Quantifying expression and metabolic activity of genes regulated by pregnane X receptor in primary human hepatocyte spheroids

. 2025 Apr ; 21 (4) : e1012886. [epub] 20250415

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40233301

Xenoreceptors of the nuclear receptor superfamily, such as pregnane X receptor (PXR), are liver-enriched ligand-activated transcription factors regarded as crucial sensors in xenobiotic exposure and detoxification. PXR controls transcription of many drug-handling genes and influx/efflux transporters, thus playing a crucial role in drug metabolism and excretion. Liver functions have been studied using primary human hepatocytes (PHHs), which, when conventionally cultured, undergo rapid de-differentiation, leaving them unsuitable for long-term studies. Recently, 3D PHHs called spheroids have emerged as an in vitro model that is similar to in vivo hepatocytes regarding phenotype and function and represents the first in vitro model to study the long-term regulation of drug-handling genes by PXR. In this study, we used mathematical modelling to analyze the long-term activation of PXR in 3D PHHs through expression kinetics of three key PXR-regulated drug-metabolizing enzymes, CYP3A4, CYP2C9, and CYP2B6 and the P-glycoprotein efflux transporter encoding gene, MDR1. PXR action in 3D PHHs was induced by the antibiotic rifampicin at two clinically relevant concentrations. The results confirmed that high rifampicin concentrations activated PXR nearly to its full capacity. The analysis indicated the highest PXR-induced transcription rate constant for CYP2B6. The rate constant dictating mRNA degradation associated with activated PXR was highest for CYP3A4. Moreover, we measured the metabolic activity of CYP3A4, CYP2C9, and CYP2B6 and quantified their metabolic rate constants. Metabolic activity rate constant of CYP3A4 was found to be the highest whereas that of CYP2B6 was found to be the lowest among the studied enzymes. Our results provide important insight into the regulation of PXR-target genes in 3D PHHs and show that mRNA expression and metabolic activity data can be combined with quantitative analysis to reveal the long-term action of PXR and its effects on drug-handling genes.

Zobrazit více v PubMed

Wang YM, Ong SS, Chai SC, Chen T. Role of CAR and PXR in xenobiotic sensing and metabolism. Expert Opin Drug Metab Toxicol 2012;8(7):803–17. doi: 10.1517/17425255.2012.685237 PubMed DOI PMC

Sonoda J, Xie W, Rosenfeld JM, Barwick JL, Guzelian PS, Evans RM. Regulation of a xenobiotic sulfonation cascade by nuclear pregnane X receptor (PXR). Proc Natl Acad Sci U S A 2002;99(21):13801–6. doi: 10.1073/pnas.212494599 PubMed DOI PMC

Blumberg B, Sabbagh W, Juguilon H, Bolado J, van Meter CM, Ong ES, et al.. SXR, a novel steroid and xenobioticsensing nuclear receptor. Genes Dev 1998;12(20):3195–205. doi: 10.1101/gad.12.20.3195 PubMed DOI PMC

Kliewer SA, Moore JT, Wade L, Staudinger JL, Watson MA, Jones SA, et al.. An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway. Cell 1998;92(1):73–82. doi: 10.1016/s0092-8674(00)80900-9 PubMed DOI

Lehmann JM, McKee DD, Watson MA, Willson TM, Moore JT, Kliewer SA, et al.. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J Clin Invest 1998;102(5):1016–23. doi: 10.1172/JCI3703 PubMed DOI PMC

Watkins RE, Wisely GB, Moore LB, Collins JL, Lambert MH, Williams SP, et al.. The human nuclear xenobiotic receptor PXR: structural determinants of directed promiscuity. Science 2001;292(5525):2329–33. doi: 10.1126/science.1060762 PubMed DOI

Jones SA, Moore LB, Shenk JL, Wisely GB, Hamilton GA, McKee DD, et al.. The pregnane X receptor: a promiscuous xenobiotic receptor that has diverged during evolution. Mol Endocrinol 2000;14(1):27–39. doi: 10.1210/mend.14.1.0409 PubMed DOI

Kandel BA, Thomas M, Winter S, Damm G, Seehofer D, Burk O, et al. Genomewide comparison of the inducible transcriptomes of nuclear receptors CAR, PXR and PPARα in primary human hepatocytes. Biochim Biophys Acta. 2016;1859(9):1218–27. doi: 10.1016/j.bbagrm.2016.03.007 PubMed DOI

Smutny T, Bernhauerova V, Smutna L, Tebbens JD, Pavek P. Expression dynamics of pregnane X receptor-controlled genes in 3D primary human hepatocyte spheroids. Arch Toxicol. 2022;96:195––210. doi: 10.1007/s00204-021-03177-y PubMed DOI

Maglich JM, Stoltz CM, Goodwin B, Hawkins-Brown D, Moore JT, Kliewer SA. Nuclear pregnane X receptor and constitutive androstane receptor regulate overlapping but distinct sets of genes involved in xenobiotic detoxification. Mol Pharmacol 2002;62(3):638–46. doi: 10.1124/mol.62.3.638 PubMed DOI

Rae JM, Johnson MD, Lippman ME, Flockhart DA. Rifampin is a selective, pleiotropic inducer of drug metabolism genes in human hepatocytes: studies with cDNA and oligonucleotide expression arrays. J. Pharmacol. Exp. Ther 2001;299(3):849–57. doi: 10.1016/S0022-3565(24)29202-8 PubMed DOI

Goodwin B, Hodgson E, Liddle C. The orphan human pregnane X receptor mediates the transcriptional activation of CYP3A4 by rifampicin through a distal enhancer module. Mol Pharmacol 1999;56(6):1329–39. doi: 10.1124/mol.56.6.1329 PubMed DOI

Goodwin B, Moore LB, Stoltz CM, McKee DD, Kliewer SA. Regulation of the human CYP2B6 gene by the nuclear pregnane X receptor. Mol Pharmacol 2001;60(3):427–31. doi: 10.1016/S0026-895X(24)12603-X PubMed DOI

Tolson AH, Wang H. Regulation of drug-metabolizing enzymes by xenobiotic receptors: PXR and CAR. Adv Drug Deliv Rev 2010;62(13):1238–49. doi: 10.1016/j.addr.2010.08.006 PubMed DOI PMC

Zanger UM, Turpeinen M, Klein K, Schwab M. Functional pharmacogenetics/genomics of human cytochromes P450 involved in drug biotransformation. Anal Bioanal Chem. 2008;392:1093–108. doi: 10.1007/s00216-008-2291-6 PubMed DOI

Kronbach T, Mathys D, Umeno M, Gonzalez FJ, Meyer UA. Oxidation of midazolam and triazolam by human liver cytochrome P450IIIA4. Mol Pharmacol. 1989;36(1):89–96. PMID: 2787473 PubMed

Gorski JC, Hall SD, Jones DR, VandenBranden M. Regioselective biotransformation of midazolam by members of the human cytochrome P450 3A (CYP3A) subfamily. Biochem Pharmacol 1994;47(9):1643–53. doi: 10.1016/0006-2952(94)90543-6 PubMed DOI

Denisov IG, Grinkova YV, Camp T, McLean MA, Sligar SG. Midazolam as a probe for drug–drug interactions mediated by CYP3A4: homotropic allosteric mechanism of site-specific hydroxylation. Biochemistry 2021;60(21):1670–81. doi: 10.1021/acs.biochem.1c00161 PubMed DOI PMC

Denisov IG, Grinkova YV, McLean MA, Camp T, Sligar SG. Midazolam as a probe for heterotropic drug-drug interactions mediated by CYP3A4. Biomolecules 2022;12(6):853. doi: 10.1021/acs.biochem.1c00161 PubMed DOI PMC

Macías Y, García-Menaya JM, Martí M, Cordobés C, Jurado-Escobar R, Torres MJ, et al.. Lack of major involvement of common CYP2C gene polymorphisms in the risk of developing cross-hypersensitivity to NSAIDs. Front Pharmacol. 2021;12:648262. doi: 10.3389/fphar.2021.648262 PubMed DOI PMC

Miners JO, Birkett DJ. Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. Br J Clin Pharmacol 1998;45(6):525–38. doi: 10.1046/j.1365-2125.1998.00721.x PubMed DOI PMC

Hamman MA, Thompson GA, Hall SD. Regioselective and stereoselective metabolism of ibuprofen by human cytochrome P450 2C. Biochem Pharmacol 1997;54(1):33–41. doi: 10.1016/S0006-2952(97)00143-3 PubMed DOI

Mancy A, Broto P, Dijols S, Dansette PM, Mansuy D. The substrate binding site of human liver cytochrome P450 2C9: an approach using designed tienilic acid derivatives and molecular modeling. Biochemistry 1995;34(33):10365–75. doi: 10.1021/bi00033a007 PubMed DOI

Leemann T, Transon C, Dayer P. Cytochrome P450TB (CYP2C): a major monooxygenase catalyzing diclofenac 4-hydroxylation in human liver. Life Sci 1993;52(1):29–34. doi: 10.1016/0024-3205(93)90285-B PubMed DOI

Leemann T, Transon C, Bonnabry P, Dayer P. A major role for cytochrome P450TB (CYP2C subfamily) in the actions of non-steroidal antiinflammatory drugs. Drugs Exp Clin Res. 1993;19(5):189–95. PMID: 8174491 PubMed

Faucette SR, Hawke RL, Lecluyse EL, Shord SS, Yan B, Laethem RM, et al. Validation of bupropion hydroxylation as a selective marker of human cytochrome P450 2B6 catalytic activity. Drug Metab Dispos. 2000;28(10):1222–30. PMID: 10997944 PubMed

Hesse LM, Venkatakrishnan K, von Moltke LL, Duan SX, Shader RI, Greenblatt DJ, et al. CYP2B6 mediates the in vitro hydroxylation of bupropion: potential drug interactions with other antidepressants. Drug Metab Dispos. 2000;28(10):1176–83. PMID: 10997936 PubMed

Kirchheiner J, Klein C, Meineke I, Sasse J, Zanger UM, Mürdter TE, et al.. Bupropion and 4-OH-bupropion pharmacokinetics in relation to genetic polymorphisms in CYP2B6. Pharmacogenetics and Genomics 2003;13(10):619–626. doi: 10.1097/00008571-200310000-00005 PubMed DOI

Turpeinen M, Tolonen A, Uusitalo J, Jalonen J, Pelkonen O, Laine K. Effect of clopidogrel and ticlopidine on cytochrome P450 2B6 activity as measured by bupropion hydroxylation. Clin Pharmacol Ther 2005;77(6):553–9. doi: 10.1016/j.clpt.2005.02.010 PubMed DOI

Loboz KK, Gross AS, Williams KM, Liauw WS, Day RO, Blievernicht JK, et al.. Cytochrome P450 2B6 activity as measured by bupropion hydroxylation: effect of induction by rifampin and ethnicity. Clin Pharmacol Ther 2006;80(1):75–84. doi: 10.1016/j.clpt.2006.03.010 PubMed DOI

Litman T, Druley T, Stein W, Bates S. From MDR to MXR: new understanding of multidrug resistance systems, their properties and clinical significance. Cell Mol Life Sci. 2001;58:931–59. doi: 10.1007/PL00000912 PubMed DOI PMC

Schinkel AH. The physiological function of drug-transporting P-glycoproteins. In: Seminars in Cancer Biology. vol. 8. Elsevier; 1997, pp. 161–70. PubMed

Schinkel AH, Jonker JW. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv Drug Deliv Rev. 2012;64:138–53. doi: 10.1016/s0169-409x(02)00169-2 PubMed DOI

Chen T. Overcoming drug resistance by regulating nuclear receptors. Adv Drug Deliv Rev 2010;62(13):1257–64. doi: 10.1016/j.addr.2010.07.008 PubMed DOI PMC

Duintjer Tebbens J, Azar M, Friedmann E, Lanzendörfer M, Pávek P. Mathematical models in the description of pregnane X receptor (PXR)-regulated cytochrome P450 enzyme induction. Int J Mol Sci 2018;19(6):1785. doi: 10.3390/ijms19061785 PubMed DOI PMC

Yamashita F, Sasa Y, Yoshida S, Hisaka A, Asai Y, Kitano H, et al.. Modeling of rifampicin-induced CYP3A4 activation dynamics for the prediction of clinical drug-drug interactions from in vitro data. PLoS One 2013;8(9):e70330. doi: 10.1371/journal.pone.0070330 PubMed DOI PMC

Luke NS, DeVito MJ, Shah I, El-Masri HA. Development of a quantitative model of pregnane X receptor (PXR) mediated xenobiotic metabolizing enzyme induction. Bull Math Biol 2010;72(7):1799–819. doi: 10.1007/s11538-010-9508-5 PubMed DOI

Kolodkin A, Sahin N, Phillips A, Hood SR, Bruggeman FJ, Westerhoff HV, et al.. Optimization of stress response through the nuclear receptor-mediated cortisol signalling network. Nat Commun 2013;4(1):1792. doi: 10.1038/ncomms2799 PubMed DOI PMC

Li L, Li ZQ, Deng CH, Ning MR, Li HQ, Bi SS, et al.. A mechanism-based pharmacokinetic/pharmacodynamic model for CYP3A1/2 induction by dexamethasone in rats. Acta Pharmacol Sin 2012;33(1):127–36. doi: 10.1038/aps.2011.161 PubMed DOI PMC

Bailey I, Gibson GG, Plant K, Graham M, Plant N. A PXR-mediated negative feedback loop attenuates the expression of CYP3A in response to the PXR agonist pregnenalone-16α-carbonitrile. PLoS ONE. 2011;6(2):e16703. doi: 10.1371/journal.pone.0016703 PubMed DOI PMC

Bell CC, Dankers AC, Lauschke VM, Sison-Young R, Jenkins R, Rowe C, et al.. Comparison of hepatic 2D sandwich cultures and 3D spheroids for long-term toxicity applications: a multicenter study. Toxicol Sci 2018;162(2):655–66. doi: 10.1093/toxsci/kfx289 PubMed DOI PMC

Ingelman-Sundberg M, Lauschke VM. 3D human liver spheroids for translational pharmacology and toxicology. Basic Clin Pharmacol Toxicol. 2022;130:5–15. doi: 10.1111/bcpt.13587 PubMed DOI

Järvinen E, Hammer HS, Pötz O, Ingelman-Sundberg M, Stage TB. 3D spheroid primary human hepatocytes for prediction of cytochrome P450 and drug transporter induction. Clin Pharmacol Ther 2023;113(6):1284–94. doi: 10.1002/cpt.2887 PubMed DOI

Lin W, Wang YM, Chai SC, Lv L, Zheng J, Wu J, et al.. SPA70 is a potent antagonist of human pregnane X receptor. Nat Commun 2017;8(1):741. doi: 10.1038/s41467-017-00780-5 PubMed DOI PMC

Berger B, Donzelli M, Maseneni S, Boess F, Roth A, Krähenbühl S, et al.. Comparison of liver cell models using the basel phenotyping cocktail. Front Pharmacol. 2016;7:443. doi: 10.3389/fphar.2016.00443 PubMed DOI PMC

Kliewer SA, et al.. Nuclear receptor PXR: discovery of a pharmaceutical anti-target. J Clin Invest 2015;125(4):1388–9. doi: 10.1172/JCI81244 PubMed DOI PMC

Yan J, Xie W. A brief history of the discovery of PXR and CAR as xenobiotic receptors. Acta Pharma Sin B 2016;6(5):450–2. doi: 10.1016/j.apsb.2016.06.011 PubMed DOI PMC

Bwayi MN, Garcia-Maldonado E, Chai SC, Xie B, Chodankar S, Huber AD, et al.. Molecular basis of crosstalk in nuclear receptors: heterodimerization between PXR and CAR and the implication in gene regulation. Nucleic Acids Res 2022;50(6):3254–75. doi: 10.1093/nar/gkac133 PubMed DOI PMC

Nakajima A, Fukami T, Kobayashi Y, Watanabe A, Nakajima M, Yokoi T. Human arylacetamide deacetylase is responsible for deacetylation of rifamycins: rifampicin, rifabutin, and rifapentine. Biochem Pharmacol 2011;82(11):1747–56. doi: 10.1016/j.bcp.2011.08.003 PubMed DOI

Morikawa T, Fukami T, Gotoh-Saito S, Nakano M, Nakajima M. PPARα regulates the expression of human arylacetamide deacetylase involved in drug hydrolysis and lipid metabolism. Biochem Pharmacol. 2022;199:115010. doi: 10.1016/j.bcp.2022.115010 PubMed DOI

Smutny T, Smutna L, Lochman L, Kamaraj R, Kucera R, Pavek P. Rifampicin and its derivatives: stability, disposition, and affinity towards pregnane X receptor employing 2D and 3D primary human hepatocytes. Biochem Pharmacol. 2024;229:116500. doi: 10.1016/j.bcp.2024.116500 PubMed DOI

Preiss LC, Lauschke VM, Georgi K, Petersson C. Multi-well array culture of primary human hepatocyte spheroids for clearance extrapolation of slowly metabolized compounds. AAPS J 2022;24(2):41. doi: 10.1208/s12248-022-00689-y PubMed DOI

Pavek P. Pregnane X receptor (PXR)-mediated gene repression and cross-talk of PXR with other nuclear receptors via coactivator interactions. Front Pharmacol. 2016;7:227770. doi: 10.3389/fphar.2016.00456 PubMed DOI PMC

Burk O, Arnold KA, Geick A, Tegude H, Eichelbaum M. A role for constitutive androstane receptor in the regulation of human intestinal MDR1 expression. Biol Chem. 2005;386:503–13. doi: 10.1515/BC.2005.060 PubMed DOI

Cerveny L, Svecova L, Anzenbacherova E, Vrzal R, Staud F, Dvorak Z, et al.. Valproic acid induces CYP3A4 and MDR1 gene expression by activation of constitutive androstane receptor and pregnane X receptor pathways. Drug Metab Dispos 2007;35(7):1032–41. doi: 10.1124/dmd.106.014456 PubMed DOI

Bell CC, Hendriks DF, Moro SM, Ellis E, Walsh J, Renblom A, et al.. Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease. Sci Rep 2016;6(1):25187. doi: 10.1038/srep25187 PubMed DOI PMC

Hendriks DF, Vorrink SU, Smutny T, Sim SC, Nordling Å, Ullah S, et al.. Clinically relevant cytochrome P450 3A4 induction mechanisms and drug screening in three-dimensional spheroid cultures of primary human hepatocytes. Clin Pharmacol Ther 2020;108(4):844–55. doi: 10.1002/cpt.1860 PubMed DOI

Kanebratt KP, Janefeldt A, Vilén L, Vildhede A, Samuelsson K, Milton L, et al.. Primary human hepatocyte spheroid model as a 3D in vitro platform for metabolism studies. J Pharm Sci 2021;110(1):422–31. doi: 10.1016/j.xphs.2020.10.043 PubMed DOI

Sumida A, Kinoshita K, Fukuda T, Matsuda H, Yamamoto I, Inaba T, et al.. Relationship between mRNA levels quantified by reverse transcription-competitive PCR and metabolic activity of CYP3A4 and CYP2E1 in human liver. Biochem Biophys Res Commun 1999;262(2):499–503. doi: 10.1006/bbrc.1999.1233 PubMed DOI

Watanabe M, Kumai T, Matsumoto N, Tanaka M, Suzuki S, Satoh T, et al.. Expression of CYP3A4 mRNA is correlated with CYP3A4 protein level and metabolic activity in human liver. J Pharmacol Sci 2004;94(4):459–62. doi: 10.1254/jphs.94.459 PubMed DOI

Rodríguez-Antona C, Donato MT, Pareja E, Gómez-Lechón MJ, Castell JV. Cytochrome P-450 mRNA expression in human liver and its relationship with enzyme activity. Arch Biochem Biophys 2001;393(2):308–15. doi: 10.1006/abbi.2001.2499 PubMed DOI

Clermont V, Grangeon A, Barama A, Turgeon J, Lallier M, Malaise J, et al.. Activity and mRNA expression levels of selected cytochromes P450 in various sections of the human small intestine. Br J Clin Pharmacol 2019;85(6):1367–77. doi: 10.1111/bcp.13908 PubMed DOI PMC

Patki KC, Von Moltke LL, Greenblatt DJ. In vitro metabolism of midazolam, triazolam, nifedipine, and testosterone by human liver microsomes and recombinant cytochromes P450: role of CYP3A4 and CYP3A5. Drug Metab Dispos 2003;31(7):938–44. doi: 10.1124/dmd.31.7.938 PubMed DOI

Maglich JM, Parks DJ, Moore LB, Collins JL, Goodwin B, Billin AN, et al.. Identification of a novel human constitutive androstane receptor (CAR) agonist and its use in the identification of CAR target genes. J Biol Chem 2003;278(19):17277–83. doi: 10.1074/jbc.M300138200 PubMed DOI

Leedale JA, Kyffin JA, Harding AL, Colley HE, Murdoch C, Sharma P, et al.. Multiscale modelling of drug transport and metabolism in liver spheroids. Interface Focus 2020;10(2):20190041. doi: 10.1098/rsfs.2019.0041 PubMed DOI PMC

Nakajima M, Yokoi T. MicroRNAs from biology to future pharmacotherapy: regulation of cytochrome P450s and nuclear receptors. Pharmacol Ther 2011;131(3):330–7. doi: 10.1016/j.pharmthera.2011.04.009 PubMed DOI

Pavek P, Dusek J, Smutny T, Lochman L, Kucera R, Skoda J, et al. Gene expression profiling of 1α, 25 (OH) 2D3 treatment in 2D/3D human hepatocyte models reveals CYP3A4 induction but minor changes in other xenobiotic-metabolizing genes. Mol Nutr Food Res 2022;66(9):2200070. doi: 10.1002/mnfr.202200070 PubMed DOI

Inc TM. MATLAB version: 9.10.0 (R2021a); 2021. Available from: https://www.mathworks.com.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...