Effect of Oxide Systems on Purity of Tool Steels Fabricated by Electro Slag Remelting
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
TQ03000386
Technology Agency of the Czech Republic
PubMed
40142059
PubMed Central
PMC11944420
DOI
10.3390/molecules30061284
PII: molecules30061284
Knihovny.cz E-resources
- Keywords
- chemical composition, electro slag remelting, non-metallic inclusion, slag, thermodynamics,
- Publication type
- Journal Article MeSH
The purity of a steel is an important factor influencing the quality of the final products. Therefore, it is important to optimize the existing and develop new steelmaking technologies that affect the resulting purity. Electro slag remelting is a technology of tertiary metallurgy, which can advantageously be used to fabricate high quality steels. The study presents selected theoretical aspects of oxide systems and their specific influences on effectiveness of the electro slag remelting technology. The aim of this work was to experimentally analyze the purity of a tool steel fabricated by electro slag remelting using two different oxide systems (fused slags). The core of the study is the determination of the overall presence of elements in the steels, a thorough investigation of the presence of (not only) oxide-based inclusions within the investigated tool steel, and a detailed analysis of their chemical composition, including the size of these non-metallic inclusions, using energy dispersive X-ray (EDX) on the scanning electron microscope (SEM). Last but not least, the determination of the modification of the occurring non-metallic inclusions and verification of the experimentally acquired results as well as the calculation of the liquid and solid temperature and the calculation of the viscosity of the slags using the FactSage calculation software was performed. The results showed that the used slag influenced especially the occurrence of Mg and Al-based oxide inclusions. The CaS-type inclusions were present within all of the examined samples. The slag type influenced not only the typical morphology and size of the inclusions (especially of the CaS type), but also the tendency of the steel to exhibit localized corrosion when exposed to the ambient environment. This research can contribute to a better understanding of the effect of oxidation systems on the resulting purity and properties of ESR steels, thereby advancing the production of tool steels with higher quality and performance requirements.
See more in PubMed
Qin H., Ding S., Ashour A., Zheng Q., Han B. Revolutionizing Infrastructure: The Evolving Landscape of Electricity-Based Multifunctional Concrete from Concept to Practice. Prog. Mater. Sci. 2024;145:101310. doi: 10.1016/j.pmatsci.2024.101310. DOI
Hammad M., Bahrami A., Khokhar S.A., Khushnood R.A. A State-of-the-Art Review on Structural Strengthening Techniques with FRPs: Effectiveness, Shortcomings, and Future Research Directions. Materials. 2024;17:1408. doi: 10.3390/ma17061408. PubMed DOI PMC
Emerson J.N., Marrero-Jackson E.H., Nemets G.A., Okuniewski M.A., Wharry J.P. Nuclear Reactor Pressure Vessel Welds: A Critical and Historical Review of Microstructures, Mechanical Properties, Irradiation Effects, and Future Opportunities. Mater. Des. 2024;244:113134. doi: 10.1016/j.matdes.2024.113134. DOI
Lazarev Y., Akhatuly A., Alzhanova R., Panfilova A. Experimental Studies of Steel Corrugated Constructions. MATEC Web Conf. 2016;53:01065. doi: 10.1051/matecconf/20165301065. DOI
Zorin A.E., Romantsov A.S. Evaluation of Embrittlement of Construction Steels by Microindentation. Inorg. Mater. 2024;60:196–203. doi: 10.1134/S0020168524700262. DOI
Khvastin M., Stepanova V., Andreev N., Usanova K., Baranov A., Kavkazskiy V. Migrating Corrosion Inhibitor Based on Organic Amines for Protecting Steel Reinforcement in Concrete. Int. J. Corros. Scale Inhib. 2024;13:1702–1714.
Molokov K.A., Novikov V.V. Assessment of the Residual Reliability of Ship Hull Structures Made of Ferrite-Pearlite Steels with Macrocracks Based on Structural and Mechanical Characteristics. Mar. Intellect. Technol. 2024;2:102–109.
Macháčková A., Kocich R., Bojko M., Kunčická L., Polko K. Numerical and Experimental Investigation of Flue Gases Heat Recovery via Condensing Heat Exchanger. Int. J. Heat Mass Transf. 2018;124:1321–1333. doi: 10.1016/j.ijheatmasstransfer.2018.04.051. DOI
Litovchenko I., Akkuzin S., Polekhina N., Almaeva K., Moskvichev E., Kim A., Linnik V., Chernov V. New Low-Activation Austenitic Steel for Nuclear Power Engineering. Lett. Mater. 2022;12:399–403. doi: 10.22226/2410-3535-2022-4-399-403. DOI
Kocich R., Bojko M., Macháčková A., Klečková Z. Numerical Analysis of the Tubular Heat Exchanger Designed for Co-Generating Units on the Basis of Microturbines. Int. J. Heat Mass Transf. 2012;55:5336–5342. doi: 10.1016/j.ijheatmasstransfer.2012.05.050. DOI
Kunčická L., Kocich R., Lowe T.C. Advances in Metals and Alloys for Joint Replacement. Prog. Mater. Sci. 2017;88:232–280. doi: 10.1016/j.pmatsci.2017.04.002. DOI
Zach L., Kunčická L., Růžička P., Kocich R. Design, Analysis and Verification of a Knee Joint Oncological Prosthesis Finite Element Model. Comput. Biol. Med. 2014;54:53–60. doi: 10.1016/j.compbiomed.2014.08.021. PubMed DOI
Wang Z., Chen J., Kocich R., Tardif S., Dolbnya I.P., Kunčická L., Micha J.-S., Liogas K., Magdysyuk O.V., Szurman I., et al. Grain Structure Engineering of NiTi Shape Memory Alloys by Intensive Plastic Deformation. ACS Appl. Mater. Interfaces. 2022;14:31396–31410. doi: 10.1021/acsami.2c05939. PubMed DOI PMC
Kunčická L., Kocich R. Effect of Activated Slip Systems on Dynamic Recrystallization during Rotary Swaging of Electro-Conductive Al-Cu Composites. Mater. Lett. 2022;321:132436. doi: 10.1016/j.matlet.2022.132436. DOI
Kunčická L., Kocich R., Drápala J., Andreyachshenko V.A. FEM Simulations and Comparison of the Ecap and ECAP-PBP Influence on Ti6Al4V Alloy’s Deformation Behaviour; Proceedings of the Metal 2013: 22nd International Conference on Metallurgy and Materials; Brno, Czech Republic. 15–17th May 2013; pp. 391–396.
Kocich R., Kunčická L., Mihola M., Skotnicová K. Numerical and Experimental Analysis of Twist Channel Angular Pressing (TCAP) as a SPD Process. Mater. Sci. Eng. A. 2013;563:86–94. doi: 10.1016/j.msea.2012.11.047. DOI
Hlaváč L.M., Kocich R., Gembalová L., Jonšta P., Hlaváčová I.M. AWJ Cutting of Copper Processed by ECAP. Int. J. Adv. Manuf. Technol. 2016;86:885–894. doi: 10.1007/s00170-015-8236-2. DOI
Lukáč P., Kocich R., Greger M., Padalka O., Szaraz Z. Microstructure of AZ31 and AZ61 Mg Alloys Prepared by Rolling and ECAP. Kov. Mater. 2007;45:115–120.
Izák J., Strunz P., Levytska O., Németh G., Šaroun J., Kocich R., Pagáč M., Tuharin K. Residual Stress Distribution in Dievar Tool Steel Bars Produed by Conventional Additive Manufacturing and Rotary Swaging Process. Materials. 2024;17:5706. doi: 10.3390/ma17235706. PubMed DOI PMC
Sufiyarov V.S., Razumov N.G., Mazeeva A.K., Razumova L.V., Popovich A.A. Modern Methods of Creation and Application of Powder Ferritic/Martensitic ODS Steels. Met. Sci. Heat Treat. 2024;66:76–86. doi: 10.1007/s11041-024-01021-5. DOI
Kocich R., Kunčická L., Benč M. Development of Microstructure and Properties within Oxide Dispersion Strengthened Steel Directly Consolidated by Hot Rotary Swaging. Mater. Lett. 2023;353:135276. doi: 10.1016/j.matlet.2023.135276. DOI
Akhmetov A.S., Eremeeva Z.V. Investigation of the Structure of Sintered Blanks from Powder Mixture of R6M5K5 High-Speed Steel Containing Diffusion-Alloyed Powder. Metallurgist. 2022;66:299–303. doi: 10.1007/s11015-022-01329-8. DOI
Kunčická L., Kocich R., Németh G., Dvořák K., Pagáč M. Effect of Post Process Shear Straining on Structure and Mechanical Properties of 316 L Stainless Steel Manufactured via Powder Bed Fusion. Addit. Manuf. 2022;59:103128. doi: 10.1016/j.addma.2022.103128. DOI
Kořínek M., Halama R., Fojtík F., Pagáč M., Krček J., Krzikalla D., Kocich R., Kunčická L. Monotonic Tension-Torsion Experiments and FE Modeling on Notched Specimens Produced by SLM Technology from SS316L. Materials. 2020;14:33. doi: 10.3390/ma14010033. PubMed DOI PMC
Kocich R., Szurman I., Kursa M., Fiala J. Investigation of Influence of Preparation and Heat Treatment on Deformation Behaviour of the Alloy NiTi after ECAE. Mater. Sci. Eng. A. 2009;512:100–104. doi: 10.1016/j.msea.2009.01.054. DOI
Kocich R. Optimizing Thermomechanical Processing of Bimetallic Laminates. Materials. 2023;16:3480. doi: 10.3390/ma16093480. PubMed DOI PMC
Liu M., Bernhard M., Kawuloková M., Walek J., Kern M., Zlá S., Presoly P., Smetana B., Tkadlečková M., Xu G., et al. Decomposition of γ-Fe in 0.4C-1.8Si-2.8Mn-0.5Al steel during a continuous cooling process: A comparative study using in-situ Ht-LSCM, DSC and dilatometry. J. Mater. Res. Technol. 2023;24:3534–3547. doi: 10.1016/j.jmrt.2023.04.009. DOI
Zhang L., Wang Y. Modeling the Entrapment of Nonmetallic Inclusions in Steel Continuous-Casting Billets. JOM. 2012;64:1063–1074. doi: 10.1007/s11837-012-0421-2. DOI
Walek J., Tkadlečková M., Velička M., Machů M., Cupek J., Huczala T., Cibulka J., Růžička J., Michalek K. Physical Experiments and Numerical Simulations of the Influence of Turbulence Inhibitors and the Position of Ladle Shroud on the Steel Flow in an Asymmetric Five-Strand Tundish. Metals. 2023;13:1821. doi: 10.3390/met13111821. DOI
Sviželová J., Tkadlečková M., Michalek K., Walek J., Saternus M., Pieprzyca J., Merder T. Numerical Modelling of Metal Refining Process in Ladle with Rotating Impeller and Breakwaters. Arch. Metall. Mater. 2019;64:659–664. doi: 10.24425/amm.2019.127595. DOI
Walek J., Odehnalová A., Kocich R. Analysis of Thermophysical Properties of Electro Slag Remelting and Evaluation of Metallographic Cleanliness of Steel. Materials. 2024;17:4613. doi: 10.3390/ma17184613. PubMed DOI PMC
Schneider R., Weisinger V., Gelder S., Mitchell A., David D. Effect of Different Remelting Parameters on Slag Temperature and Energy Consumption during ESR. ISIJ Int. 2022;62:1199–1210. doi: 10.2355/isijinternational.ISIJINT-2021-498. DOI
Wang Y., Chen C., Ren R., Xue Z., Wang H., Zhang Y., Wang J., Wang J., Chen L., Mu W. Ferrite formation and decomposition in 316H austenitic stainless steel electro slag remelting ingot for nuclear power applications. Mater. Charact. 2024;218:114581. doi: 10.1016/j.matchar.2024.114581. DOI
Zheng L., Peng B., Li Y., Chen K., Ren Z., Jiang Z. Compositional Optimization of ESR Slags for H13 Steel Containing Ce and Mg. Metall. Mater. Trans. B. 2023;54B:3312–3323. doi: 10.1007/s11663-023-02909-y. DOI
Mahmaoodi H., Abbasi M., Hosseinipour S.J. The effect of renewed melting process under electrical slag on fatique life of the precipitation hardened stainless steel Custom-450. J. Mater. Res. Technol. 2023;23:1680–1695. doi: 10.1016/j.jmrt.2023.01.070. DOI
Huang X., Cen Z., Liu Z., Wang F., Li B. Analysis of the influence of electrode rotation on the desulfurization behavior during electroslag remelting process. App. Therm. Eng. 2024;255:123995. doi: 10.1016/j.applthermaleng.2024.123995. DOI
Shim H., Kim S., Park B., Kim D., Johansson V. Fabrication and charactetistic of the 316L(N(-IG forged block and rolled plate for application to ITER blanket shield block. Fus. Eng. Des. 2020;156:111738. doi: 10.1016/j.fusengdes.2020.111738. DOI
Xia L., Feng H., Li H., Zhang S., Zhu H., Jiang Z. Manufacturing High Strenth-Toughness High-Nitrogen Stainless Bearing Steel 30Cr15Mo1VN by Pressurized Duplex Process. Metall. Mater. Trans. B. 2024;55B:4163–4181. doi: 10.1007/s11663-024-03276-y. DOI
Wang Y., Zhang X., Tian H., Hao L., Tian Z., Meng J., Birich A., Tan Y., Xuan W., Ren Z. Effect of purity on solidification structure and micro-segregation in a nickel-based single crystal superalloy. J. Alloys Compd. 2024;999:174929. doi: 10.1016/j.jallcom.2024.174929. DOI
Feng H., Li H., Xia L., Zhu H., Zhang S., Jiang Z. A Promising Pressurized Duplex Manufacturing Route of High Nitrogen Stainless Steel. Steel Res. Int. 2023;94:2200321. doi: 10.1002/srin.202200321. DOI
Yang S., Li H., Feng H., Jiang Z., Li X., Chen M., Dai Y. Reaction Mechanism and Control Strategy of Aluminium Increase in High Nitrogen Stainless Bearing Steel During Pressurized Electroslag Remelting. Metall. Mater. Trans. B. 2022;53B:1148–1161. doi: 10.1007/s11663-022-02443-3. DOI
Manokaran M., Kashinath A.S., Jha J.S., Toppo S.P., Singh R.P. Influence of Tempering in Different Melting Routes on Toughness Behavior of AISI 4340 Steel. J. Mater. Eng. Perform. 2020;29:6748–6760. doi: 10.1007/s11665-020-05164-3. DOI
Wang M., Yi H., Zhao X., Zhang L., Ma Y., Liu K. Formation Mechanism of Microstructural Non-uniformity in the Hot Working of Commercial-Scale Electro-slag Remelting Alloy 690 Ingots. Metall. Mater. Trans. A. 2020;51A:3996–4007. doi: 10.1007/s11661-020-05813-1. DOI
Kuo Y., Hung F., Zhao J., Wu B., Huang B., Chang K., Chen K., Ku C., Huang C., Hsieh H. A study on structural characteristics and metallurgical mechanism of carbides for 440 martensitic stainless steel with different melt refining process. J. Alloys Metall. Syst. 2023;3:100029. doi: 10.1016/j.jalmes.2023.100029. DOI
Wang H., Tang C., Du J., Zhao L., Wang H. Characterization of the Element Distribution and Quantitative Segregation Degree of Nickel-based Superalloy Ingot. Atom. Spectr. 2023;43:423–429. doi: 10.46770/AS.2022.235. DOI
Kang C., Liu F., Zheng H., Li H., Jiang Z., Chen K., Suo H., Yu X. Microstructure evolution and mechanical properties of PESR 55Cr17Mo1VN plastic die steel during quenching and tempering treatment. J. Iron Steel Res. Int. 2021;28:1625–1633. doi: 10.1007/s42243-021-00689-w. DOI
Kocich R. Effects of twist channel angular pressing on structure and properties of bimetallic Al/Cu clad composites. Mater. Des. 2020;196:109255. doi: 10.1016/j.matdes.2020.109255. PubMed DOI PMC
Kocich R., Macháčková A., Andreyachshenko V.A. A study of plastic deformation behaviour of Ti alloy during equal channel angular pressing with partial back pressure. Comput. Mater. Sci. 2015;101:233–241. doi: 10.1016/j.commatsci.2015.02.003. DOI
Kocich R., Kursa M., Macháčková A. FEA of Plastic Flow in AZ63 Alloy during ECAP Process. Acta Phys. Pol. A. 2012;122:581–587. doi: 10.12693/APhysPolA.122.581. DOI
Hara S., Hashimoto H., Ogino K. Electrical Conductivity of Molten Slags for Electro-slag Remelting. Trans. ISIJ. 1983;23:1053–1058. doi: 10.2355/isijinternational1966.23.1053. DOI
Suo H., Liu F., Kang C., Li H., Jiang Z., Geng X. Effect of Pressure on Nitrogen Content and Solidification Structure during Pressurized Electroslag Remelting Process with Composite Electrode. Steel Res. Int. 2024;96:2400520. doi: 10.1002/srin.202400520. DOI
Yusuf Y.A., Li W., Li S., Li H., Zang X. Effect of atmospheric pressure on physical parameters of steels and solidification conditions during PESR process: A review. J. Iron Steel Res. Int. 2021;28:1504–1514. doi: 10.1007/s42243-021-00697-w. DOI
Wang Q., Lu R., Chen Z., Li G., Yang Y. CFD and Experimental Investigation of Desulfurization of Rejected Electrolytic Manganese Metal in Electroslag Remelting Process. Metall. Mater. Trans. B. 2020;51B:649–663. doi: 10.1007/s11663-019-01766-y. DOI
Yang S., Li H., Feng H., Zhu H., Zhang S., Jiang Z., Chen M. Effects of Atmosphere and Na2O in Slag on Inclusion Characteristics of Al-Killed Fe-18Cr-18Mn Remelted by (P)ESR Process. Metall. Mater. Trans. B. 2023;54B:2229–2243. doi: 10.1007/s11663-023-02830-4. DOI
Schneider R.S.E., Molnar M., Gelder S., Reiter G., Martinez C. Effect of the Slag Composition and a Protective Atmosphere on Chemical Reactions and Non-Metallic Inclusions during Electro-Slag Remelting of a Hot-Work Tool Steel. Steel Res. Int. 2018;89:1800161. doi: 10.1002/srin.201800161. DOI
Burja K., Tehovnik F., Godec M., Medved J., Podgornik B., Barbič R. Effect of electroslag remelting on the non-metallic inclusions in H11 tool steel. J. Min. Metall. B. 2018;54:51–57. doi: 10.2298/JMMB160623053B. DOI
Schneider R.S.E., Molnar M., Klosch G., Schuller C. Effect of the Al2O3 Content in the Slag on the Chemical Reactions and Nonmetallic Inclusions during Electroslag Remelting. Metall. Mater. Trans. B. 2020;51:1904–1911. doi: 10.1007/s11663-020-01896-8. DOI
Shi C., Wang H., Li J. Effects of Reoxidation of Liquid Steel and Slag Composition on the Chemistry Evolution of Inclusions During Electroslag Remelting. Metall. Mater. Trans. B. 2018;49:1675–1689. doi: 10.1007/s11663-018-1296-6. DOI
Schneider R., Wiesinger V., Gelder S., Reiter G. Effect of the Slag Composition on the Process Behavior, Energy Consumption, and Nonmetallic Inclusions during Electroslag Remelting. Steel Res. Int. 2023;94:2200483. doi: 10.1002/srin.202200483. DOI
Wang H., Shi C., Qi Y., Dai Y. Formation and Evolution of Non-Metallic Inclusions in Calcium Treatment H13 Steel during Electro Remelting Process. ISIJ Int. 2019;59:828–838. doi: 10.2355/isijinternational.ISIJINT-2018-537. DOI
Wang Z., Shi C., Wang S., Li J., Zhu X. Evolution and Formation of Non-Metallic Inclusions during Electroslag Remelting of Ce-Bearing 15Cr-22Ni.1Nb Austenitic Heat-Resistant Steel. Metals. 2022;12:2094. doi: 10.3390/met12122094. DOI
Shi C., Chen X., Guo H., Zhu Z., Sun X. Control of MgO·Al2O3 Spinel Inclusions during Protective Gas Electroslag Remelting of Die Steel. Metall. Mater. Trans. B. 2013;44B:378–389. doi: 10.1007/s11663-012-9780-x. DOI
Wang Q., Wang R., He Z., Li G., Li B., Li H. Numerical analysis of inclusion motion behavior in electroslag remelting process. Int. J. Heat Mass Trans. 2018;125:1333–1344. doi: 10.1016/j.ijheatmasstransfer.2018.04.168. DOI
Řeháčková L., Novák V., Tokarský J., Heger M., Zimný O., Matýsek D., Peikertová P., Ritz M., Walek J., Leinweberová S. Rheological behaviour of CaO-MgO-SiO2-Al2O3-B2O3 system with varying B2O3 content up to 30wt% at basicity of 0.4. Ceram. Int. 2024;50:1389–1397. doi: 10.1016/j.ceramint.2023.10.228. DOI
Huang Y., Shi C., Wan X., Liang Y., Li J., Liu S. Viscosity and surface tension of CaF2-CaO-Al2O3-based slag with varying SiO2 and B2O3 contents for ESR of rotor steel. J. Iron Steel Res. Int. 2023;30:74–81. doi: 10.1007/s42243-022-00861-w. DOI
Ren Y., Wang W., Yang W., Zhang L. Modification of Non-metallic Inclusions in Steel by Calcium Treatment: A Review. ISIJ Int. 2023;63:1927–1940. doi: 10.2355/isijinternational.ISIJINT-2023-143. DOI
Li B., Zhu H., Zheng Z., Chen J., Zhao J. Modification of Nonmetallic Inclusions by Ti and La Complex Treatment in High-Al Transformation-Induced Plasticity Steel. Steel Res. Int. 2023;94:2200566. doi: 10.1002/srin.202200566. DOI
Kocich R. Design and Optimization of Induction Heating for Tungsten Heavy Alloy Prior to Rotary Swaging. Int. J. Refract. Met. Hard Mater. 2020;93:105353. doi: 10.1016/j.ijrmhm.2020.105353. DOI
Jing G., Shu-Sen C., Zi-Jian C. Mechanism of Non-metallic Inclusion Formation and Modification and Their Deformation during Compact Strip Production (CSP) Process for Aluminum-Killed Steel. ISIJ Int. 2013;53:2142–2151. doi: 10.2355/isijinternational.53.2142. DOI
Liu D., Xue Z., Song S. Effect of cooling rate on non-metallic inclusion formation and precipitation and micro-segregation of Mn and Al in Fe-23Mn-10Al-0.7C steel. J. Mater. Res. Technol. 2023;24:4967–4979. doi: 10.1016/j.jmrt.2023.04.024. DOI