• This record comes from PubMed

Ambrosia gall midges (Diptera: Cecidomyiidae) and their microbial symbionts as a neglected model of fungus-farming evolution

. 2025 Jan 14 ; 49 () : .

Language English Country Great Britain, England Media print

Document type Journal Article, Review

Grant support
GA23-07026S Czech Science Foundation

Ambrosia gall midges (AGMs) represent an intriguing group within the Cecidomyiidae, one of the most diversified dipteran families. AGMs form galls on plants, where they cultivate and consume fungal symbionts (phytomycetophagy). This mutualistic relationship may play a critical role in larval nutrition, gall morphogenesis, and protection against natural enemies. Although most other fungus-farming taxa have been intensively studied, AGMs have largely been neglected. This review synthesizes current knowledge on the diversity, biology, and ecological interactions of AGM, highlighting the intricate relationships with their fungal symbionts. The implications for adaptive radiation and speciation are critically considered, including how fungal associations may have facilitated ecological flexibility and diversification. We also tackle the processes of coevolution, not only between AGM and their fungal symbionts but also involving plants and parasitoids. We identify the most pressing issues and discrepancies in the current understanding the AGM-fungi interactions. Key areas of future research should include elucidating fungal acquisition and transmission mechanisms, determining the specificity and diversity of AGM-associated fungal communities, understanding the evolutionary pathways leading to phytomycetophagy, and addressing taxonomic challenges within the AGM group, where species identification has been complicated by reliance on gall morphology and host specificity.

See more in PubMed

Aanen  DK, Boomsma  JJ.  The evolutionary origin and maintenance of the mutualistic symbiosis between termites and fungi. Insect Symbiosis. Vol. 3. Boca Raton, FL: CRC Press, 2006.

Aanen  DK, Ros  VI, de  F  et al.  Patterns of interaction specificity of fungus-growing termites and termitomyces symbionts in South Africa. BMC Evol Biol. 2007;7:115. PubMed PMC

Abrahamson  WG. Nutritional ecology of arthropod gall makers. In: Slansky  F  Jr., Rodriguez  JG (eds), Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates. New York: Wiley, 1987, 235–58.

Adair  RJ, Burgess  T, Serdani  M  et al.  Fungal associations in Asphondylia (Diptera: Cecidomyiidae) galls from Australia and South Africa: implications for biological control of invasive acacias. Fungal Ecol. 2009;2:121–34.

Adair  RJ, Neser  S, Kolesik  P.  Australian seed-preventing gall midges (Diptera: Cecidomyiidae) as potential biological control agents for invasive Acacia spp. South Africa. In:Proceedings of the X International Symposium on Biological Control of Weeds. Citeseer, 2000, 605–13.

Amann  RI, Ludwig  W, Schleifer  K-H.  Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995;59:143–69. PubMed PMC

Barke  J, Seipke  RF, Grüschow  S  et al.  A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. BMC Biol. 2010;8:109. PubMed PMC

Bartlett  L, Connor  EF.  Exogenous phytohormones and the induction of plant galls by insects. Arthropod-Plant Interact. 2014;8:339–48.

Batra  LR, Lichtwardt  RW.  Association of fungi with some insect galls. J Kans Entomol Soc. 1963;36:262–78.

Bernardo  U, Nugnes  F, Gualtieri  L  et al.  A new gall midge species of asphondylia (Diptera: Cecidomyiidae) inducing flower galls on Clinopodium nepeta (Lamiaceae) from Europe, its phenology, and associated fungi. Environ Entomol. 2018;47:609–22. PubMed

Biedermann  PHW, Vega  FE.  Ecology and evolution of insect–fungus mutualisms. Annu Rev Entomol. 2020;65:431–55. PubMed

Bissett  J, Borkent  A.  Ambrosia galls: the significance of fungal nutrition in the evolution of the Cecidomyiidae (Diptera). In: Pirozynski  KA, Hawksworth  DL (eds), Coevolution of Fungi with Plants and Animals. London: Academic Press, 1988, 203–26.

Bittleston  LS, Pierce  NE, Ellison  AM  et al.  Convergence in multispecies interactions. Trends Ecol Evol. 2016;31:269–80. PubMed

Boddy  L, Hiscox  J.  Fungal ecology: principles and mechanisms of colonization and competition by saprotrophic fungi. Microbiol Spectr. 2016;4:FUNK-0019-2016. PubMed

Bon  M-C, Goolsby  JA, Mercadier  G  et al.  Detection of a diverse endophyte assemblage within fungal communities associated with the Arundo leaf miner, Lasioptera donacis (Diptera: Cecidomyiidae). Diversity. 2023;15:571.

Bon  M-C, Guermache  F, de  SD  et al.  Insights into the microbes and nematodes hosted by pupae of the arundo leaf miner, Lasioptera donacis (Diptera: Cecidomyiidae). Fla Entomol. 2018;101:505–7.

Borkent  A, Bissett  J.  Gall midges (Diptera: Cecidomyiidae) are vectors for their fungal symbionts. Symbiosis. 1985;1:185–94.

Borkent  A, Brown  BV, Adler  PH  et al.  Remarkable fly (Diptera) diversity in a patch of Costa Rican cloud forest: why inventory is a vital science. Zootaxa. 2018;4402:53–90. PubMed

Bragança  GPP, Ferreira  BG, Isaias  RMDS. Distinct cytological mechanisms for food availability in three Inga ingoides (Fabaceae)—Cecidomyiidae gall systems. Protoplasma. 2022;259:155–62. PubMed

Bronner  N.  The role of nutritive cells in the nutrition of cynipids and cecidomyiids. In: Shorthouse  JD, Rohfritsch  O (eds), Biology of Insect-Induced Galls. New York: Oxford University Press, 1992, 118–40.

Buchner  P.  Endosymbiosis of Animals with Plant Microorganisms. New York: Interscience Publishers/John Wiley, 1965.

Bultman  TL, White  JF.  “Pollination” of a fungus by a fly. Oecologia. 1988;75:317–9. PubMed

Cafaro  MJ, Currie  CR.  Phylogenetic analysis of mutualistic filamentous bacteria associated with fungus-growing ants. Can J Microbiol. 2005;51:441–6. PubMed

Camp  RR.  Insect–fungus blister galls on Solidago graminifolia and S. rugosa. I. A macroscopic and light microscopic study of the host–parasite relationship. Can J Bot. 1981;59:2466–77.

Cardoza  YJ, Vasanthakumar  A, Suazo  A  et al.  Survey and phylogenetic analysis of culturable microbes in the oral secretions of three bark beetle species. Entomol Exp Appl. 2009;131:138–47.

Carroll  G.  Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology. 1988;69:2–9.

Carroll  GC. The biology of endophytism in plants with particular reference to woody perennials. In: Fokkema  NJ, van den Heuvel  J (eds), Microbiology of the Phyllosphere. Cambridge: Cambridge University Press, 1986, 203–22.

Chakraborty  A, Modlinger  R, Ashraf  MZ  et al.  Core mycobiome and their ecological relevance in the gut of five Ips bark beetles (Coleoptera: Curculionidae: Scolytinae). Front Microbiol. 2020;11:568853. 10.3389/fmicb.2020.568853. PubMed DOI PMC

Chao  J-F, Liao  G-I.  Histocytological aspects of four types of ambrosia galls on Machilus zuihoensis Hayata (Lauraceae). Flora—Morphol Distrib Func Ecol Plants. 2013;208:157–64.

Chimeno  C, Hausmann  A, Schmidt  S  et al.  Peering into the darkness: DNA barcoding reveals surprisingly high diversity of unknown species of Diptera (Insecta) in Germany. Insects. 2022;13:82. PubMed PMC

Clay  K, Schardl  C.  Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat. 2002;160:S99–127. PubMed

Clay  K.  Clavicipitaceous endophytes of grasses: their potential as biocontrol agents. Mycol Res. 1989;92:1–12.

Clouse  RM.  The importance of gall size for sea daisy gall midge parasitoids. J Kans Entomol Soc. 1995;68:184–8.

Cole  ME, Ceja-Navarro  JA, Mikaelyan  A.  The power of poop: defecation behaviors and social hygiene in insects. PLoS Pathog. 2021;17:e1009964. PubMed PMC

Currie  CR, Poulsen  M, Mendenhall  J  et al.  Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science. 2006;311:81–3. PubMed

D’Souza  ML, van der Bank  M, Shongwe  Z  et al.  Biodiversity baselines: tracking insects in Kruger National Park with DNA barcodes. Biol Conserv. 2021;256:109034.

De Fine Licht  HH, Biedermann  PHW.  Patterns of functional enzyme activity in fungus farming ambrosia beetles. Front Zool. 2012;9:13. PubMed PMC

De Fine Licht  HH, Schiøtt  M, Rogowska-Wrzesinska  A  et al.  Laccase detoxification mediates the nutritional alliance between leaf-cutting ants and fungus-garden symbionts. Proc Natl Acad Sci USA. 2013;110:583–7. PubMed PMC

Denman  S, Crous  PW, Taylor  JE  et al.  An overview of the taxonomic history of Botryosphaeria and a re-evaluation of its anamorphs based on morphology and ITS rDNA phylogeny. Stud Mycol. 2000;45:129–40.

Dentinger  BT, Bills  C.  Fungal cultivation by insects. In: John Wiley & Sons, Ltd (ed.), Encyclopedia of Life Sciences. 1st edn. Chichester: Wiley, 2018, 1–9.

Diehl  JMC, Kassie  D, Biedermann  PHW.  Friend or foe: ambrosia beetle response to volatiles of common threats in their fungus gardens. Symbiosis. 2023;89:353–8.

Docters van Leeuwen  WM.  An ambrosia-gall on Symplocos fasciculata Zoll. Annales Du Jardin Botanique De Buitenzorg. 1939;49:27–42.

Docters Van Leeuwen  WM.  Ueber eine galle auf Symplocus fasiculata Zoll., verursacht durch eine gallmucke: a sphondylia bursaria Felt, die mit einem fungus zusammen lebt. Marcellia. 1929;25:61–6.

Dorchin  N, Freidberg  A, Aloni  R.  Morphogenesis of stem gall tissues induced by larvae of two cecidomyiid species (Diptera: Cecidomyiidae) on Suaeda monoica (Chenopodiaceae). Can J Bot. 2002;80:1141–50.

Dorchin  N, Harris  KM, Stireman  JO.  Phylogeny of the gall midges (Diptera, Cecidomyiidae, Cecidomyiinae): systematics, evolution of feeding modes and diversification rates. Mol Phylogenet Evol. 2019;140:106602. PubMed

Dorchin  N, Joy  JB, Hilke  LK  et al.  Taxonomy and phylogeny of the asphondylia species (Diptera: Cecidomyiidae) of North American goldenrods: challenging morphology, complex host associations, and cryptic speciation. Zool J Linn Soc. 2015;174:265–304.

Dreger-Jauffret  F.  Diversity of gallinducing insects and their galls. In: Shorthouse JD, Rohfritsch O (eds), Biology of Insect-Induced Galls.  New York: Oxford University Press, 1992, 8–33.

Elkhateeb  W.  Fungi and insects as models of extraordinary symbiosis. Stud Fungi. 2021;6:469–79.

Fedotova  ZA, Perkovsky  EE.  First findings of gall midges (Diptera, Cecidomyioidea, Cecidomyiidae) of the tribes Karshomyiini (Mexican amber) and Bremiini (Dominican amber). Paleontol J. 2019;53:1060–73.

Frickmann  H, Zautner  AE, Moter  A  et al.  Fluorescence in situ hybridization (FISH) in the microbiological diagnostic routine laboratory: a review. Crit Rev Microbiol. 2017;43:263–93. PubMed

Gagné  RJ, Jaschhof  M.  A Catalog of the Cecidomyiidae (Diptera) of the World. 5th edn.  Washington, DC: US National Museum, 2021.

Gagné  RJ, Orphanides  GM.  The pupa and larva of Asphondylia gennadii (Diptera: Cecidomyiidae) and taxonomic implications. Bull Entomol Res. 1992;82:313–6.

Gagné  RJ, Waring  GL.  The Asphondylia (Cecidomyiidae: Diptera) of creosote bush (Larrea tridentata) in north America. Proc Entomol Soc. 1990;92:649–71.

Gagné  RJ, Woods  WM.  Native American plant hosts of Asphondylia websteri (Diptera: Cecidomyiidae). Ann Entomol Soc Am. 1988;81:447–8.

Gagné  RJ.  A taxonomic revision of the genus Asteromyia (Diptera: Cecidomyiidae). Miscel Publ Entomol Soc Am. 1968;6;1–40.

Gagné  RJ.  The Plant-Feeding Gall Midges of North America. Ithaca: Cornell University Press, 1989.

Gilbertson  RL.  Relationships between insects and wood-rotting basidiomycetes. In: Wheeler Q, Blackwell M (eds), Fungus-Insect Relationships. Perspectives in Ecology and Evolution.  New York: Columbia University Press, 1984, 130–65.

Giron  D, Glevarec  G.  Cytokinin-induced phenotypes in plant-insect interactions: learning from the bacterial world. J Chem Ecol. 2014;40:826–35. PubMed

Golenia  A.  Larwy muchoki Mycodiplosis sp. Zerujace na rdzyo Miety (Puccinia menthae Pers.) I ich rola w biologicznym zwalczamir choroby. Rev Appl Mycol. 1961;41:239–46.

Goolsby  JA, Vacek  AT, Salinas  C  et al.  Host range of the European leaf sheath mining midge, Lasioptera donacis Coutin (Diptera: Cecidomyiidae), a biological control of giant reed, Arundo donax L. Biocontrol Sci Technol. 2017;27:781–95.

Graham  SA.  Gall makers on flowers of Cuphea (Lythraceae). Biotropica. 1995;27:461–7.

Gratton  C, Welter  SC.  Does “enemy-free space” exist? Experimental host shifts of an herbivorous fly. Ecology. 1999;80:773–85.

Hammer  TJ, De Clerck-Floate  R, Tooker  JF  et al.  Are bacterial symbionts associated with gall induction in insects?. Arthropod Plant Interact. 2021;15:1–12.

Hammon  KE, Faeth  SH.  Ecology of plant-herbivore communities: a fungal component?. Nat Toxins. 1993;1:197–208. PubMed

Haridass  ET.  Midge-fungus interactions in a cucurbit stem gall. Phytophaga. 1987;1:57–74.

Harris  KM.  The taxonomic status of the carob gall midge, asphondylia gennadii (Marchal), comb. N. (Diptera, Cecidomyiidae), and of other Asphondylia species recorded from Cyprus. Bull Entomol Res. 1975;65:377–80.

Hata  K, Futai  K.  Endophytic fungi associated with healthy pine needles and needles infested by the pine needle gall midge, thecodiplosis japonensis. Can J Bot. 1995;73:384–90.

Hawkins  BA, Goeden  RD, Gagné  RJ.  Ecology and taxonomy of the Asphondylia spp. (Diptera: Cecidomyiidae) Forming galls on Atriplex spp. (Chenopodiaceae) in southern California. Entomography. 1986;4:55–107.

Hawkins  BA.  Pattern and Process in Host-Parasitoid Interaction. Cambridge: Cambridge University Press, 1994.

Heath  JJ, Stireman  JO.  Dissecting the association between a gall midge, Asteromyia carbonifera, and its symbiotic fungus, Botryosphaeria dothidea. Entomol Exp Appl. 2010;137:36–49.

Heath  JJ.  Assessing the drivers of adaptive radiation in a complex of gall midges: a multitrophic perspective on ecological speciation. Thesis, Wright State University, Dayton, 2012.

Hebert  PDN, Ratnasingham  S, Zakharov  EV  et al.  Counting animal species with DNA barcodes: Canadian insects. Philos Trans R Soc Lond B Biol Sci. 2016;371:20150333. PubMed PMC

Heneberg  P, Bizos  J, Čmoková  A  et al.  Assemblage of filamentous fungi associated with aculeate hymenopteran brood in reed galls. J Invert Pathol. 2016;133:95–106. PubMed

Henk  DA, Farr  DF, Aime  MC.  Mycodiplosis (Diptera) infestation of rust fungi is frequent, wide spread and possibly host specific. Fungal Ecol. 2011;4:284–9.

Herman  RP, Bynum  HG, Alexander  AB.  Interaction between the black yeast Aureobasidium pullulans and the gall midge Lasioptera ephedricola in gall formation on the desert shrub Ephedra trifurca. Ecography. 1993;16:261–8.

Highland  HA. Life history of Asphondylia ilicicola (Diptera: Cecidomyiidae), a pest of American holly. J Econ Entomol. 1964;57:81–3.

Huggins  TR.  Gall morphology and the effects of host plant water status on the Asphondylia auripila group on Larrea tridentata in the Mojave Desert, Granite Mountains, California. PhD Thesis, Los Angeles: University of California, 2008.

Hulcr  J, Barnes  I, De Beer  ZW  et al.  Bark beetle mycobiome: collaboratively defined research priorities on a widespread insect-fungus symbiosis. Symbiosis. 2020;81:101–13.

Itoh  H, Jang  S, Takeshita  K  et al.  Host–symbiont specificity determined by microbe–microbe competition in an insect gut. Proc Natl Acad Sci USA. 2019;116:22673–82. PubMed PMC

Janson  EM, Grebenok  RJ, Behmer  ST  et al.  Same host-plant, different sterols: variation in sterol metabolism in an insect herbivore community. J Chemical Ecol. 2009;35:1309–19. PubMed

Janson  EM, Peeden  ER, Stireman  JO  et al.  Symbiont-mediated phenotypic variation without co-evolution in an insect–fungus association. J Evol Biol. 2010;23:2212–28. PubMed

Janson  EM.  The Evolutionary Ecology of an Insect-fungus Interaction: Botryosphaeria dothidea, Symbiotic with the Goldenrod-galling Midge Ology of an Insect-fungus Interaction: Asteromyia carbonifera (Diptera: Cecidomyiidae). PhD Thesis, Nashville, Tennessee: Vanderbilt University, 2010.

Jing  X, Behmer  ST.  Insect sterol nutrition: physiological mechanisms, ecology, and applications. Annu Rev Entomol. 2020;65:251–71. PubMed

Joy  JB, Crespi  BJ.  Adaptive radiation of gall-inducing insects within a single host-plant species. Evolution. 2007;61:784–95. PubMed

Joy  JB.  Symbiosis catalyses niche expansion and diversification. Proc R Soc B. 2013;280:20122820. PubMed PMC

Kaiser  P.  On the importance of the hyphae of mycelia in mycotic galls. Investigations on Lasioptera rubi (Schrank, 1803) (Diptera, Cecidomyiidae). Entomologische Mitteilungen Aus Dem Zoologischen Museum Hamburg. 1978;105:41–8.

Kaiser  W, Huguet  E, Casas  J  et al.  Plant green-island phenotype induced by leaf-miners is mediated by bacterial symbionts. Proc R Soc B Biol Sci. 2010;277:2311–9. PubMed PMC

Kaushal  K, Mishra  AN, Varma  PK  et al.  Dipteran fly (Mycodiplosis sp): a natural bioagent for controlling leaf rust (Puccinia recondita tritici) of wheat (Triticum aestivum). Indian J Agric Sci. 2014;71:136–8.

Kehr  V, Kost  G.  Mikrohabitat Pflanzengalle: das Zusammenleben von Gallmxsücken und Pilzen. Biol Unserer Zeit. 1999;29:18–25.

Kikuchi  Y, Hosokawa  T, Fukatsu  T.  Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl Environ Microb. 2007;73:4308–16. PubMed PMC

Kjærandsen  J.  Current state of DNA barcoding of sciaroidea (Diptera)—highlighting the need to build the reference library. Insects. 2022;13:147. PubMed PMC

Kobune  S, Kajimura  H, Masuya  H  et al.  Symbiotic fungal flora in leaf galls induced by Illiciomyia yukawai (Diptera: Cecidomyiidae) and in its mycangia. Microb Ecol. 2012;63:619–27. PubMed

Kolesik  P, Whittemore  R, Stace  HM.  Asphonylia anthocercidis, a new species of Cecidomyiidae (Diptera) inducing fruit galls on Anthcercis littorea (Soanaceae) in Western Australia. Trans R Soc S Aust. 1997;121:157–61.

Krischik  V, McCloud  ES, Davidson  JA.  Selective avoidance by vertebrate frugivores of green holly berries infested with a cecidomyiid fly (Diptera: Cecidomyiidae). Am Midl Nat. 1989;121:350.

Kushalappa  AC, Eskes  AB.  Coffee Rust: Epidemiology, Resistance, and Management. Boca Raton: CRC Press, 1989.

Labandeira  CC, Yeates  DK, Wiegmann  BM.  Fossil history and evolutionary ecology of Diptera and their associations with plants. In: Yeates  DK, Wiegmann  BM (eds), The Evolutionary Biology of Flies. New York: Columbia University Press, 2005, 217–73.

Lawrey  JD, Diederich  P.  Lichenicolous fungi: interactions, evolution, and biodiversity. Bryologist. 2003;106:80–120.

Lawson  SP, Christian  N, Abbot  P.  Comparative analysis of the biodiversity of fungal endophytes in insect-induced galls and surrounding foliar tissue. Fung Divers. 2014;66:89–97.

Lebel  T, Peele  C, Veenstra  A.  Fungi associated with Asphondylia (Diptera: Cecidomyiidae) galls on Sarcocornia quinqueflora and Tecticornia arbuscula (Chenopodiaceae). Fung Divers. 2012;55:143–54.

Lewinsohn  E, Sitrit  Y, Bar  E  et al.  Not just colors—carotenoid degradation as a link between pigmentation and aroma in tomato and watermelon fruit. Trends Food Sci Tech. 2005;16:407–15.

Li  H, Young  SE, Poulsen  M  et al.  Symbiont-mediated digestion of plant biomass in fungus-farming insects. Annu Rev Entomol. 2021;66:297–316. PubMed

Li  Y, Ruan  Y-Y, Stanley  EL  et al.  Plasticity of mycangia in Xylosandrus ambrosia beetles. Insect Sci. 2019;26:732–42. PubMed

Malagaris  P.  Biology and ecology of Asphondylia coridothymi (Diptera: Cecidomyiidae) inducing galls on Coridothymus capitatus on the island of Samos, Greece. Acta Soc Zool Bohem. 2011;75:239–51.

Mamaev  BM.  Evolution of Gall Forming Insects, Gall Midges. London: British Library Lending Division, 1975.

Manawasinghe  IS, Zhang  W, Li  X  et al.  Novel microsatellite markers reveal multiple origins of Botryosphaeria dothidea causing the Chinese grapevine trunk disease. Fung Ecol. 2018;33:134–42.

Mani  MS.  Mycocecidia. In: Ecology of Plant Galls. Dordrecht: Springer Netherlands, 1964,243–53.

Marsberg  A, Kemler  M, Jami  F  et al.  Botryosphaeria dothidea: a latent pathogen of global importance to woody plant health. Mol Plant Pathol. 2017;18:477–88. PubMed PMC

Meudt  HM, Clarke  AC.  Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci. 2007;12:106–17. PubMed

Meyer  J.  Cecidogenese de la galle de Lasioptera rubi heeger et role nourricier dun mycelium symbiotique. Comptes Rendus Hebdomadaires Des Séances De L'académie Des Sciences. 1952;234:2556–8.

Meyer  J.  Plant Galls and Gall Inducers. Berlin, Stuttgart: Gebrüder Borntraeger;  1987.

Moise  ERD, Bowden  JJ, Stastny  M.  Suboptimal host tree benefits the overwintering of a destructive forest insect pest. Basic Appl Ecol. 2023;71:72–84.

Moral  J, Muñoz-Díez  C, González  N  et al.  Characterization and pathogenicity of botryosphaeriaceae species collected from olive and other hosts in Spain and California. Phytopathology. 2010;100:1340–51. PubMed

Morgan  FD.  Bionomics of Siricidae. Annu Rev Entomol. 1968;13:239–56.

Mueller  UG, Gerardo  NM, Aanen  DK  et al.  The evolution of agriculture in insects. Annu Rev Ecol Evol Syst. 2005;36:563–95.

Nagle  FS, Casamatta  DA, Rossi  A.  Genetic analysis of the fungal community resident in Asphondylia borrichiae (Diptera: Cecidomyiidae) galls. Entomology 2019. Saint Louis: ESA, 2019.

Nijveldt  W.  Gall midges of economic importance. Anzeiger Für Schädlingskunde Und Pflanzenschutz. 1969;42:62–62.

Nijveldt  WC, Yukawa  J.  A taxonomic study on Salix-inhabiting gall midges in Japan (Diptera, Cecidomyiidae). Bull Kitakyushu Mus Nat Hist. 1982;4:23–56.

Nyman  T, Julkunen-Tiitto  R.  Manipulation of the phenolic chemistry of willows by gall-inducing sawflies. Proc Natl Acad Sci USA. 2000;97:13184–7. PubMed PMC

Orphanides  GM.  Biology of the carob midge complex, Asphondylia spp. (Diptera, Cecidomyiidae), in Cyprus. Bull Entomol Res. 1975;65:381–90.

Pan  L-Y, Chen  W-N, Chiu  S-T  et al.  Is a gall an extended phenotype of the inducing insect? A comparative study of selected morphological and physiological traits of leaf and stem galls on Machilus thunbergii (Lauraceae) induced by five species of Daphnephila (Diptera: Cecidomyiidae) in northeastern Taiwan. Zool Sci. 2015;32:314–21. PubMed

Park  I, Sanogo  S, Hanson  SF  et al.  Molecular identification of Botryosphaeria dothidea as a fungal associate of the gall midge Asphondylia prosopidis on mesquite in the United States. BioControl. 2019;64:209–19.

Parnell  JR  Investigations on the biology and larval morphology of the insects associated with the galls of Asphondylia sarothamni H. Loew (Diptera: Cecidomyidae) on broom (Sarothamnus scoparius (L.) Wimmer.). Trans Royal Ent Soc London. 2009;116:255–73.

Pažoutová  S, Šrůtka  P, Holuša  J  et al.  Diversity of xylariaceous symbionts in Xiphydria woodwasps: role of vector and a host tree. Fung Ecol. 2010;3:392–401.

Perdikis  D, Lykouressis  D, Paraskevopoulos  A  et al.  A new insect pest, Lasioptera sp. (Diptera: Cecidomyiidae), on tomato and cucumber crops in glasshouses in Greece. EPPO Bulletin. 2011;41:442–4.

Petrini  LE, Petrini  O, Laflamme  G.  Recovery of endophytes of Abies balsamea from needles and galls of Paradiplosis tumifex. Phytoprotection. 1989;70:97–103.

Phillips  AJL, Alves  A, Abdollahzadeh  J  et al.  The botryosphaeriaceae: genera and species known from culture. Stud Mycol. 2013;76:51–167. PubMed PMC

Plakidas  JD.  The newly discovered spring crown gall of asphondylia rudbeckiaeconspicua (Diptera: Cecidomyiidae) on Rudbeckia laciniata (Asteraceae) in Pennsylvania. Proc Entomol Soc Wash. 1988;90:393.

Popescu  IE, Gostin  IN.  Lasioptera rubi, a pest of Rubus idaeus: galls morphology, anatomy and histochemistry. Agriculture. 2024;14:1761.

Price  PW, Clancy  KM.  Interactions among three trophic levels: gall size and parasitoid attack. Ecology. 1986;67:1593–600.

Price  PW, Pschorn-Walcher  H.  Are galling insects better protected against parasitoids than exposed feeders?: a test using tenthredinid sawflies. Ecol Entomol. 1988;13:195–205.

Pyszko  P, Šigutová  H, Kolařík  M  et al.  Mycobiomes of two distinct clades of ambrosia gall midges (Diptera: Cecidomyiidae) are species-specific in larvae but similar in nutritive mycelia. Microbiol Spectr. 2024;12:e02830–23. PubMed PMC

Raman  A, Schaefer  CW, Withers  TM (eds). Gall-Inducing Coleoptera. Enfield: Science Publishers, Inc, 2005.

Raman  A, Suryanarayanan  TS.  Fungus–plant interaction influences plant-feeding insects. Fung Ecol. 2017;29:123–32.

Raman  A.  Biogeographical implications in species richness, biological diversity, and evolution of gall-inducing insects of the Orient and the eastern Palearctic. Orient Insects. 2007;41:9–25.

Reverchon  F, Contreras-Ramos  SM, Eskalen  A  et al.  Microbial biocontrol strategies for ambrosia beetles and their associated phytopathogenic fungi. Front Sustain Food Syst. 2021;5:737977.

Richter-Vollert  I.  Untersuchungen zur morphologie und ökologie von Asphondylia sarothamni H. Lw. Zoologica. 1964;112;1–54.

Rixon  ME, Bayly  MJ, McLay  TGB  et al.  Investigating gall midges (Asphondylia), associated microfungi and parasitoids in some chenopod plant hosts (Amaranthaceae) in south-eastern Australia. Arthropod-Plant Interactions. 2021;15:747–71.

Rohfritsch  O.  A fungus associated gall midge, Lasioptera arundinis (Schiner), on Phragmites australis (Cav.) Trin. Bull Soc Bot Fr Lett Bot. 1992;139:45–59.

Rohfritsch  O.  Morphological and behavioural adaptations of the gall midge lasioptera arundinis (Schiner) (Diptera, Cecidomyiidae) to collect and transport conidia of its fungal symbiont. Tijdschr Entomol. 1997;140:59–66.

Rohfritsch  O.  Plants, gall midges, and fungi: a three-component system. Ent Exp Appl. 2008;128:208–16.

Roskam  HC.  Phylogeny of gall midges (Cecidomyiidae). In: Raman A, Schaefer CW, Withers TM (eds). Biology, Ecology and Evolution of Gall-Inducing Arthropods. Vol. 2. Plymouth:Science Publishers;  2005, 305–19.

Roskam  JC.  Evolution of the gall-inducing guild. In: Shorthouse  JD, Rohfritsch  O (eds), Biology of Insect-Induced Galls. New York: Oxford University Press, 1992, 34–49.

Ross  H.  Praktikum der Gallenkunde “Cecidologie”: Entstehung—Entwicklung—Bau Der durch Tiere und Pflanzen Hervorgerufenen Gallbildungen sowie Ökologie Der Gallenerreger. Berlin:  Springer-Verlag, 1932.

Rossi  AM, Murray  M, Hughes  K  et al.  Non-random distribution among a guild of parasitoids: implications for community structure and host survival. Ecol Entomol. 2006;31:557–63.

Rossi  AM, Stiling  P, Cattell  MV  et al.  Evidence for host-associated races in a gall-forming midge: trade-offs in potential fecundity. Ecol Entomol. 1999;24:95–102.

Rossi  AM, Stiling  PD, Strong  DR  et al.  Does gall diameter affect the parasitism rate of Asphondylia borrichiae (Diptera: Cecidomyiidae)?. Ecol Entomol. 1992;17:149–54.

Rowan  L.  Effects of Asphondylia borrichiae, simulated herbivory, and nutritional status on survival, flowering, and seed viability in Sea oxeye daisy (Borrichia frutescens). PhD Thesis, University of North Florida,2014.

Russo  R.  Field Guide to Plant Galls of California and Other Western States. Berkeley: University of California Press, 2006.

Russo  R.  Galls: surreal ornaments on blue oaks [Quercus douglasii, response to invading organisms, wasps]. Fremontia (USA). 1983;11:19–22.

Ryckegem  G.  Fungi on common reed (Phragmites australis): fungal diversity, community structure and decomposition processes. PhD Thesis, Ghent University, 2005.

Sá  CEMD, Silveira  FAO, Santos  JC  et al.  Anatomical and developmental aspects of leaf galls induced by Schizomyia macrocapillata Maia (Diptera: Cecidomyiidae) on Bauhinia brevipes Vogel (Fabaceae). Rev Bras Bot. 2009;32:319–27.

Savelkoul  PHM, Aarts  HJM, De Haas  J  et al.  Amplified-fragment length polymorphism analysis: the state of an art. J Clin Microbiol. 1999;37:3083–91. PubMed PMC

Scott  JJ, Oh  D-C, Yuceer  MC  et al.  Bacterial protection of beetle-fungus mutualism. Science. 2008;322:63–63. PubMed PMC

Ševčík  J, Kaspřák  D, Mantič  M  et al.  Molecular phylogeny of the megadiverse insect infraorder bibionomorpha sensu lato (Diptera). PeerJ. 2016;4:e2563. PubMed PMC

Sharma  RM.  Midge Galls (Diptera: cecidomyiidae) of Andaman Islands, India. Nelumbo. 1989;31:28–49.

Sharpe  S.  Endophytic fungi associated with galls and host plants of Asphondylia borrichiae (Diptera: Cecidomyiidae). PhD Thesis, University of North Florida, 2024.

Sikora  T, Jaschhof  M, Mantič  M  et al.  Considerable congruence, enlightening conflict: molecular analysis largely supports morphology-based hypotheses on Cecidomyiidae (Diptera) phylogeny. Zool J Linn Soc. 2019;185:98–110.

Simon  J-C, Biere  A, Sugio  A.  The promises and challenges of research on plant-insect-microbe interactions. Insect Sci. 2017;24:904–9.

Skuhravá  M, Skuhravý  V, Skrzypczyńska  MA  et al.  Gall midges (Cecidomyiidae, Diptera) of Poland. Pryszczarki (Cecidomyiidae, Diptera) Polski. Ann Upper Silesian Mus (Entomol). 2008;16:5–160.

Skuhravá  M, Skuhravý  V.  Die Gallmücken des Schilfes (Phragmites communis Trin.). Studie Ceskoslovenska Akademia Ved. 1981;3:1–150.

Skuhravá  M, Skuhravý  V.  Die Gallmückenfauna (Diptera, Cecidomyiidae) Südtirols: 7. Gallmücken des schlerngebietes in den westlichen Dolomiten. Gredleriana. 2007;7:307–24.

Slippers  B, Crous  PW, Denman  S  et al.  Combined multiple gene genealogies and phenotypic characters differentiate several species previously identified as Botryosphaeria dothidea. Mycologia. 2004;96:83–101. PubMed

Sloan  WT, Lunn  M, Woodcock  S  et al.  Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ Microbiol. 2006;8:732–40. PubMed

Solinas  M.  Cephalic structures and special feeding habits in larvae of Cecidomyiidae (Insecta, Diptera): biodiversity, evolution and ecology in action. Accademia Nazionale Italiana Di Entomologia. 2011;59:153–65.

Stephanie  K, Andreas  K, Teja  T.  Interactions between the rust fungus Puccinia punctiformis and ectophagous and endophagous insects on creeping thistle. J Appl Ecol. 2001;38:548–56.

Stiling  P, Rossi  AM, Strong  DR  et al.  Life history and parasites of Asphondylia borrichiae (Diptera: Cecidomyiidae), a gall maker on Borrichia frutescens. Fla Entomol. 1992;75:130.

Stireman  JO III, Devlin  H, Carr  TG  et al.  Evolutionary diversification of the gall midge genus Asteromyia (Cecidomyiidae) in a multitrophic ecological context. Mol Phylogenet Evol. 2010;54:194–210. PubMed

Stodůlková  E, Man  P, Kuzma  M  et al.  A highly diverse spectrum of naphthoquinone derivatives produced by the endophytic fungus Biatriospora sp. CCF 4378. Folia Microbiol. 2015;60:259–67. PubMed

Stokes  K, Stiling  P, Gilg  MR  et al.  The gall midge Asphondylia borrichiae (Diptera: Cecidomyiidae): an indigenous example of host-associated genetic divergence in sympatry. Environ Entomol. 2012;41:1246–54. PubMed

Stone  GN, Schönrogge  K.  The adaptive significance of insect gall morphology. Trends Ecol Evol. 2003;18:512–22.

Strzałka  B, Kolařík  M, Jankowiak  R.  Geosmithia associated with hardwood-infesting bark and ambrosia beetles, with the description of three new species from Poland. Antonie Van Leeuwenhoek. 2021;114:169–94. PubMed

Sugiura  S, Yamazaki  K, Fukasawa  Y.  Weevil parasitism of ambrosia galls. Ann Entomol Soc Am. 2004;97:184–93.

Takeshita  K, Kikuchi  Y.  Riptortus pedestris and Burkholderia symbiont: an ideal model system for insect–microbe symbiotic associations. Res Microbiol. 2017;168:175–87. PubMed

Taper  ML, Case  TJ.  Interactions between oak tannins and parasite community structure: unexpected benefits of tannins to cynipid gall-wasps. Oecologia. 1987;71:254–61. PubMed

Taper  ML, Zimmerman  EM, Case  TJ.  Sources of mortality for a cynipid gall-wasp (Dryocosmus dubiosus (Hymenoptera: Cynipidae)): the importance of the tannin/fungus interaction. Oecologia. 1986;68:437–45. PubMed

Tastás-Duque  R, Sylvén  E.  Sensilla and cuticular appendages on the female abdomen of Lasioptera rubi (Schrank) (Diptera, Cecidomyiidae). Acta Zoologica. 1989;70:163–74.

Te Strake  D, Keagy  AH, Stiling  PD.  Fungi associated with Borrichia frutescens (asteraceae): insect galls and endophytes. SIDA, Contributions to Botany. 2006;22:755–63.

Thomas  DB, Goolsby  JA.  Morphology of the preimaginal stages of Lasioptera donacis Coutin (Diptera: Cecidomyiidae), a candidate biocontrol agent for giant arundo cane. Psyche J Entomol. 2015;2015:1–11.

Tokuda  M, Yukawa  J.  Biogeography and evolution of gall midges (Diptera: Cecidomyiidae) inhabiting broad-leaved evergreen forests in Oriental and eastern Palearctic regions. Orient Insects. 2007;41:121–39.

Tokuda  M.  Biology of asphondyliini (Diptera: Cecidomyiidae). Entomol Sci. 2012;15:361–83.

Tsolova  E, Koleva  L, Nikolov  A.  Management and control of raspberry stem gall midge (Lasioptera rubi (Schrank, 1803), Diptera: Cecidomyiidae) in biological raspberry production. J Mt Agric Balk. 2022;25:344–56.

Uechi  N, Kim  W, Tokuda  M  et al.  Genetic and ecological differences between Asphondylia yushimai and the ivy gall midge, Asphondylia sp. (Diptera: Cecidomyiidae), with a new distribution record of the former from Hokkaido and South Korea. Appl Entomol Zool. 2018;53:363–71.

Uechi  N, Yukawa  J.  Life history patterns and host ranges of the genus asphondylia (Diptera: Cecidomyiidae). In: Ozaki  K, Yukawa  J, Ohgushi  T  et al. (eds), Galling Arthropods and Their Associates. Tokyo: Springer Japan, 2006, 275–85.

Um  S, Fraimout  A, Sapountzis  P  et al.  The fungus-growing termite Macrotermes natalensis harbors bacillaene-producing Bacillus sp. that inhibit potentially antagonistic fungi. Sci Rep. 2013;3:3250. PubMed PMC

Veenstra  AA, Lebel  T, Milne  J  et al.  Two new species of Dactylasioptera (Diptera: Cecidomyiidae) inducing stem galls on Maireana (Chenopodiaceae). Austral Entomol. 2019;58:220–34.

Waloff  N.  Studies on the insect fauna on Scotch broom Sarothamnus scoparius (L.) Wimmer. Adv Ecol Res. 1968;5:87–208.

Wearn  JA, Sutton  BC, Morley  NJ  et al.  Species and organ specificity of fungal endophytes in herbaceous grassland plants. J Ecol. 2012;100:1085–92.

Weis  AE.  Use of symbiotic fungus by the gall maker Asteromyia carbonifera to inhibit attack by the parasitoid Torymus capite. Ecology. 1982;63:1602–5.

Wiesenborn  WD.  Phenology of Leptothrips larreae Hood, 1938 (Thysanoptera: Phlaeothripidae) in Asphondylia auripila Felt, 1908 (Diptera: Cecidomyiidae) creosote stem galls. Pan-Pacific Entomol. 2015;91:203–6.

Wilson  D.  Fungal endophytes which invade insect galls: insect pathogens, benign saprophytes, or fungal inquilines?. Oecologia. 1995;103:255–60. PubMed

Xiao  J, Zhang  Q, Gao  Y-Q  et al.  Secondary metabolites from the endophytic Botryosphaeria dothidea of Melia azedarach and their antifungal, antibacterial, antioxidant, and cytotoxic activities. J Agric Food Chem. 2014;62:3584–90. PubMed

Yamazaki  K.  Caterpillar mimicry by plant galls as a visual defense against herbivores. J Theor Biol. 2016;404:10–4. PubMed

Yamazoe  S, Hasegawa  K, Ito  J  et al.  Hederyne A, a new antimicrobial polyacetylene from galls of Hedera rhombea Bean. J Asian Nat Prod Res. 2007;9:537–40. PubMed

Yukawa  J, Harris  KM, Kim  W.  Descriptions of two new species of the genus Lasioptera (Diptera: Cecidomyiidae) that infest tomato in the Mediterranean Region and Hokkaido, Japan. Appl Entomol Zool. 2020;55:129–40.

Yukawa  J, Miyamoto  K, Yamaguchi  T  et al.  Key-factor/key-stage analysis of long-term life table data for a fruit gall midge, asphondylia sphaera (Diptera: Cecidomyiidae). Ecol Entomol. 2016;41:516–26.

Yukawa  J, Rohfritsch  O.  Biology and ecology of gall-inducing cecidomyiidae (Diptera). In: Raman  A (ed.), Biology, Ecology, and Evolution of Gall-Inducing Arthropods. Enfield: Science Publishers, Inc, 2005, 273–304.

Yukawa  J, Tokuda  M, Uechi  N  et al.  Ecological divergence among morphologically and genetically related Asphondylia species (Diptera: Cecidomyiidae), with new life history data for three congeners including the Alpinia fruit gall midge. Entomol Sci. 2019;22:437–49.

Yukawa  J, Uechi  N, Horikiri  M  et al.  Description of the soybean pod gall midge, Asphondylia yushimai sp. n. (Diptera: Cecidomyiidae), a major pest of soybean and findings of host alternation. Bull Entomol Res. 2003;93:73–86. PubMed

Yukawa  J, Uechi  N, Tokuda  M  et al.  Radiation of gall midges (Diptera: Cecidomyiidae) in Japan. Basic Applied Ecol. 2005;6:453–61.

Zachariades  C, Hoffmann  JH, Roberts  AP.  Biological control of mesquite (Prosopis species) (Fabaceae) in South Africa. Afr Entomol. 2011;19:402–15.

Zaman  R, May  C, Ullah  A  et al.  Bark beetles utilize ophiostomatoid fungi to circumvent host tree defenses. Metabolites. 2023;13:239. PubMed PMC

Zimowska  B, Okoń  S, Becchimanzi  A  et al.  Phylogenetic characterization of Botryosphaeria strains associated with Asphondylia galls on species of Lamiaceae. Diversity. 2020;12:41.

Zimowska  B, Viggiani  G, Nicoletti  R  et al.  First report of the gall midge asphondylia serpylli on thyme (Thymus vulgaris), and identification of the associated fungal symbiont. Ann Appl Biol. 2017;171:89–94.

Zorn  H, Langhoff  S, Scheibner  M  et al.  A peroxidase from Lepista irina cleaves β,β-carotene to flavor compounds. Biol Chem. 2003;384:1049–56. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...