnostics11101739. PubMed DOI PMC
Regazzo G., Vari G., Marchesi F., Sacconi A., Palombi F., Novello M., Papa E., Tomassi M., Pisani F., Mengarelli A., et al. Identification of a Circulating Serum miRNA Signature as a Predictive Biomarker and Potential Therapeutic Target in Diffuse Large B-Cell Lymphoma. Blood. 2024;144((Suppl. S1)):6216. doi: 10.1182/blood-2024-203384. DOI
Larrabeiti-Etxebarria A., Lopez-Santillan M., Santos-Zorrozua B., Lopez-Lopez E., Garcia-Orad A. Systematic Review of the Potential of MicroRNAs in Diffuse Large B Cell Lymphoma. Cancers. 2019;11:144. doi: 10.3390/cancers11020144. PubMed DOI PMC
Koumpis E., Georgoulis V., Papathanasiou K., Papoudou-Bai A., Kanavaros P., Kolettas E., Hatzimichael E. The Role of microRNA-155 as a Biomarker in Diffuse Large B-Cell Lymphoma. Biomedicines. 2024;12:2658. doi: 10.3390/biomedicines12122658. PubMed DOI PMC
Filho E.H.C.N., Zancheta S.B., Barros Silva PG de Rodríguez Burbano R.M., Rabenhorst S.H.B. Prognostic impact of miR-125b and miR-155b and their relationship with MYC and TP53 in diffuse large B-cell lymphoma: Cell-of-origin classification matters. J. Clin. Exp. Hematop. 2023;63:164–172. doi: 10.3960/jslrt.23009. PubMed DOI PMC
Larrabeiti-Etxebarria A., Bilbao-Aldaiturriaga N., Arzuaga-Mendez J., Martin-Arruti M., Cozzuto L., Gaafar A., Ruiz-Diaz I., Guerra I., Martin-Guerrero I., Lopez-Lopez E., et al. microRNA sequencing for biomarker detection in the diagnosis, classification and prognosis of Diffuse Large B Cell Lymphoma. Sci. Rep. 2023;13:12159. doi: 10.1038/s41598-023-39271-7. PubMed DOI PMC
Huang X., Gui A., Zhou Y., Xia Z., Liu W., Zuo J., Yang L., Zhang Q. Serum miR-146a level is a potential biomarker in predicting the outcome of diffuse large B-cell lymphoma. Asia Pac. J. Clin. Oncol. 2023;19:e283–e290. doi: 10.1111/ajco.13911. PubMed DOI
Capel B., Swain A., Nicolis S., Hacker A., Walter M., Koopman P., Goodfellow P., Lowel-Badge R. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell. 1993;73:1019–1030. doi: 10.1016/0092-8674(93)90279-Y. PubMed DOI
Cocquerelle C., Daubersies P., Majérus M.A., Kerckaert J.P., Bailleul B. Splicing with inverted order of exons occurs proximal to large introns. EMBO J. 1992;11:1095–1098. doi: 10.1002/j.1460-2075.1992.tb05148.x. PubMed DOI PMC
Kolakofsky D. Isolation and characterization of Sendai virus DI-RNAs. Cell. 1976;8:547–555. doi: 10.1016/0092-8674(76)90223-3. PubMed DOI
Matsumoto Y., Fishel R., Wickner R.B. Circular single-stranded RNA replicon in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA. 1990;87:7628–7632. doi: 10.1073/pnas.87.19.7628. PubMed DOI PMC
Zafiropoulos A., Andersson E., Krambovitis E., Borrebaeck C.A. Induction of antigen-specific isotype switching by in vitro immunization of human naive B lymphocytes. J. Immunol. Methods. 1997;200:181–190. doi: 10.1016/S0022-1759(96)00207-4. PubMed DOI
Cocquerelle C., Mascrez B., Hétuin D., Bailleul B. Mis-splicing yields circular RNA molecules. FASEB J. 1993;7:155–160. doi: 10.1096/fasebj.7.1.7678559. PubMed DOI
Kos A., Dijkema R., Arnberg A.C., van der Meide P.H., Schellekens H. The hepatitis delta (delta) virus possesses a circular RNA. Nature. 1986;323:558–560. doi: 10.1038/323558a0. PubMed DOI
Nigro J.M., Cho K.R., Fearon E.R., Kern S.E., Ruppert J.M., Oliner J.D., Kinzler K.W., Vogelstein B. Scrambled exons. Cell. 1991;64:607–613. doi: 10.1016/0092-8674(91)90244-S. PubMed DOI
Zaphiropoulos P.G. Circular RNAs from transcripts of the rat cytochrome P450 2C24 gene: Correlation with exon skipping. Proc. Natl. Acad. Sci. USA. 1996;93:6536–6541. doi: 10.1073/pnas.93.13.6536. PubMed DOI PMC
Zaphiropoulos P.G. Differential expression of cytochrome P450 2C24 transcripts in rat kidney and prostate: Evidence indicative of alternative and possibly trans splicing events. Biochem. Biophys. Res. Commun. 1993;192:778–786. doi: 10.1006/bbrc.1993.1482. PubMed DOI
Di Timoteo G., Rossi F., Bozzoni I. Circular RNAs in cell differentiation and development. Development. 2020;147:dev182725. doi: 10.1242/dev.182725. PubMed DOI
Wang Y., Wang Z. Efficient backsplicing produces translatable circular mRNAs. RNA. 2015;21:172–179. doi: 10.1261/rna.048272.114. PubMed DOI PMC
Li Z., Huang C., Bao C., Chen L., Lin M., Wang X., Zhong G., Yu B., Hu W., Dai L., et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat. Struct. Mol. Biol. 2015;22:256–264. doi: 10.1038/nsmb.2959. PubMed DOI
Zaiou M. Circular RNAs as Potential Biomarkers and Therapeutic Targets for Metabolic Diseases. Adv. Exp. Med. Biol. 2019;1134:177–191. PubMed
Starke S., Jost I., Rossbach O., Schneider T., Schreiner S., Hung L.-H., Bindereif A. Exon circularization requires canonical splice signals. Cell Rep. 2015;10:103–111. doi: 10.1016/j.celrep.2014.12.002. PubMed DOI
Aufiero S., Reckman Y.J., Pinto Y.M., Creemers E.E. Circular RNAs open a new chapter in cardiovascular biology. Nat. Rev. Cardiol. 2019;16:503–514. doi: 10.1038/s41569-019-0185-2. PubMed DOI
Bachmayr-Heyda A., Reiner A.T., Auer K., Sukhbaatar N., Aust S., Bachleitner-Hofmann T., Mesteri I., Grunt T.W., Zeillinger R., Pils D. Correlation of circular RNA abundance with proliferation--exemplified with colorectal and ovarian cancer, idiopathic lung fibrosis, and normal human tissues. Sci. Rep. 2015;5:8057. doi: 10.1038/srep08057. PubMed DOI PMC
Patop I.L., Wüst S., Kadener S. Past, present, and future of circRNAs. EMBO J. 2019;38:e100836. doi: 10.15252/embj.2018100836. PubMed DOI PMC
Du X., Cardie C. Identifying Where to Focus in Reading Comprehension for Neural Question Generation; Association for Computational Linguistics; Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing; Stroudsburg, PA, USA. 7–11 September 2017; pp. 2067–2073.
Nicolet B.P., Engels S., Aglialoro F., van den Akker E., von Lindern M., Wolkers M.C. Circular RNA expression in human hematopoietic cells is widespread and cell-type specific. Nucleic Acids Res. 2018;46:8168–8180. doi: 10.1093/nar/gky721. PubMed DOI PMC
Suzuki H., Zuo Y., Wang J., Zhang M.Q., Malhotra A., Mayeda A. Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res. 2006;34:e63. doi: 10.1093/nar/gkl151. PubMed DOI PMC
Huang A., Zheng H., Wu Z., Chen M., Huang Y. Circular RNA-protein interactions: Functions, mechanisms, and identification. Theranostics. 2020;10:3503–3517. doi: 10.7150/thno.42174. PubMed DOI PMC
Vincent H.A., Deutscher M.P. Substrate recognition and catalysis by the exoribonuclease RNase R. J. Biol. Chem. 2006;281:29769–29775. doi: 10.1074/jbc.M606744200. PubMed DOI
Hansen T.B., Wiklund E.D., Bramsen J.B., Villadsen S.B., Statham A.L., Clark S.J., Kjems J. miRNA-dependent gene silencing involving Ago2-mediated cleavage of a circular antisense RNA. EMBO J. 2011;30:4414–4422. doi: 10.1038/emboj.2011.359. PubMed DOI PMC
Conlon E.G., Manley J.L. RNA-binding proteins in neurodegeneration: Mechanisms in aggregate. Genes. Dev. 2017;31:1509–1528. doi: 10.1101/gad.304055.117. PubMed DOI PMC
van Strijp D., Vulders R.C.M., Larsen N.A., Schira J., Baerlocher L., van Driel M.A., Pødenphant M., Hansen T.S., Kristensen A., Mir K.U., et al. Complete sequence-based pathway analysis by differential on-chip DNA and RNA extraction from a single cell. Sci. Rep. 2017;7:11030. doi: 10.1038/s41598-017-10704-4. PubMed DOI PMC
Han D., Li J., Wang H., Su X., Hou J., Gu Y., Qian C., Lin Y., Liu X., Huang M., et al. Circular RNA circMTO1 acts as the sponge of microRNA-9 to suppress hepatocellular carcinoma progression. Hepatology. 2017;66:1151–1164. doi: 10.1002/hep.29270. PubMed DOI
Pan J., Hu S., Ren X., Hu H., Deng X., Yu B., Cobos I., Chen X. Whole-Transcriptome Profiling and circRNA-miRNA-mRNA Regulatory Networks in B-Cell Development. Front. Immunol. 2022;13:812924. doi: 10.3389/fimmu.2022.812924. PubMed DOI PMC
Hu Y., Zhao Y., Shi C., Ren P., Wei B., Guo Y., Ma J. A circular RNA from APC inhibits the proliferation of diffuse large B-cell lymphoma by inactivating Wnt/β-catenin signaling via interacting with TET1 and miR-888. Aging. 2019;11:8068–8084. doi: 10.18632/aging.102122. PubMed DOI PMC
Zhao C.-X., Yan Z.-X., Wen J.-J., Di Fu Xu P.-P., Wang L., Cheng S., Hu J.-D., Zhao W.-L. CircEAF2 counteracts Epstein-Barr virus-positive diffuse large B-cell lymphoma progression via miR-BART19-3p/APC/β-catenin axis. Mol. Cancer. 2021;20:153. doi: 10.1186/s12943-021-01458-9. PubMed DOI PMC
Zhou J., Xu M., Chen Z., Huang L., Wu Z., Huang Z., Liu L. circ_SPEF2 Regulates the Balance of Treg Cells by Regulating miR-16-5p/BACH2 in Lymphoma and Participates in the Immune Response. Tissue Eng. Regen. Med. 2023;20:1145–1159. doi: 10.1007/s13770-023-00585-2. PubMed DOI PMC
Ichikawa S., Fukuhara N., Katsushima H., Takahashi T., Yamamoto J., Yokoyama H., Osamu Sasaki O., Fukuhara O., Nomur J., Ishizawa K., et al. Association between BACH2 expression and clinical prognosis in diffuse large B-cell lymphoma. Cancer Sci. 2014;105:437–444. doi: 10.1111/cas.12361. PubMed DOI PMC
Wang J., Ku X., Ma Q., Li H., Huang S., Mao L., Yu F., Jin J., Yan W. Hsa_circ_0007099 and PIP4K2A coexpressed in diffuse large B-cell lymphoma with clinical significance. Genes. Dis. 2024;11:101056. doi: 10.1016/j.gendis.2023.06.025. PubMed DOI PMC
Liu W., Lei L., Liu X., Ye S. CircRNA_OTUD7A upregulates FOXP1 expression to facilitate the progression of diffuse large B-cell lymphoma via acting as a sponge of miR-431-5p. Genes Genom. 2021;43:653–667. doi: 10.1007/s13258-021-01094-z. PubMed DOI
Lin D., Wang Y., Lei L., Lin C. Circ_0003645 serves as miR-335-5p sponge to promote the biological process of diffuse large B-cell lymphoma by upregulating NFIB. Autoimmunity. 2022;55:127–135. doi: 10.1080/08916934.2021.2023863. PubMed DOI
Chen X., Xie X., Zhou W. CircCFL1/MiR-107 Axis Targeting HMGB1 Promotes the Malignant Progression of Diffuse Large B-Cell Lymphoma Tumors. Cancer Manag. Res. 2020;12:9351–9362. doi: 10.2147/CMAR.S263222. PubMed DOI PMC
Wang X., Du W., Zhang X., Li P. The Influence of Different Disease States on Rituximab Pharmacokinetics. Curr. Drug Metab. 2020;21:938–946. doi: 10.2174/1389200221666200719004035. PubMed DOI
Dong L., Huang J., Gao X., Du J., Wang Y., Zhao L. CircPCBP2 promotes the stemness and chemoresistance of DLBCL via targeting miR-33a/b to disinhibit PD-L1. Cancer Sci. 2022;113:2888–2903. doi: 10.1111/cas.15402. PubMed DOI PMC
Wang X., Li J., Dong K., Lin F., Long M., Ouyang Y., Wei J., Chen X., Weng Y., He T., et al. Tumor suppressor miR-34a targets PD-L1 and functions as a potential immunotherapeutic target in acute myeloid leukemia. Cell Signal. 2015;27:443–452. doi: 10.1016/j.cellsig.2014.12.003. PubMed DOI
Decruyenaere P., Giuili E., Verniers K., Anckaert J., Grove K de van der Linden M., Deeren D., Van Dorpe J., Offner F., Vandesompele J. Exploring the cell-free total RNA transcriptome in diffuse large B-cell lymphoma and primary mediastinal B-cell lymphoma patients as biomarker source in blood plasma liquid biopsies. Front. Oncol. 2023;13:1221471. doi: 10.3389/fonc.2023.1221471. PubMed DOI PMC
Wang T., Chen Z., Li C., Zhang W., Huang W., Xue J., Wang J., Li S. PAX5 and circ1857 affected DLBCL progression and B-cell proliferation through regulating GINS1. Cancer Sci. 2023;114:3203–3215. doi: 10.1111/cas.15856. PubMed DOI PMC
Yang Q., Du W.W., Wu N., Yang W., Awan F.M., Fang L., Ma J., Li X., Zeng Y., Yang Z., et al. A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation. Cell Death Differ. 2017;24:1609–1620. doi: 10.1038/cdd.2017.86. PubMed DOI PMC
Singh S., Sinha T., Panda A.C. Regulation of microRNA by circular RNA. Wiley Interdiscip. Rev. RNA. 2023;15:e1820. doi: 10.1002/wrna.1820. PubMed DOI
Kim W.R., Park E.G., Du Lee H., Lee Y.J., Bae W.H., Kim H.-S. The Tumorigenic Role of Circular RNA-MicroRNA Axis in Cancer. Int. J. Mol. Sci. 2023;24:3050. doi: 10.3390/ijms24033050. PubMed DOI PMC
Decruyenaere P., Offner F., Vandesompele J. Circulating RNA biomarkers in diffuse large B-cell lymphoma: A systematic review. Exp. Hematol. Oncol. 2021;10:13. doi: 10.1186/s40164-021-00208-3. PubMed DOI PMC
Zhao X., van den Berg A., Winkle M., Koerts J., Seitz A., de Jong D., Rutgers B., van der Sluis T., Bakker E., Kluiver J. Proliferation-promoting roles of linear and circular PVT1 are independent of their ability to bind miRNAs in B-cell lymphoma. Pt 2Int. J. Biol. Macromol. 2023;253:126744. doi: 10.1016/j.ijbiomac.2023.126744. PubMed DOI
Belter A., Popenda M., Sajek M., Woźniak T., Naskręt-Barciszewska M.Z., Szachniuk M., Jurga S., Barcizsewski J. A new molecular mechanism of RNA circularization and the microRNA sponge formation. J. Biomol. Struct. Dyn. 2022;40:3038–3045. doi: 10.1080/07391102.2020.1844802. PubMed DOI
Wu W., Ji P., Zhao F. CircAtlas: An. integrated resource of one million highly accurate circular RNAs from 1070 vertebrate transcriptomes. Genome Biol. 2020;21:101. doi: 10.1186/s13059-020-02018-y. PubMed DOI PMC
Bonizzato A., Gaffo E., Te Kronnie G., Bortoluzzi S. CircRNAs in hematopoiesis and hematological malignancies. Blood Cancer J. 2016;6:e483. doi: 10.1038/bcj.2016.81. PubMed DOI PMC
Du W.W., Yang W., Liu E., Yang Z., Dhaliwal P., Yang B.B. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 2016;44:2846–2858. doi: 10.1093/nar/gkw027. PubMed DOI PMC
Hornsveld M., Dansen T.B., Derksen P.W., Burgering B.M.T. Re-evaluating the role of FOXOs in cancer. Semin. Cancer Biol. 2018;50:90–100. doi: 10.1016/j.semcancer.2017.11.017. PubMed DOI
Lees J., Hay J., Moles M.W., Michie A.M. The discrete roles of individual FOXO transcription factor family members in B-cell malignancies. Front. Immunol. 2023;14:1179101. doi: 10.3389/fimmu.2023.1179101. PubMed DOI PMC
Kapoor I., Li Y., Sharma A., Zhu H., Bodo J., Xu W., Hsi E.D., Hill B.T., Almasan A. Resistance to BTK inhibition by ibrutinib can be overcome by preventing FOXO3a nuclear export and PI3K/AKT activation in B-cell lymphoid malignancies. Cell Death Dis. 2019;10:924. doi: 10.1038/s41419-019-2158-0. PubMed DOI PMC
Golovina E., Heizer T., Daumova L., Bajecny M., Fontana S., Griggio V., Jones R., Coscia M., Riganti C., Vargova K.S. MiR-155 deficiency and hypoxia results in metabolism switch in the leukemic B-cells. Cancer Cell Int. 2024;24:251. doi: 10.1186/s12935-024-03437-8. PubMed DOI PMC
Zheng X., Rui H., Liu Y., Dong J. Proliferation and Apoptosis of B-Cell Lymphoma Cells under Targeted Regulation of FOXO3 by miR-155. Mediterr. J. Hematol. Infect. Dis. 2020;12:e2020073. doi: 10.4084/mjhid.2020.073. PubMed DOI PMC
Duk M.A., Samsonova M.G. The Pros and Cons of Circular RNAs as miRNA Sponges. Biophysics. 2021;66:8–16. doi: 10.1134/S0006350921010036. DOI
Hansen T.B., Kjems J., Damgaard C.K. Circular RNA and miR-7 in cancer. Cancer Res. 2013;73:5609–5612. doi: 10.1158/0008-5472.CAN-13-1568. PubMed DOI
Zhou W., Wu C., Wang J. Circular RNA circ_0000877 serves as a miR-671-5p sponge to regulate diffuse large B-cell lymphoma development via HK2. Mol. Cell. Toxicol. 2023;19:579–590. doi: 10.1007/s13273-022-00292-4. DOI
Li F., Zhang L., Li W., Deng J., Zheng J., An M., Lu J., Zhou Y. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway. Oncotarget. 2015;6:6001–6013. doi: 10.18632/oncotarget.3469. PubMed DOI PMC
Huang Y., Zhu Q. Mechanisms Regulating Abnormal Circular RNA Biogenesis in Cancer. Cancers. 2021;13:4185. doi: 10.3390/cancers13164185. PubMed DOI PMC
Liu C.-X., Chen L.-L. Expanded regulation of circular RNA translation. Mol. Cell. 2021;81:4111–4113. doi: 10.1016/j.molcel.2021.09.023. PubMed DOI
Paramasivam A., Vijayashree Priyadharsini J. Novel insights into m6A modification in circular RNA and implications for immunity. Cell Mol. Immunol. 2020;17:668–669. doi: 10.1038/s41423-020-0387-x. PubMed DOI PMC
Conn S.J., Pillman K.A., Toubia J., Conn V.M., Salmanidis M., Phillips C.A., Roslan S., Schreiber A.W., Gregory P.A., Goodall G.J. The RNA binding protein quaking regulates formation of circRNAs. Cell. 2015;160:1125–1134. doi: 10.1016/j.cell.2015.02.014. PubMed DOI
Rybak-Wolf A., Stottmeister C., Glažar P., Jens M., Pino N., Giusti S., Hanan M., Behm M., Bartok O., Ashwal-Fluss R., et al. Circular RNAs in the Mammalian Brain Are Highly Abundant, Conserved, and Dynamically Expressed. Mol. Cell. 2015;58:870–885. doi: 10.1016/j.molcel.2015.03.027. PubMed DOI
Gilmore T.D. Introduction to NF-kappaB: Players, pathways, perspectives. Oncogene. 2006;25:6680–6684. doi: 10.1038/sj.onc.1209954. PubMed DOI
Schmitz R., Wright G.W., Da Huang W., Johnson C.A., Phelan J.D., Wang J.Q., Roulland S., Kasbekar M., Young R.M., Shaffer A.L., et al. Genetics and Pathogenesis of Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2018;378:1396–1407. doi: 10.1056/NEJMoa1801445. PubMed DOI PMC
Mann M., Mehta A., Zhao J.L., Lee K., Marinov G.K., Garcia-Flores Y., Lu L.F., Rudensky A.I., Baltimore D. An NF-κB-microRNA regulatory network tunes macrophage inflammatory responses. Nat. Commun. 2017;8:851. doi: 10.1038/s41467-017-00972-z. PubMed DOI PMC
Carreras J., Hamoudi R. Anomaly Detection and Artificial Intelligence Identified the Pathogenic Role of Apoptosis and RELB Proto-Oncogene, NF-kB Subunit in Diffuse Large B-Cell Lymphoma. BioMedInformatics. 2024;4:1480–1505. doi: 10.3390/biomedinformatics4020081. DOI
Werner M., Hobeika E., Jumaa H. Role of PI3K in the generation and survival of B cells. Immunol. Rev. 2010;237:55–71. doi: 10.1111/j.1600-065X.2010.00934.x. PubMed DOI
Shen Q., Zheng G., Zhou Y., Tong J., Xu S., Gao H., Zhang X., Fu Q. CircRNA circ_0092314 Induces Epithelial-Mesenchymal Transition of Pancreatic Cancer Cells via Elevating the Expression of S100P by Sponging miR-671. Front. Oncol. 2021;11:675442. doi: 10.3389/fonc.2021.675442. PubMed DOI PMC
Karube K., Campo E. MYC alterations in diffuse large B-cell lymphomas. Semin. Hematol. 2015;52:97–106. doi: 10.1053/j.seminhematol.2015.01.009. PubMed DOI
Guarnerio J., Bezzi M., Jeong J.C., Paffenholz S.V., Berry K., Naldini M.M., Lo-Coco F., Tay Y., Beck A.H., Pandolf P.P. Oncogenic Role of Fusion-circRNAs Derived from Cancer-Associated Chromosomal Translocations. Cell. 2016;165:289–302. doi: 10.1016/j.cell.2016.03.020. PubMed DOI
Nusse R., Brown A., Papkoff J., Scambler P., Shackleford G., McMahon A., Moon R., Varmus H. A new nomenclature for int-1 and related genes: The Wnt gene family. Cell. 1991;64:231. doi: 10.1016/0092-8674(91)90633-A. PubMed DOI
Bailleul B. During in vivo maturation of eukaryotic nuclear mRNA, splicing yields excised exon circles. Nucleic Acids Res. 1996;24:1015–1019. doi: 10.1093/nar/24.6.1015. PubMed DOI PMC
He A.T., Liu J., Li F., Yang B.B. Targeting circular RNAs as a therapeutic approach: Current strategies and challenges. Signal Transduct. Target. Ther. 2021;6:185. doi: 10.1038/s41392-021-00569-5. PubMed DOI PMC
Schultz N., Marenstein D.R., Angelis DA de Wang W.-Q., Nelander S., Jacobsen A., Marks D.S., Massagué J., Sander C. Off-target effects dominate a large-scale RNAi screen for modulators of the TGF-β pathway and reveal microRNA regulation of TGFBR2. Silence. 2011;2:3. doi: 10.1186/1758-907X-2-3. PubMed DOI PMC
Li S., Li X., Xue W., Zhang L., Yang L.-Z., Cao S.-M., Lei Y.N., Liu C.X., Guo S.K., Shan L., et al. Screening for functional circular RNAs using the CRISPR-Cas13 system. Nat. Methods. 2021;18:51–59. doi: 10.1038/s41592-020-01011-4. PubMed DOI
Dancy J.G., Wadajkar A.S., Connolly N.P., Galisteo R., Ames H.M., Peng S., Tran N.L., Goloubeva O.G., Woodworth G.F., Winkles J.A., et al. Decreased nonspecific adhesivity, receptor-targeted therapeutic nanoparticles for primary and metastatic breast cancer. Sci. Adv. 2020;6:eaax3931. doi: 10.1126/sciadv.aax3931. PubMed DOI PMC
Fodde R., Brabletz T. Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Curr. Opin. Cell Biol. 2007;19:150–158. doi: 10.1016/j.ceb.2007.02.007. PubMed DOI
Song G., Gu L., Li J., Tang Z., Liu H., Chen B., Sun X., He B., Pan Y., Wang S., et al. Serum microRNA expression profiling predict response to R-CHOP treatment in diffuse large B cell lymphoma patients. Ann. Hematol. 2014;93:1735–1743. doi: 10.1007/s00277-014-2111-3. PubMed DOI
Sims G.P., Rowe D.C., Rietdijk S.T., Herbst R., Coyle A.J. HMGB1 and RAGE in inflammation and cancer. Annu. Rev. Immunol. 2010;28:367–388. doi: 10.1146/annurev.immunol.021908.132603. PubMed DOI