Layer-specific residual strains in human carotid arteries revealed under layer separation
Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
40193345
PubMed Central
PMC11975091
DOI
10.1371/journal.pone.0308434
PII: PONE-D-24-28806
Knihovny.cz E-resources
- MeSH
- Carotid Artery, Common * physiology MeSH
- Carotid Arteries * physiology MeSH
- Biomechanical Phenomena MeSH
- Middle Aged MeSH
- Humans MeSH
- Stress, Mechanical * MeSH
- Aged MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Residual stresses are considered as a significant factor influencing the stress-states in arteries. These stresses are typically observed through opening angle of a radially cut artery segment, often regarded as a primary descriptor of their stress-free state. However, the experimental evidence regarding the stress-free states of different artery layers is scarce. In this study, two experimental protocols, each employing different layer-separating sequences, were performed on 17 human common carotid arteries; the differences between both protocols were found statistically insignificant. While the media exhibited opening behaviour (reduced curvature), a contrasting trend was observed for the adventitia curvature, indicating its closing behaviour. In addition to the different bending effect, length changes of both layers after separation were observed, namely shortening of the adventitia and elongation of the media. The results point out that not all the residual stresses are released after a radial cut but a significant portion of them is released only after the layer separation. Considering the different mechanical properties of layers, this may significantly change the stress distribution in arterial wall and should be considered in its biomechanical models.
1st Department of Pathology St Anne's University Hospital Brno Czech Republic
Department of Anatomy Masaryk University Brno Czech Republic
See more in PubMed
Fung YC. On the foundations of biomechanics. J Appl Mech. 1983;50(4b):1003–9. doi: 10.1115/1.3167183 DOI
Fung Y. Biodynamics: circulation. New York: Springer-Verlag; 1984.
Chuong CJ, Fung YC. On residual stresses in arteries. J Biomech Eng. 1986;108(2):189–92. doi: 10.1115/1.3138600 PubMed DOI
Greenwald SE, Moore JE Jr, Rachev A, Kane TP, Meister JJ. Experimental investigation of the distribution of residual strains in the artery wall. J Biomech Eng. 1997;119(4):438–44. doi: 10.1115/1.2798291 PubMed DOI
Delfino A, Stergiopulos N, Moore JE Jr, Meister JJ. Residual strain effects on the stress field in a thick wall finite element model of the human carotid bifurcation. J Biomech. 1997;30(8):777–86. doi: 10.1016/s0021-9290(97)00025-0 PubMed DOI
Holzapfel GA, Sommer G, Auer M, Regitnig P, Ogden RW. Layer-specific 3D residual deformations of human aortas with non-atherosclerotic intimal thickening. Ann Biomed Eng. 2007;35(4):530–45. doi: 10.1007/s10439-006-9252-z PubMed DOI
Gasser TC, Ogden RW, Holzapfel GA. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface. 2006;3(6):15–35. doi: 10.1098/rsif.2005.0073 PubMed DOI PMC
Humphrey JD. Cardiovascular solid mechanics: Cells, tissues, and organs. 1st ed. New York: Springer; 2002. Available: doi: 10.1007/978-0-387-21576-1 DOI
Bellini C, Ferruzzi J, Roccabianca S, Di Martino ES, Humphrey JD. A microstructurally motivated model of arterial wall mechanics with mechanobiological implications. Ann Biomed Eng. 2014;42(3):488–502. doi: 10.1007/s10439-013-0928-x PubMed DOI PMC
Labrosse MR, Beller CJ, Mesana T, Veinot JP. Mechanical behavior of human aortas: experiments, material constants and 3-D finite element modeling including residual stress. J Biomech. 2009;42(8):996–1004. doi: 10.1016/j.jbiomech.2009.02.009 PubMed DOI
Polzer S, Gasser TC, Vlachovský R, Kubíček L, Lambert L, Man V, et al.. Biomechanical indices are more sensitive than diameter in predicting rupture of asymptomatic abdominal aortic aneurysms. J Vasc Surg. 2020;71(2):617-626.e6. doi: 10.1016/j.jvs.2019.03.051 PubMed DOI
Moll FL, Powell JT, Fraedrich G, Verzini F, Haulon S, Waltham M, et al.. Management of abdominal aortic aneurysms clinical practice guidelines of the European society for vascular surgery. Eur J Vasc Endovasc Surg. 2011;41 Suppl 1:S1–58. doi: 10.1016/j.ejvs.2010.09.011 PubMed DOI
Cilla M, Peña E, Martínez MA. 3D computational parametric analysis of eccentric atheroma plaque: influence of axial and circumferential residual stresses. Biomech Model Mechanobiol. 2012;11(7):1001–13. doi: 10.1007/s10237-011-0369-0 PubMed DOI
Sadat U, Li Z-Y, Young VE, Graves MJ, Boyle JR, Warburton EA, et al.. Finite element analysis of vulnerable atherosclerotic plaques: a comparison of mechanical stresses within carotid plaques of acute and recently symptomatic patients with carotid artery disease. J Neurol Neurosurg Psychiatry. 2010;81(3):286–9. doi: 10.1136/jnnp.2009.190363 PubMed DOI
Noble C, Carlson KD, Neumann E, Lewis B, Dragomir-Daescu D, Lerman A, et al.. Finite element analysis in clinical patients with atherosclerosis. J Mech Behav Biomed Mater. 2022;125:104927. doi: 10.1016/j.jmbbm.2021.104927 PubMed DOI PMC
Li Z-Y, Howarth S, Trivedi RA, U-King-Im JM, Graves MJ, Brown A, et al.. Stress analysis of carotid plaque rupture based on in vivo high resolution MRI. J Biomech. 2006;39(14):2611–22. doi: 10.1016/j.jbiomech.2005.08.022 PubMed DOI
Kock SA, Nygaard JV, Eldrup N, Fründ E-T, Klaerke A, Paaske WP, et al.. Mechanical stresses in carotid plaques using MRI-based fluid-structure interaction models. J Biomech. 2008;41(8):1651–8. doi: 10.1016/j.jbiomech.2008.03.019 PubMed DOI
Kiousis DE, Rubinigg SF, Auer M, Holzapfel GA. A methodology to analyze changes in lipid core and calcification onto fibrous cap vulnerability: the human atherosclerotic carotid bifurcation as an illustratory example. J Biomech Eng. 2009;131(12):121002. doi: 10.1115/1.4000078 PubMed DOI
Auricchio F, Conti M, De Beule M, De Santis G, Verhegghe B. Carotid artery stenting simulation: from patient-specific images to finite element analysis. Med Eng Phys. 2011;33(3):281–9. doi: 10.1016/j.medengphy.2010.10.011 PubMed DOI
Esmaeili Monir H, Yamada H, Sakata N. Finite element modelling of the common carotid artery in the elderly with physiological intimal thickening using layer-specific stress-released geometries and nonlinear elastic properties. Comput Methods Biomech Biomed Engin. 2016;19(12):1286–96. doi: 10.1080/10255842.2015.1128530 PubMed DOI
Pierce DM, Fastl TE, Rodriguez-Vila B, Verbrugghe P, Fourneau I, Maleux G, et al.. A method for incorporating three-dimensional residual stretches/stresses into patient-specific finite element simulations of arteries. J Mech Behav Biomed Mater. 2015;47:147–64. doi: 10.1016/j.jmbbm.2015.03.024 PubMed DOI
Sigaeva T, Sommer G, Holzapfel GA, Di Martino ES. Anisotropic residual stresses in arteries. J R Soc Interface. 2019;16(151):20190029. doi: 10.1098/rsif.2019.0029 PubMed DOI PMC
Ohayon J, Dubreuil O, Tracqui P, Le Floc’h S, Rioufol G, Chalabreysse L, et al.. Influence of residual stress/strain on the biomechanical stability of vulnerable coronary plaques: potential impact for evaluating the risk of plaque rupture. Am J Physiol Heart Circ Physiol. 2007;293(3):H1987-96. doi: 10.1152/ajpheart.00018.2007 PubMed DOI
Patel SY, Kaazempur-Mofrad MR, Isasi AG, Kamm RD. Diseased artery wall mechanics: correlation to histology. Book of abstracts. Key Biscayne, Florida; June 25-29.
Van Dyke TJ, Hoger A. A new method for predicting the opening angle for soft tissues. J Biomech Eng. 2002;124(4):347–54. doi: 10.1115/1.1487881 PubMed DOI
Okamoto RJ, Wagenseil JE, DeLong WR, Peterson SJ, Kouchoukos NT, Sundt TM 3rd. Mechanical properties of dilated human ascending aorta. Ann Biomed Eng. 2002;30(5):624–35. doi: 10.1114/1.1484220 PubMed DOI
Peña JA, Martínez MA, Peña E. Layer-specific residual deformations and uniaxial and biaxial mechanical properties of thoracic porcine aorta. J Mech Behav Biomed Mater. 2015;50:55–69. doi: 10.1016/j.jmbbm.2015.05.024 PubMed DOI
Rachev A, Greenwald SE. Residual strains in conduit arteries. J Biomech. 2003;36(5):661–70. doi: 10.1016/s0021-9290(02)00444-x PubMed DOI
Teng Z, Tang D, Zheng J, Woodard PK, Hoffman AH. An experimental study on the ultimate strength of the adventitia and media of human atherosclerotic carotid arteries in circumferential and axial directions. J Biomech. 2009;42(15):2535–9. doi: 10.1016/j.jbiomech.2009.07.009 PubMed DOI PMC
Kural MH, Cai M, Tang D, Gwyther T, Zheng J, Billiar KL. Planar biaxial characterization of diseased human coronary and carotid arteries for computational modeling. J Biomech. 2012;45(5):790–8. doi: 10.1016/j.jbiomech.2011.11.019 PubMed DOI PMC
Holzapfel GA, Ogden RW. Modelling the layer-specific three-dimensional residual stresses in arteries, with an application to the human aorta. J R Soc Interface. 2010;7(46):787–99. doi: 10.1098/rsif.2009.0357 PubMed DOI PMC
Sommer G, Regitnig P, Költringer L, Holzapfel GA. Biaxial mechanical properties of intact and layer-dissected human carotid arteries at physiological and supraphysiological loadings. Am J Physiol Heart Circ Physiol. 2010;298(3):H898-912. doi: 10.1152/ajpheart.00378.2009 PubMed DOI
Pocaterra M, Gao H, Das S, Pinelli M, Long Q. Circumferential residual stress distribution and its influence in a diseased carotid artery. 2009. p. 849–50. doi: 10.1115/SBC2009-206692 DOI
Broisat A, Toczek J, Mesnier N, Tracqui P, Ghezzi C, Ohayon J, et al.. Assessing low levels of mechanical stress in aortic atherosclerotic lesions from apolipoprotein E-/- mice--brief report. Arterioscler Thromb Vasc Biol. 2011;31(5):1007–10. doi: 10.1161/ATVBAHA.111.225227 PubMed DOI
Martiel J-L, Finet G, Holzapfel GA, Stuber M, Matsumoto T, Pettigrew RI, et al.. Chapter 19 - Importance of residual stress and basal tone in healthy and pathological human coronary arteries. In: Ohayon J, Finet G, Pettigrew RI, editors. Biomechanics of coronary atherosclerotic plaque. Academic Press; 2021. p. 433–61. doi: 10.1016/B978-0-12-817195-0.00019-6 DOI
Schröder J, von Hoegen M. An engineering tool to estimate eigenstresses in three-dimensional patient-specific arteries. Comput Methods Appl Mech Eng. 2016;306:364–81. doi: 10.1016/j.cma.2016.03.020 DOI
Holzapfel GA, Mulvihill JJ, Cunnane EM, Walsh MT. Computational approaches for analyzing the mechanics of atherosclerotic plaques: a review. J Biomech. 2014;47(4):859–69. doi: 10.1016/j.jbiomech.2014.01.011 PubMed DOI
Venkatasubramanian RT, Grassl ED, Barocas VH, Lafontaine D, Bischof JC. Effects of freezing and cryopreservation on the mechanical properties of arteries. Ann Biomed Eng. 2006;34(5):823–32. doi: 10.1007/s10439-005-9044-x PubMed DOI
Chow M-J, Zhang Y. Changes in the mechanical and biochemical properties of aortic tissue due to cold storage. J Surg Res. 2011;171(2):434–42. doi: 10.1016/j.jss.2010.04.007 PubMed DOI
Grassl ED, Barocas VH, Bischof JC. Effects of freezing on the mechanical properties of blood vessels. Heat Transfer, Volume 1. 2004:699–703. doi: 10.1115/imece2004-60244 DOI
Hemmasizadeh A, Darvish K, Autieri M. Characterization of changes to the mechanical properties of arteries due to cold storage using nanoindentation tests. Ann Biomed Eng. 2012;40(7):1434–42. doi: 10.1007/s10439-011-0506-z PubMed DOI PMC
Virues Delgadillo JO, Delorme S, El-Ayoubi R, DiRaddo R, Hatzikiriakos SG. Effect of freezing on the passive mechanical properties of arterial samples. JBiSE. 2010;03(07):645–52. doi: 10.4236/jbise.2010.37088 DOI
Stemper BD, Yoganandan N, Pintar FA. Methodology to study intimal failure mechanics in human internal carotid arteries. J Biomech. 2005;38(12):2491–6. doi: 10.1016/j.jbiomech.2004.10.021 PubMed DOI
O’Leary SA, Doyle BJ, McGloughlin TM. The impact of long term freezing on the mechanical properties of porcine aortic tissue. J Mech Behav Biomed Mater. 2014;37:165–73. doi: 10.1016/j.jmbbm.2014.04.015 PubMed DOI
Ebenstein DM, Coughlin D, Chapman J, Li C, Pruitt LA. Nanomechanical properties of calcification, fibrous tissue, and hematoma from atherosclerotic plaques. J Biomed Mater Res A. 2009;91(4):1028–37. doi: 10.1002/jbm.a.32321 PubMed DOI
Stary HC. Natural history and histological classification of atherosclerotic lesions: an update. Arterioscler Thromb Vasc Biol. 2000;20(5):1177–8. doi: 10.1161/01.atv.20.5.1177 PubMed DOI
Coen M, Gabbiani G, Bochaton-Piallat M-L. Myofibroblast-mediated adventitial remodeling: an underestimated player in arterial pathology. Arterioscler Thromb Vasc Biol. 2011;31(11):2391–6. doi: 10.1161/ATVBAHA.111.231548 PubMed DOI
Hrubanová A, Sochor O. Raw images of CCA specimens. Zenodo. 2024. doi: 10.5281/zenodo.10932993 DOI
Atienza JM, Guinea GV, Rojo FJ, Burgos RJ, García-Montero C, Goicolea FJ, et al.. The influence of pressure and temperature on the behavior of the human aorta and carotid arteries. Revista Española de Cardiología (English Edition). 2007;60(3):259–67. doi: 10.1016/s1885-5857(07)60150-9 PubMed DOI
Guinea GV, Atienza JM, Elices M, Aragoncillo P, Hayashi K. Thermomechanical behavior of human carotid arteries in the passive state. Am J Physiol Heart Circ Physiol. 2005;288(6):H2940-5. doi: 10.1152/ajpheart.01099.2004 PubMed DOI
Taghizadeh H, Tafazzoli-Shadpour M, Shadmehr MB. Analysis of arterial wall remodeling in hypertension based on lamellar modeling. J Am Soc Hypertens. 2015;9(9):735–44. doi: 10.1016/j.jash.2015.07.014 PubMed DOI