Ambrosia gall midges (Diptera: Cecidomyiidae) and their microbial symbionts as a neglected model of fungus-farming evolution
Language English Country Great Britain, England Media print
Document type Journal Article, Review
Grant support
GA23-07026S
Czech Science Foundation
PubMed
40175297
PubMed Central
PMC11997659
DOI
10.1093/femsre/fuaf010
PII: 8104281
Knihovny.cz E-resources
- Keywords
- ambrosia gall midges, fungal symbionts, fungus farming, host shift, host specialization, phytomycetophagy,
- MeSH
- Biological Evolution * MeSH
- Diptera * microbiology physiology MeSH
- Fungi * physiology MeSH
- Plant Tumors parasitology MeSH
- Symbiosis * MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Ambrosia gall midges (AGMs) represent an intriguing group within the Cecidomyiidae, one of the most diversified dipteran families. AGMs form galls on plants, where they cultivate and consume fungal symbionts (phytomycetophagy). This mutualistic relationship may play a critical role in larval nutrition, gall morphogenesis, and protection against natural enemies. Although most other fungus-farming taxa have been intensively studied, AGMs have largely been neglected. This review synthesizes current knowledge on the diversity, biology, and ecological interactions of AGM, highlighting the intricate relationships with their fungal symbionts. The implications for adaptive radiation and speciation are critically considered, including how fungal associations may have facilitated ecological flexibility and diversification. We also tackle the processes of coevolution, not only between AGM and their fungal symbionts but also involving plants and parasitoids. We identify the most pressing issues and discrepancies in the current understanding the AGM-fungi interactions. Key areas of future research should include elucidating fungal acquisition and transmission mechanisms, determining the specificity and diversity of AGM-associated fungal communities, understanding the evolutionary pathways leading to phytomycetophagy, and addressing taxonomic challenges within the AGM group, where species identification has been complicated by reliance on gall morphology and host specificity.
See more in PubMed
Aanen DK, Boomsma JJ. The evolutionary origin and maintenance of the mutualistic symbiosis between termites and fungi. Insect Symbiosis. Vol. 3. Boca Raton, FL: CRC Press, 2006.
Aanen DK, Ros VI, de F et al. Patterns of interaction specificity of fungus-growing termites and termitomyces symbionts in South Africa. BMC Evol Biol. 2007;7:115. PubMed PMC
Abrahamson WG. Nutritional ecology of arthropod gall makers. In: Slansky F Jr., Rodriguez JG (eds), Nutritional Ecology of Insects, Mites, Spiders, and Related Invertebrates. New York: Wiley, 1987, 235–58.
Adair RJ, Burgess T, Serdani M et al. Fungal associations in Asphondylia (Diptera: Cecidomyiidae) galls from Australia and South Africa: implications for biological control of invasive acacias. Fungal Ecol. 2009;2:121–34.
Adair RJ, Neser S, Kolesik P. Australian seed-preventing gall midges (Diptera: Cecidomyiidae) as potential biological control agents for invasive Acacia spp. South Africa. In:Proceedings of the X International Symposium on Biological Control of Weeds. Citeseer, 2000, 605–13.
Amann RI, Ludwig W, Schleifer K-H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995;59:143–69. PubMed PMC
Barke J, Seipke RF, Grüschow S et al. A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. BMC Biol. 2010;8:109. PubMed PMC
Bartlett L, Connor EF. Exogenous phytohormones and the induction of plant galls by insects. Arthropod-Plant Interact. 2014;8:339–48.
Batra LR, Lichtwardt RW. Association of fungi with some insect galls. J Kans Entomol Soc. 1963;36:262–78.
Bernardo U, Nugnes F, Gualtieri L et al. A new gall midge species of asphondylia (Diptera: Cecidomyiidae) inducing flower galls on Clinopodium nepeta (Lamiaceae) from Europe, its phenology, and associated fungi. Environ Entomol. 2018;47:609–22. PubMed
Biedermann PHW, Vega FE. Ecology and evolution of insect–fungus mutualisms. Annu Rev Entomol. 2020;65:431–55. PubMed
Bissett J, Borkent A. Ambrosia galls: the significance of fungal nutrition in the evolution of the Cecidomyiidae (Diptera). In: Pirozynski KA, Hawksworth DL (eds), Coevolution of Fungi with Plants and Animals. London: Academic Press, 1988, 203–26.
Bittleston LS, Pierce NE, Ellison AM et al. Convergence in multispecies interactions. Trends Ecol Evol. 2016;31:269–80. PubMed
Boddy L, Hiscox J. Fungal ecology: principles and mechanisms of colonization and competition by saprotrophic fungi. Microbiol Spectr. 2016;4:FUNK-0019-2016. PubMed
Bon M-C, Goolsby JA, Mercadier G et al. Detection of a diverse endophyte assemblage within fungal communities associated with the Arundo leaf miner, Lasioptera donacis (Diptera: Cecidomyiidae). Diversity. 2023;15:571.
Bon M-C, Guermache F, de SD et al. Insights into the microbes and nematodes hosted by pupae of the arundo leaf miner, Lasioptera donacis (Diptera: Cecidomyiidae). Fla Entomol. 2018;101:505–7.
Borkent A, Bissett J. Gall midges (Diptera: Cecidomyiidae) are vectors for their fungal symbionts. Symbiosis. 1985;1:185–94.
Borkent A, Brown BV, Adler PH et al. Remarkable fly (Diptera) diversity in a patch of Costa Rican cloud forest: why inventory is a vital science. Zootaxa. 2018;4402:53–90. PubMed
Bragança GPP, Ferreira BG, Isaias RMDS. Distinct cytological mechanisms for food availability in three Inga ingoides (Fabaceae)—Cecidomyiidae gall systems. Protoplasma. 2022;259:155–62. PubMed
Bronner N. The role of nutritive cells in the nutrition of cynipids and cecidomyiids. In: Shorthouse JD, Rohfritsch O (eds), Biology of Insect-Induced Galls. New York: Oxford University Press, 1992, 118–40.
Buchner P. Endosymbiosis of Animals with Plant Microorganisms. New York: Interscience Publishers/John Wiley, 1965.
Bultman TL, White JF. “Pollination” of a fungus by a fly. Oecologia. 1988;75:317–9. PubMed
Cafaro MJ, Currie CR. Phylogenetic analysis of mutualistic filamentous bacteria associated with fungus-growing ants. Can J Microbiol. 2005;51:441–6. PubMed
Camp RR. Insect–fungus blister galls on Solidago graminifolia and S. rugosa. I. A macroscopic and light microscopic study of the host–parasite relationship. Can J Bot. 1981;59:2466–77.
Cardoza YJ, Vasanthakumar A, Suazo A et al. Survey and phylogenetic analysis of culturable microbes in the oral secretions of three bark beetle species. Entomol Exp Appl. 2009;131:138–47.
Carroll G. Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology. 1988;69:2–9.
Carroll GC. The biology of endophytism in plants with particular reference to woody perennials. In: Fokkema NJ, van den Heuvel J (eds), Microbiology of the Phyllosphere. Cambridge: Cambridge University Press, 1986, 203–22.
Chakraborty A, Modlinger R, Ashraf MZ et al. Core mycobiome and their ecological relevance in the gut of five Ips bark beetles (Coleoptera: Curculionidae: Scolytinae). Front Microbiol. 2020;11:568853. 10.3389/fmicb.2020.568853. PubMed DOI PMC
Chao J-F, Liao G-I. Histocytological aspects of four types of ambrosia galls on Machilus zuihoensis Hayata (Lauraceae). Flora—Morphol Distrib Func Ecol Plants. 2013;208:157–64.
Chimeno C, Hausmann A, Schmidt S et al. Peering into the darkness: DNA barcoding reveals surprisingly high diversity of unknown species of Diptera (Insecta) in Germany. Insects. 2022;13:82. PubMed PMC
Clay K, Schardl C. Evolutionary origins and ecological consequences of endophyte symbiosis with grasses. Am Nat. 2002;160:S99–127. PubMed
Clay K. Clavicipitaceous endophytes of grasses: their potential as biocontrol agents. Mycol Res. 1989;92:1–12.
Clouse RM. The importance of gall size for sea daisy gall midge parasitoids. J Kans Entomol Soc. 1995;68:184–8.
Cole ME, Ceja-Navarro JA, Mikaelyan A. The power of poop: defecation behaviors and social hygiene in insects. PLoS Pathog. 2021;17:e1009964. PubMed PMC
Currie CR, Poulsen M, Mendenhall J et al. Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science. 2006;311:81–3. PubMed
D’Souza ML, van der Bank M, Shongwe Z et al. Biodiversity baselines: tracking insects in Kruger National Park with DNA barcodes. Biol Conserv. 2021;256:109034.
De Fine Licht HH, Biedermann PHW. Patterns of functional enzyme activity in fungus farming ambrosia beetles. Front Zool. 2012;9:13. PubMed PMC
De Fine Licht HH, Schiøtt M, Rogowska-Wrzesinska A et al. Laccase detoxification mediates the nutritional alliance between leaf-cutting ants and fungus-garden symbionts. Proc Natl Acad Sci USA. 2013;110:583–7. PubMed PMC
Denman S, Crous PW, Taylor JE et al. An overview of the taxonomic history of Botryosphaeria and a re-evaluation of its anamorphs based on morphology and ITS rDNA phylogeny. Stud Mycol. 2000;45:129–40.
Dentinger BT, Bills C. Fungal cultivation by insects. In: John Wiley & Sons, Ltd (ed.), Encyclopedia of Life Sciences. 1st edn. Chichester: Wiley, 2018, 1–9.
Diehl JMC, Kassie D, Biedermann PHW. Friend or foe: ambrosia beetle response to volatiles of common threats in their fungus gardens. Symbiosis. 2023;89:353–8.
Docters van Leeuwen WM. An ambrosia-gall on Symplocos fasciculata Zoll. Annales Du Jardin Botanique De Buitenzorg. 1939;49:27–42.
Docters Van Leeuwen WM. Ueber eine galle auf Symplocus fasiculata Zoll., verursacht durch eine gallmucke: a sphondylia bursaria Felt, die mit einem fungus zusammen lebt. Marcellia. 1929;25:61–6.
Dorchin N, Freidberg A, Aloni R. Morphogenesis of stem gall tissues induced by larvae of two cecidomyiid species (Diptera: Cecidomyiidae) on Suaeda monoica (Chenopodiaceae). Can J Bot. 2002;80:1141–50.
Dorchin N, Harris KM, Stireman JO. Phylogeny of the gall midges (Diptera, Cecidomyiidae, Cecidomyiinae): systematics, evolution of feeding modes and diversification rates. Mol Phylogenet Evol. 2019;140:106602. PubMed
Dorchin N, Joy JB, Hilke LK et al. Taxonomy and phylogeny of the asphondylia species (Diptera: Cecidomyiidae) of North American goldenrods: challenging morphology, complex host associations, and cryptic speciation. Zool J Linn Soc. 2015;174:265–304.
Dreger-Jauffret F. Diversity of gallinducing insects and their galls. In: Shorthouse JD, Rohfritsch O (eds), Biology of Insect-Induced Galls. New York: Oxford University Press, 1992, 8–33.
Elkhateeb W. Fungi and insects as models of extraordinary symbiosis. Stud Fungi. 2021;6:469–79.
Fedotova ZA, Perkovsky EE. First findings of gall midges (Diptera, Cecidomyioidea, Cecidomyiidae) of the tribes Karshomyiini (Mexican amber) and Bremiini (Dominican amber). Paleontol J. 2019;53:1060–73.
Frickmann H, Zautner AE, Moter A et al. Fluorescence in situ hybridization (FISH) in the microbiological diagnostic routine laboratory: a review. Crit Rev Microbiol. 2017;43:263–93. PubMed
Gagné RJ, Jaschhof M. A Catalog of the Cecidomyiidae (Diptera) of the World. 5th edn. Washington, DC: US National Museum, 2021.
Gagné RJ, Orphanides GM. The pupa and larva of Asphondylia gennadii (Diptera: Cecidomyiidae) and taxonomic implications. Bull Entomol Res. 1992;82:313–6.
Gagné RJ, Waring GL. The Asphondylia (Cecidomyiidae: Diptera) of creosote bush (Larrea tridentata) in north America. Proc Entomol Soc. 1990;92:649–71.
Gagné RJ, Woods WM. Native American plant hosts of Asphondylia websteri (Diptera: Cecidomyiidae). Ann Entomol Soc Am. 1988;81:447–8.
Gagné RJ. A taxonomic revision of the genus Asteromyia (Diptera: Cecidomyiidae). Miscel Publ Entomol Soc Am. 1968;6;1–40.
Gagné RJ. The Plant-Feeding Gall Midges of North America. Ithaca: Cornell University Press, 1989.
Gilbertson RL. Relationships between insects and wood-rotting basidiomycetes. In: Wheeler Q, Blackwell M (eds), Fungus-Insect Relationships. Perspectives in Ecology and Evolution. New York: Columbia University Press, 1984, 130–65.
Giron D, Glevarec G. Cytokinin-induced phenotypes in plant-insect interactions: learning from the bacterial world. J Chem Ecol. 2014;40:826–35. PubMed
Golenia A. Larwy muchoki Mycodiplosis sp. Zerujace na rdzyo Miety (Puccinia menthae Pers.) I ich rola w biologicznym zwalczamir choroby. Rev Appl Mycol. 1961;41:239–46.
Goolsby JA, Vacek AT, Salinas C et al. Host range of the European leaf sheath mining midge, Lasioptera donacis Coutin (Diptera: Cecidomyiidae), a biological control of giant reed, Arundo donax L. Biocontrol Sci Technol. 2017;27:781–95.
Graham SA. Gall makers on flowers of Cuphea (Lythraceae). Biotropica. 1995;27:461–7.
Gratton C, Welter SC. Does “enemy-free space” exist? Experimental host shifts of an herbivorous fly. Ecology. 1999;80:773–85.
Hammer TJ, De Clerck-Floate R, Tooker JF et al. Are bacterial symbionts associated with gall induction in insects?. Arthropod Plant Interact. 2021;15:1–12.
Hammon KE, Faeth SH. Ecology of plant-herbivore communities: a fungal component?. Nat Toxins. 1993;1:197–208. PubMed
Haridass ET. Midge-fungus interactions in a cucurbit stem gall. Phytophaga. 1987;1:57–74.
Harris KM. The taxonomic status of the carob gall midge, asphondylia gennadii (Marchal), comb. N. (Diptera, Cecidomyiidae), and of other Asphondylia species recorded from Cyprus. Bull Entomol Res. 1975;65:377–80.
Hata K, Futai K. Endophytic fungi associated with healthy pine needles and needles infested by the pine needle gall midge, thecodiplosis japonensis. Can J Bot. 1995;73:384–90.
Hawkins BA, Goeden RD, Gagné RJ. Ecology and taxonomy of the Asphondylia spp. (Diptera: Cecidomyiidae) Forming galls on Atriplex spp. (Chenopodiaceae) in southern California. Entomography. 1986;4:55–107.
Hawkins BA. Pattern and Process in Host-Parasitoid Interaction. Cambridge: Cambridge University Press, 1994.
Heath JJ, Stireman JO. Dissecting the association between a gall midge, Asteromyia carbonifera, and its symbiotic fungus, Botryosphaeria dothidea. Entomol Exp Appl. 2010;137:36–49.
Heath JJ. Assessing the drivers of adaptive radiation in a complex of gall midges: a multitrophic perspective on ecological speciation. Thesis, Wright State University, Dayton, 2012.
Hebert PDN, Ratnasingham S, Zakharov EV et al. Counting animal species with DNA barcodes: Canadian insects. Philos Trans R Soc Lond B Biol Sci. 2016;371:20150333. PubMed PMC
Heneberg P, Bizos J, Čmoková A et al. Assemblage of filamentous fungi associated with aculeate hymenopteran brood in reed galls. J Invert Pathol. 2016;133:95–106. PubMed
Henk DA, Farr DF, Aime MC. Mycodiplosis (Diptera) infestation of rust fungi is frequent, wide spread and possibly host specific. Fungal Ecol. 2011;4:284–9.
Herman RP, Bynum HG, Alexander AB. Interaction between the black yeast Aureobasidium pullulans and the gall midge Lasioptera ephedricola in gall formation on the desert shrub Ephedra trifurca. Ecography. 1993;16:261–8.
Highland HA. Life history of Asphondylia ilicicola (Diptera: Cecidomyiidae), a pest of American holly. J Econ Entomol. 1964;57:81–3.
Huggins TR. Gall morphology and the effects of host plant water status on the Asphondylia auripila group on Larrea tridentata in the Mojave Desert, Granite Mountains, California. PhD Thesis, Los Angeles: University of California, 2008.
Hulcr J, Barnes I, De Beer ZW et al. Bark beetle mycobiome: collaboratively defined research priorities on a widespread insect-fungus symbiosis. Symbiosis. 2020;81:101–13.
Itoh H, Jang S, Takeshita K et al. Host–symbiont specificity determined by microbe–microbe competition in an insect gut. Proc Natl Acad Sci USA. 2019;116:22673–82. PubMed PMC
Janson EM, Grebenok RJ, Behmer ST et al. Same host-plant, different sterols: variation in sterol metabolism in an insect herbivore community. J Chemical Ecol. 2009;35:1309–19. PubMed
Janson EM, Peeden ER, Stireman JO et al. Symbiont-mediated phenotypic variation without co-evolution in an insect–fungus association. J Evol Biol. 2010;23:2212–28. PubMed
Janson EM. The Evolutionary Ecology of an Insect-fungus Interaction: Botryosphaeria dothidea, Symbiotic with the Goldenrod-galling Midge Ology of an Insect-fungus Interaction: Asteromyia carbonifera (Diptera: Cecidomyiidae). PhD Thesis, Nashville, Tennessee: Vanderbilt University, 2010.
Jing X, Behmer ST. Insect sterol nutrition: physiological mechanisms, ecology, and applications. Annu Rev Entomol. 2020;65:251–71. PubMed
Joy JB, Crespi BJ. Adaptive radiation of gall-inducing insects within a single host-plant species. Evolution. 2007;61:784–95. PubMed
Joy JB. Symbiosis catalyses niche expansion and diversification. Proc R Soc B. 2013;280:20122820. PubMed PMC
Kaiser P. On the importance of the hyphae of mycelia in mycotic galls. Investigations on Lasioptera rubi (Schrank, 1803) (Diptera, Cecidomyiidae). Entomologische Mitteilungen Aus Dem Zoologischen Museum Hamburg. 1978;105:41–8.
Kaiser W, Huguet E, Casas J et al. Plant green-island phenotype induced by leaf-miners is mediated by bacterial symbionts. Proc R Soc B Biol Sci. 2010;277:2311–9. PubMed PMC
Kaushal K, Mishra AN, Varma PK et al. Dipteran fly (Mycodiplosis sp): a natural bioagent for controlling leaf rust (Puccinia recondita tritici) of wheat (Triticum aestivum). Indian J Agric Sci. 2014;71:136–8.
Kehr V, Kost G. Mikrohabitat Pflanzengalle: das Zusammenleben von Gallmxsücken und Pilzen. Biol Unserer Zeit. 1999;29:18–25.
Kikuchi Y, Hosokawa T, Fukatsu T. Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl Environ Microb. 2007;73:4308–16. PubMed PMC
Kjærandsen J. Current state of DNA barcoding of sciaroidea (Diptera)—highlighting the need to build the reference library. Insects. 2022;13:147. PubMed PMC
Kobune S, Kajimura H, Masuya H et al. Symbiotic fungal flora in leaf galls induced by Illiciomyia yukawai (Diptera: Cecidomyiidae) and in its mycangia. Microb Ecol. 2012;63:619–27. PubMed
Kolesik P, Whittemore R, Stace HM. Asphonylia anthocercidis, a new species of Cecidomyiidae (Diptera) inducing fruit galls on Anthcercis littorea (Soanaceae) in Western Australia. Trans R Soc S Aust. 1997;121:157–61.
Krischik V, McCloud ES, Davidson JA. Selective avoidance by vertebrate frugivores of green holly berries infested with a cecidomyiid fly (Diptera: Cecidomyiidae). Am Midl Nat. 1989;121:350.
Kushalappa AC, Eskes AB. Coffee Rust: Epidemiology, Resistance, and Management. Boca Raton: CRC Press, 1989.
Labandeira CC, Yeates DK, Wiegmann BM. Fossil history and evolutionary ecology of Diptera and their associations with plants. In: Yeates DK, Wiegmann BM (eds), The Evolutionary Biology of Flies. New York: Columbia University Press, 2005, 217–73.
Lawrey JD, Diederich P. Lichenicolous fungi: interactions, evolution, and biodiversity. Bryologist. 2003;106:80–120.
Lawson SP, Christian N, Abbot P. Comparative analysis of the biodiversity of fungal endophytes in insect-induced galls and surrounding foliar tissue. Fung Divers. 2014;66:89–97.
Lebel T, Peele C, Veenstra A. Fungi associated with Asphondylia (Diptera: Cecidomyiidae) galls on Sarcocornia quinqueflora and Tecticornia arbuscula (Chenopodiaceae). Fung Divers. 2012;55:143–54.
Lewinsohn E, Sitrit Y, Bar E et al. Not just colors—carotenoid degradation as a link between pigmentation and aroma in tomato and watermelon fruit. Trends Food Sci Tech. 2005;16:407–15.
Li H, Young SE, Poulsen M et al. Symbiont-mediated digestion of plant biomass in fungus-farming insects. Annu Rev Entomol. 2021;66:297–316. PubMed
Li Y, Ruan Y-Y, Stanley EL et al. Plasticity of mycangia in Xylosandrus ambrosia beetles. Insect Sci. 2019;26:732–42. PubMed
Malagaris P. Biology and ecology of Asphondylia coridothymi (Diptera: Cecidomyiidae) inducing galls on Coridothymus capitatus on the island of Samos, Greece. Acta Soc Zool Bohem. 2011;75:239–51.
Mamaev BM. Evolution of Gall Forming Insects, Gall Midges. London: British Library Lending Division, 1975.
Manawasinghe IS, Zhang W, Li X et al. Novel microsatellite markers reveal multiple origins of Botryosphaeria dothidea causing the Chinese grapevine trunk disease. Fung Ecol. 2018;33:134–42.
Mani MS. Mycocecidia. In: Ecology of Plant Galls. Dordrecht: Springer Netherlands, 1964,243–53.
Marsberg A, Kemler M, Jami F et al. Botryosphaeria dothidea: a latent pathogen of global importance to woody plant health. Mol Plant Pathol. 2017;18:477–88. PubMed PMC
Meudt HM, Clarke AC. Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci. 2007;12:106–17. PubMed
Meyer J. Cecidogenese de la galle de Lasioptera rubi heeger et role nourricier dun mycelium symbiotique. Comptes Rendus Hebdomadaires Des Séances De L'académie Des Sciences. 1952;234:2556–8.
Meyer J. Plant Galls and Gall Inducers. Berlin, Stuttgart: Gebrüder Borntraeger; 1987.
Moise ERD, Bowden JJ, Stastny M. Suboptimal host tree benefits the overwintering of a destructive forest insect pest. Basic Appl Ecol. 2023;71:72–84.
Moral J, Muñoz-Díez C, González N et al. Characterization and pathogenicity of botryosphaeriaceae species collected from olive and other hosts in Spain and California. Phytopathology. 2010;100:1340–51. PubMed
Morgan FD. Bionomics of Siricidae. Annu Rev Entomol. 1968;13:239–56.
Mueller UG, Gerardo NM, Aanen DK et al. The evolution of agriculture in insects. Annu Rev Ecol Evol Syst. 2005;36:563–95.
Nagle FS, Casamatta DA, Rossi A. Genetic analysis of the fungal community resident in Asphondylia borrichiae (Diptera: Cecidomyiidae) galls. Entomology 2019. Saint Louis: ESA, 2019.
Nijveldt W. Gall midges of economic importance. Anzeiger Für Schädlingskunde Und Pflanzenschutz. 1969;42:62–62.
Nijveldt WC, Yukawa J. A taxonomic study on Salix-inhabiting gall midges in Japan (Diptera, Cecidomyiidae). Bull Kitakyushu Mus Nat Hist. 1982;4:23–56.
Nyman T, Julkunen-Tiitto R. Manipulation of the phenolic chemistry of willows by gall-inducing sawflies. Proc Natl Acad Sci USA. 2000;97:13184–7. PubMed PMC
Orphanides GM. Biology of the carob midge complex, Asphondylia spp. (Diptera, Cecidomyiidae), in Cyprus. Bull Entomol Res. 1975;65:381–90.
Pan L-Y, Chen W-N, Chiu S-T et al. Is a gall an extended phenotype of the inducing insect? A comparative study of selected morphological and physiological traits of leaf and stem galls on Machilus thunbergii (Lauraceae) induced by five species of Daphnephila (Diptera: Cecidomyiidae) in northeastern Taiwan. Zool Sci. 2015;32:314–21. PubMed
Park I, Sanogo S, Hanson SF et al. Molecular identification of Botryosphaeria dothidea as a fungal associate of the gall midge Asphondylia prosopidis on mesquite in the United States. BioControl. 2019;64:209–19.
Parnell JR Investigations on the biology and larval morphology of the insects associated with the galls of Asphondylia sarothamni H. Loew (Diptera: Cecidomyidae) on broom (Sarothamnus scoparius (L.) Wimmer.). Trans Royal Ent Soc London. 2009;116:255–73.
Pažoutová S, Šrůtka P, Holuša J et al. Diversity of xylariaceous symbionts in Xiphydria woodwasps: role of vector and a host tree. Fung Ecol. 2010;3:392–401.
Perdikis D, Lykouressis D, Paraskevopoulos A et al. A new insect pest, Lasioptera sp. (Diptera: Cecidomyiidae), on tomato and cucumber crops in glasshouses in Greece. EPPO Bulletin. 2011;41:442–4.
Petrini LE, Petrini O, Laflamme G. Recovery of endophytes of Abies balsamea from needles and galls of Paradiplosis tumifex. Phytoprotection. 1989;70:97–103.
Phillips AJL, Alves A, Abdollahzadeh J et al. The botryosphaeriaceae: genera and species known from culture. Stud Mycol. 2013;76:51–167. PubMed PMC
Plakidas JD. The newly discovered spring crown gall of asphondylia rudbeckiaeconspicua (Diptera: Cecidomyiidae) on Rudbeckia laciniata (Asteraceae) in Pennsylvania. Proc Entomol Soc Wash. 1988;90:393.
Popescu IE, Gostin IN. Lasioptera rubi, a pest of Rubus idaeus: galls morphology, anatomy and histochemistry. Agriculture. 2024;14:1761.
Price PW, Clancy KM. Interactions among three trophic levels: gall size and parasitoid attack. Ecology. 1986;67:1593–600.
Price PW, Pschorn-Walcher H. Are galling insects better protected against parasitoids than exposed feeders?: a test using tenthredinid sawflies. Ecol Entomol. 1988;13:195–205.
Pyszko P, Šigutová H, Kolařík M et al. Mycobiomes of two distinct clades of ambrosia gall midges (Diptera: Cecidomyiidae) are species-specific in larvae but similar in nutritive mycelia. Microbiol Spectr. 2024;12:e02830–23. PubMed PMC
Raman A, Schaefer CW, Withers TM (eds). Gall-Inducing Coleoptera. Enfield: Science Publishers, Inc, 2005.
Raman A, Suryanarayanan TS. Fungus–plant interaction influences plant-feeding insects. Fung Ecol. 2017;29:123–32.
Raman A. Biogeographical implications in species richness, biological diversity, and evolution of gall-inducing insects of the Orient and the eastern Palearctic. Orient Insects. 2007;41:9–25.
Reverchon F, Contreras-Ramos SM, Eskalen A et al. Microbial biocontrol strategies for ambrosia beetles and their associated phytopathogenic fungi. Front Sustain Food Syst. 2021;5:737977.
Richter-Vollert I. Untersuchungen zur morphologie und ökologie von Asphondylia sarothamni H. Lw. Zoologica. 1964;112;1–54.
Rixon ME, Bayly MJ, McLay TGB et al. Investigating gall midges (Asphondylia), associated microfungi and parasitoids in some chenopod plant hosts (Amaranthaceae) in south-eastern Australia. Arthropod-Plant Interactions. 2021;15:747–71.
Rohfritsch O. A fungus associated gall midge, Lasioptera arundinis (Schiner), on Phragmites australis (Cav.) Trin. Bull Soc Bot Fr Lett Bot. 1992;139:45–59.
Rohfritsch O. Morphological and behavioural adaptations of the gall midge lasioptera arundinis (Schiner) (Diptera, Cecidomyiidae) to collect and transport conidia of its fungal symbiont. Tijdschr Entomol. 1997;140:59–66.
Rohfritsch O. Plants, gall midges, and fungi: a three-component system. Ent Exp Appl. 2008;128:208–16.
Roskam HC. Phylogeny of gall midges (Cecidomyiidae). In: Raman A, Schaefer CW, Withers TM (eds). Biology, Ecology and Evolution of Gall-Inducing Arthropods. Vol. 2. Plymouth:Science Publishers; 2005, 305–19.
Roskam JC. Evolution of the gall-inducing guild. In: Shorthouse JD, Rohfritsch O (eds), Biology of Insect-Induced Galls. New York: Oxford University Press, 1992, 34–49.
Ross H. Praktikum der Gallenkunde “Cecidologie”: Entstehung—Entwicklung—Bau Der durch Tiere und Pflanzen Hervorgerufenen Gallbildungen sowie Ökologie Der Gallenerreger. Berlin: Springer-Verlag, 1932.
Rossi AM, Murray M, Hughes K et al. Non-random distribution among a guild of parasitoids: implications for community structure and host survival. Ecol Entomol. 2006;31:557–63.
Rossi AM, Stiling P, Cattell MV et al. Evidence for host-associated races in a gall-forming midge: trade-offs in potential fecundity. Ecol Entomol. 1999;24:95–102.
Rossi AM, Stiling PD, Strong DR et al. Does gall diameter affect the parasitism rate of Asphondylia borrichiae (Diptera: Cecidomyiidae)?. Ecol Entomol. 1992;17:149–54.
Rowan L. Effects of Asphondylia borrichiae, simulated herbivory, and nutritional status on survival, flowering, and seed viability in Sea oxeye daisy (Borrichia frutescens). PhD Thesis, University of North Florida,2014.
Russo R. Field Guide to Plant Galls of California and Other Western States. Berkeley: University of California Press, 2006.
Russo R. Galls: surreal ornaments on blue oaks [Quercus douglasii, response to invading organisms, wasps]. Fremontia (USA). 1983;11:19–22.
Ryckegem G. Fungi on common reed (Phragmites australis): fungal diversity, community structure and decomposition processes. PhD Thesis, Ghent University, 2005.
Sá CEMD, Silveira FAO, Santos JC et al. Anatomical and developmental aspects of leaf galls induced by Schizomyia macrocapillata Maia (Diptera: Cecidomyiidae) on Bauhinia brevipes Vogel (Fabaceae). Rev Bras Bot. 2009;32:319–27.
Savelkoul PHM, Aarts HJM, De Haas J et al. Amplified-fragment length polymorphism analysis: the state of an art. J Clin Microbiol. 1999;37:3083–91. PubMed PMC
Scott JJ, Oh D-C, Yuceer MC et al. Bacterial protection of beetle-fungus mutualism. Science. 2008;322:63–63. PubMed PMC
Ševčík J, Kaspřák D, Mantič M et al. Molecular phylogeny of the megadiverse insect infraorder bibionomorpha sensu lato (Diptera). PeerJ. 2016;4:e2563. PubMed PMC
Sharma RM. Midge Galls (Diptera: cecidomyiidae) of Andaman Islands, India. Nelumbo. 1989;31:28–49.
Sharpe S. Endophytic fungi associated with galls and host plants of Asphondylia borrichiae (Diptera: Cecidomyiidae). PhD Thesis, University of North Florida, 2024.
Sikora T, Jaschhof M, Mantič M et al. Considerable congruence, enlightening conflict: molecular analysis largely supports morphology-based hypotheses on Cecidomyiidae (Diptera) phylogeny. Zool J Linn Soc. 2019;185:98–110.
Simon J-C, Biere A, Sugio A. The promises and challenges of research on plant-insect-microbe interactions. Insect Sci. 2017;24:904–9.
Skuhravá M, Skuhravý V, Skrzypczyńska MA et al. Gall midges (Cecidomyiidae, Diptera) of Poland. Pryszczarki (Cecidomyiidae, Diptera) Polski. Ann Upper Silesian Mus (Entomol). 2008;16:5–160.
Skuhravá M, Skuhravý V. Die Gallmücken des Schilfes (Phragmites communis Trin.). Studie Ceskoslovenska Akademia Ved. 1981;3:1–150.
Skuhravá M, Skuhravý V. Die Gallmückenfauna (Diptera, Cecidomyiidae) Südtirols: 7. Gallmücken des schlerngebietes in den westlichen Dolomiten. Gredleriana. 2007;7:307–24.
Slippers B, Crous PW, Denman S et al. Combined multiple gene genealogies and phenotypic characters differentiate several species previously identified as Botryosphaeria dothidea. Mycologia. 2004;96:83–101. PubMed
Sloan WT, Lunn M, Woodcock S et al. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ Microbiol. 2006;8:732–40. PubMed
Solinas M. Cephalic structures and special feeding habits in larvae of Cecidomyiidae (Insecta, Diptera): biodiversity, evolution and ecology in action. Accademia Nazionale Italiana Di Entomologia. 2011;59:153–65.
Stephanie K, Andreas K, Teja T. Interactions between the rust fungus Puccinia punctiformis and ectophagous and endophagous insects on creeping thistle. J Appl Ecol. 2001;38:548–56.
Stiling P, Rossi AM, Strong DR et al. Life history and parasites of Asphondylia borrichiae (Diptera: Cecidomyiidae), a gall maker on Borrichia frutescens. Fla Entomol. 1992;75:130.
Stireman JO III, Devlin H, Carr TG et al. Evolutionary diversification of the gall midge genus Asteromyia (Cecidomyiidae) in a multitrophic ecological context. Mol Phylogenet Evol. 2010;54:194–210. PubMed
Stodůlková E, Man P, Kuzma M et al. A highly diverse spectrum of naphthoquinone derivatives produced by the endophytic fungus Biatriospora sp. CCF 4378. Folia Microbiol. 2015;60:259–67. PubMed
Stokes K, Stiling P, Gilg MR et al. The gall midge Asphondylia borrichiae (Diptera: Cecidomyiidae): an indigenous example of host-associated genetic divergence in sympatry. Environ Entomol. 2012;41:1246–54. PubMed
Stone GN, Schönrogge K. The adaptive significance of insect gall morphology. Trends Ecol Evol. 2003;18:512–22.
Strzałka B, Kolařík M, Jankowiak R. Geosmithia associated with hardwood-infesting bark and ambrosia beetles, with the description of three new species from Poland. Antonie Van Leeuwenhoek. 2021;114:169–94. PubMed
Sugiura S, Yamazaki K, Fukasawa Y. Weevil parasitism of ambrosia galls. Ann Entomol Soc Am. 2004;97:184–93.
Takeshita K, Kikuchi Y. Riptortus pedestris and Burkholderia symbiont: an ideal model system for insect–microbe symbiotic associations. Res Microbiol. 2017;168:175–87. PubMed
Taper ML, Case TJ. Interactions between oak tannins and parasite community structure: unexpected benefits of tannins to cynipid gall-wasps. Oecologia. 1987;71:254–61. PubMed
Taper ML, Zimmerman EM, Case TJ. Sources of mortality for a cynipid gall-wasp (Dryocosmus dubiosus (Hymenoptera: Cynipidae)): the importance of the tannin/fungus interaction. Oecologia. 1986;68:437–45. PubMed
Tastás-Duque R, Sylvén E. Sensilla and cuticular appendages on the female abdomen of Lasioptera rubi (Schrank) (Diptera, Cecidomyiidae). Acta Zoologica. 1989;70:163–74.
Te Strake D, Keagy AH, Stiling PD. Fungi associated with Borrichia frutescens (asteraceae): insect galls and endophytes. SIDA, Contributions to Botany. 2006;22:755–63.
Thomas DB, Goolsby JA. Morphology of the preimaginal stages of Lasioptera donacis Coutin (Diptera: Cecidomyiidae), a candidate biocontrol agent for giant arundo cane. Psyche J Entomol. 2015;2015:1–11.
Tokuda M, Yukawa J. Biogeography and evolution of gall midges (Diptera: Cecidomyiidae) inhabiting broad-leaved evergreen forests in Oriental and eastern Palearctic regions. Orient Insects. 2007;41:121–39.
Tokuda M. Biology of asphondyliini (Diptera: Cecidomyiidae). Entomol Sci. 2012;15:361–83.
Tsolova E, Koleva L, Nikolov A. Management and control of raspberry stem gall midge (Lasioptera rubi (Schrank, 1803), Diptera: Cecidomyiidae) in biological raspberry production. J Mt Agric Balk. 2022;25:344–56.
Uechi N, Kim W, Tokuda M et al. Genetic and ecological differences between Asphondylia yushimai and the ivy gall midge, Asphondylia sp. (Diptera: Cecidomyiidae), with a new distribution record of the former from Hokkaido and South Korea. Appl Entomol Zool. 2018;53:363–71.
Uechi N, Yukawa J. Life history patterns and host ranges of the genus asphondylia (Diptera: Cecidomyiidae). In: Ozaki K, Yukawa J, Ohgushi T et al. (eds), Galling Arthropods and Their Associates. Tokyo: Springer Japan, 2006, 275–85.
Um S, Fraimout A, Sapountzis P et al. The fungus-growing termite Macrotermes natalensis harbors bacillaene-producing Bacillus sp. that inhibit potentially antagonistic fungi. Sci Rep. 2013;3:3250. PubMed PMC
Veenstra AA, Lebel T, Milne J et al. Two new species of Dactylasioptera (Diptera: Cecidomyiidae) inducing stem galls on Maireana (Chenopodiaceae). Austral Entomol. 2019;58:220–34.
Waloff N. Studies on the insect fauna on Scotch broom Sarothamnus scoparius (L.) Wimmer. Adv Ecol Res. 1968;5:87–208.
Wearn JA, Sutton BC, Morley NJ et al. Species and organ specificity of fungal endophytes in herbaceous grassland plants. J Ecol. 2012;100:1085–92.
Weis AE. Use of symbiotic fungus by the gall maker Asteromyia carbonifera to inhibit attack by the parasitoid Torymus capite. Ecology. 1982;63:1602–5.
Wiesenborn WD. Phenology of Leptothrips larreae Hood, 1938 (Thysanoptera: Phlaeothripidae) in Asphondylia auripila Felt, 1908 (Diptera: Cecidomyiidae) creosote stem galls. Pan-Pacific Entomol. 2015;91:203–6.
Wilson D. Fungal endophytes which invade insect galls: insect pathogens, benign saprophytes, or fungal inquilines?. Oecologia. 1995;103:255–60. PubMed
Xiao J, Zhang Q, Gao Y-Q et al. Secondary metabolites from the endophytic Botryosphaeria dothidea of Melia azedarach and their antifungal, antibacterial, antioxidant, and cytotoxic activities. J Agric Food Chem. 2014;62:3584–90. PubMed
Yamazaki K. Caterpillar mimicry by plant galls as a visual defense against herbivores. J Theor Biol. 2016;404:10–4. PubMed
Yamazoe S, Hasegawa K, Ito J et al. Hederyne A, a new antimicrobial polyacetylene from galls of Hedera rhombea Bean. J Asian Nat Prod Res. 2007;9:537–40. PubMed
Yukawa J, Harris KM, Kim W. Descriptions of two new species of the genus Lasioptera (Diptera: Cecidomyiidae) that infest tomato in the Mediterranean Region and Hokkaido, Japan. Appl Entomol Zool. 2020;55:129–40.
Yukawa J, Miyamoto K, Yamaguchi T et al. Key-factor/key-stage analysis of long-term life table data for a fruit gall midge, asphondylia sphaera (Diptera: Cecidomyiidae). Ecol Entomol. 2016;41:516–26.
Yukawa J, Rohfritsch O. Biology and ecology of gall-inducing cecidomyiidae (Diptera). In: Raman A (ed.), Biology, Ecology, and Evolution of Gall-Inducing Arthropods. Enfield: Science Publishers, Inc, 2005, 273–304.
Yukawa J, Tokuda M, Uechi N et al. Ecological divergence among morphologically and genetically related Asphondylia species (Diptera: Cecidomyiidae), with new life history data for three congeners including the Alpinia fruit gall midge. Entomol Sci. 2019;22:437–49.
Yukawa J, Uechi N, Horikiri M et al. Description of the soybean pod gall midge, Asphondylia yushimai sp. n. (Diptera: Cecidomyiidae), a major pest of soybean and findings of host alternation. Bull Entomol Res. 2003;93:73–86. PubMed
Yukawa J, Uechi N, Tokuda M et al. Radiation of gall midges (Diptera: Cecidomyiidae) in Japan. Basic Applied Ecol. 2005;6:453–61.
Zachariades C, Hoffmann JH, Roberts AP. Biological control of mesquite (Prosopis species) (Fabaceae) in South Africa. Afr Entomol. 2011;19:402–15.
Zaman R, May C, Ullah A et al. Bark beetles utilize ophiostomatoid fungi to circumvent host tree defenses. Metabolites. 2023;13:239. PubMed PMC
Zimowska B, Okoń S, Becchimanzi A et al. Phylogenetic characterization of Botryosphaeria strains associated with Asphondylia galls on species of Lamiaceae. Diversity. 2020;12:41.
Zimowska B, Viggiani G, Nicoletti R et al. First report of the gall midge asphondylia serpylli on thyme (Thymus vulgaris), and identification of the associated fungal symbiont. Ann Appl Biol. 2017;171:89–94.
Zorn H, Langhoff S, Scheibner M et al. A peroxidase from Lepista irina cleaves β,β-carotene to flavor compounds. Biol Chem. 2003;384:1049–56. PubMed