The role of cytokine licensing in shaping the therapeutic potential of wharton's jelly MSCs: metabolic shift towards immunomodulation at the expense of differentiation
Language English Country England, Great Britain Media electronic
Document type Journal Article
Grant support
22-31457S
Grantová Agentura České Republiky
CZ.02.01.01/00/22_008/0004562
Ministerstvo Školství, Mládeže a Tělovýchovy
LM2023053
Ministerstvo Školství, Mládeže a Tělovýchovy
RVO:67985823
State Scientific-Research Institute of Physiology and Basic Medicine
NU22-06-00016
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
40254602
PubMed Central
PMC12010610
DOI
10.1186/s13287-025-04309-2
PII: 10.1186/s13287-025-04309-2
Knihovny.cz E-resources
- Keywords
- Adipogenic and osteogenic differentiation, Cytokine priming, Metabolomics, Multipotent mesenchymal stromal cells, Secretome, Transcriptomics, Wharton’s jelly,
- MeSH
- Cell Differentiation * drug effects MeSH
- Cytokines * pharmacology MeSH
- Immunomodulation * drug effects MeSH
- Interferon-gamma * pharmacology MeSH
- Cells, Cultured MeSH
- Humans MeSH
- Mesenchymal Stem Cells * metabolism cytology drug effects immunology MeSH
- Tumor Necrosis Factor-alpha * pharmacology MeSH
- Wharton Jelly * cytology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Cytokines * MeSH
- Interferon-gamma * MeSH
- Tumor Necrosis Factor-alpha * MeSH
BACKGROUND: Cytokine licensing with pro-inflammatory molecules, such as tumour necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ), has emerged as a promising strategy to enhance the therapeutic potential of multipotent mesenchymal stromal cells (MSCs). While licensing has demonstrated benefits for immunomodulation, its effects on other key MSC functions, including differentiation and paracrine activity, remain incompletely explored. In this study, we evaluated the transcriptomic, metabolomic, and functional changes induced by short-term TNF-α/IFN-γ priming of Wharton's jelly-derived MSCs (WJ-MSCs). METHODS: WJ-MSCs were expanded and exposed to TNF-α and IFN-γ (10 ng/ml each) for 24 h. Transcriptomic analysis was performed using RNA sequencing to identify differentially expressed genes related to immune modulation and lineage commitment. Metabolomic profiling was conducted using high-resolution mass spectrometry to assess changes in metabolic pathways. Functional assays evaluated the effects of cytokine priming on induced differentiation and growth factor secretion. RESULTS: Cytokine licensing induced notable alterations in gene expression, upregulating pathways linked to immune response, inflammation, and cytokine signalling. However, short-term cytokine treatment significantly attenuated the osteogenic and adipogenic differentiation of MSCs, as evidenced by the reduced expression of RUNX2, ALP, CEBPA, and PPARG. The priming had a negligible effect on EGF, FGF-2, HGF, LIF, and SCF secretion. The production of VEGF-A and VEGF-C was elevated, although the levels remained low. Metabolomic analysis revealed enhanced kynurenine pathway activity, indicative of increased tryptophan catabolism, accompanied by elevated levels of fatty acids and polyamines. CONCLUSIONS: Our findings demonstrate that TNF-α/IFN-γ priming reprograms WJ-MSCs by enhancing their immunomodulatory capacity at the expense of differentiation potential. These results highlight the need for tailored strategies to optimize MSC functionality for specific clinical applications.
See more in PubMed
Petrenko Y, Vackova I, Kekulova K, Chudickova M, Koci Z, Turnovcova K, et al. A comparative analysis of multipotent mesenchymal stromal cells derived from different sources, with a focus on neuroregenerative potential. Sci Rep. 2020;10(1):4290. PubMed PMC
Zhidu S, Ying T, Rui J, Chao Z. Translational potential of mesenchymal stem cells in regenerative therapies for human diseases: challenges and opportunities. Stem Cell Res Ther. 2024;15(1):266. PubMed PMC
Zhou T, Yuan Z, Weng J, Pei D, Du X, He C, et al. Challenges and advances in clinical applications of mesenchymal stromal cells. J Hematol Oncol. 2021;14(1):24. PubMed PMC
Sangeetha KN, Vennila R, Secunda R, Sakthivel S, Pathak S, Jeswanth S, et al. Functional variations between mesenchymal stem cells of different tissue origins: A comparative gene expression profiling. Biotechnol Lett. 2020;42(7):1287–304. PubMed
Paladino FV, Sardinha LR, Piccinato CA, Goldberg AC. Intrinsic variability present in Wharton’s jelly mesenchymal stem cells and T cell responses May impact cell therapy. Stem Cells Int. 2017;2017:8492797. PubMed PMC
Kannan S, Viswanathan P, Gupta PK, Kolkundkar UK. Characteristics of pooled Wharton’s jelly mesenchymal stromal cells (WJ-MSCs) and their potential role in rheumatoid arthritis treatment. Stem Cell Rev Rep. 2022;18(5):1851–64. PubMed
Kim DS, Jang IK, Lee MW, Ko YJ, Lee DH, Lee JW, et al. Enhanced immunosuppressive properties of human mesenchymal stem cells primed by Interferon-gamma. EBioMedicine. 2018;28:261–73. PubMed PMC
Alagesan S, Brady J, Byrnes D, Fandino J, Masterson C, McCarthy S, et al. Enhancement strategies for mesenchymal stem cells and related therapies. Stem Cell Res Ther. 2022;13(1):75. PubMed PMC
Lopez-Garcia L, Castro-Manrreza ME. TNF-alpha and IFN-gamma participate in improving the immunoregulatory capacity of mesenchymal stem/stromal cells: importance of Cell-Cell contact and extracellular vesicles. Int J Mol Sci. 2021;22(17). PubMed PMC
Li W, Liu Q, Shi J, Xu X, Xu J. The role of TNF-alpha in the fate regulation and functional reprogramming of mesenchymal stem cells in an inflammatory microenvironment. Front Immunol. 2023;14:1074863. PubMed PMC
Burnham AJ, Foppiani EM, Goss KL, Jang-Milligan F, Kamalakar A, Bradley H, et al. Differential response of mesenchymal stromal cells (MSCs) to type 1 ex vivo cytokine priming: implications for MSC therapy. Cytotherapy. 2023;25(12):1277–84. PubMed
Wiese DM, Wood CA, Ford BN, Braid LR. Cytokine activation reveals Tissue-Imprinted gene profiles of mesenchymal stromal cells. Front Immunol. 2022;13:917790. PubMed PMC
Hu Z, Li D, Wu S, Pei K, Fu Z, Yang Y, et al. Unveiling the functional heterogeneity of cytokine-primed human umbilical cord mesenchymal stem cells through single-cell RNA sequencing. Cell Bioscience. 2024;14(1):40. PubMed PMC
Rogulska O, Vackova I, Prazak S, Turnovcova K, Kubinova S, Bacakova L, et al. Storage conditions affect the composition of the lyophilized secretome of multipotent mesenchymal stromal cells. Sci Rep. 2024;14(1):10243. PubMed PMC
Xu C, Feng C, Huang P, Li Y, Liu R, Liu C, et al. TNFα and IFNγ rapidly activate PI3K-AKT signaling to drive Glycolysis that confers mesenchymal stem cells enhanced anti-inflammatory property. Stem Cell Res Ther. 2022;13(1):491. PubMed PMC
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinf (Oxford England). 2014;30(15):2114–20. PubMed PMC
Kopylova E, Noé L, Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinf (Oxford England). 2012;28(24):3211–7. PubMed
Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinf (Oxford England). 2013;29(1):15–21. PubMed PMC
Love MI, Huber W, Anders S. Moderated Estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. PubMed PMC
R Core Team R: A language and environment for statistical computing. (2019) http://www.R-projectorg/
org.Hs.eg.db. Genome wide annotation for Human. R package version 3.15.0. 2022.
Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet. 2003;34(3):267–73. PubMed
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 2005;102(43):15545–50. PubMed PMC
Cajka T, Smilowitz JT, Fiehn O. Validating quantitative untargeted lipidomics across nine liquid Chromatography-High-Resolution mass spectrometry platforms. Anal Chem. 2017;89(22):12360–8. PubMed
Janovska P, Melenovsky V, Svobodova M, Havlenova T, Kratochvilova H, Haluzik M, et al. Dysregulation of epicardial adipose tissue in cachexia due to heart failure: the role of natriuretic peptides and Cardiolipin. J cachexia Sarcopenia Muscle. 2020;11(6):1614–27. PubMed PMC
Lu Y, Pang Z, Xia J. Comprehensive investigation of pathway enrichment methods for functional interpretation of LC-MS global metabolomics data. Brief Bioinform. 2023;24(1). PubMed PMC
Fawzy El-Sayed KM, Nguyen N, Dorfer CE. Ascorbic acid, inflammatory cytokines (IL-1beta/TNF-alpha/IFN-gamma), or their combination’s effect on stemness, proliferation, and differentiation of gingival mesenchymal stem/progenitor cells. Stem Cells Int. 2020;2020:8897138. PubMed PMC
Duque G, Huang DC, Macoritto M, Rivas D, Yang XF, Ste-Marie LG, et al. Autocrine regulation of interferon gamma in mesenchymal stem cells plays a role in early osteoblastogenesis. Stem Cells. 2009;27(3):550–8. PubMed
Croitoru-Lamoury J, Lamoury FM, Caristo M, Suzuki K, Walker D, Takikawa O, et al. Interferon-gamma regulates the proliferation and differentiation of mesenchymal stem cells via activation of indoleamine 2,3 dioxygenase (IDO). PLoS ONE. 2011;6(2):e14698. PubMed PMC
Hess K, Ushmorov A, Fiedler J, Brenner RE, Wirth T. TNFalpha promotes osteogenic differentiation of human mesenchymal stem cells by triggering the NF-kappaB signaling pathway. Bone. 2009;45(2):367–76. PubMed
Yuping Q, Yijun L, Limei W. Low concentrations of tumor necrosis factor-alpha promote human periodontal ligament stem cells osteogenic differentiation by activation of autophagy via Inhibition of AKT/mTOR pathway. Mol Biol Rep. 2023;50(4):3329–39. PubMed
Knaup I, Kramann R, Sasula MJ, Mack P, Bastos Craveiro R, Niederau C et al. TNF reduces osteogenic cell fate in PDL cells at transcriptional and functional levels without alteration of periodontal proliferative capacity. J Orofac Orthop. 2024. PubMed
Kong X, Liu Y, Ye R, Zhu B, Zhu Y, Liu X, et al. GSK3beta is a checkpoint for TNF-alpha-mediated impaired osteogenic differentiation of mesenchymal stem cells in inflammatory microenvironments. Biochim Biophys Acta. 2013;1830(11):5119–29. PubMed
Houschyar KS, Tapking C, Borrelli MR, Popp D, Duscher D, Maan ZN, et al. Wnt pathway in bone repair and Regeneration - What do we know so Far. Front Cell Dev Biol. 2018;6:170. PubMed PMC
Hu L, Chen W, Qian A, Li YP. Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res. 2024;12(1):39. PubMed PMC
Tang Y, Xie H, Chen J, Geng L, Chen H, Li X, et al. Activated NF-κB in bone marrow mesenchymal stem cells from systemic lupus erythematosus patients inhibits osteogenic differentiation through downregulating Smad signaling. Stem Cells Dev. 2013;22(4):668–78. PubMed PMC
Chang J, Liu F, Lee M, Wu B, Ting K, Zara JN, et al. NF-κB inhibits osteogenic differentiation of mesenchymal stem cells by promoting β-catenin degradation. Proc Natl Acad Sci U S A. 2013;110(23):9469–74. PubMed PMC
Huang H, Zhao N, Xu X, Xu Y, Li S, Zhang J, et al. Dose-specific effects of tumor necrosis factor alpha on osteogenic differentiation of mesenchymal stem cells. Cell Prolif. 2011;44(5):420–7. PubMed PMC
Owen KL, Brockwell NK, Parker BS, JAK-STAT Signaling. A Double-Edged sword of immune regulation and cancer progression. Cancers. 2019;11(12):2002. PubMed PMC
Croitoru-Lamoury J, Lamoury FM, Caristo M, Suzuki K, Walker D, Takikawa O, et al. Interferon-γ regulates the proliferation and differentiation of mesenchymal stem cells via activation of indoleamine 2,3 dioxygenase (IDO). PLoS ONE. 2011;6(2):e14698. PubMed PMC
Kondrikov D, Elmansi A, Bragg RT, Mobley T, Barrett T, Eisa N, et al. Kynurenine inhibits autophagy and promotes senescence in aged bone marrow mesenchymal stem cells through the Aryl hydrocarbon receptor pathway. Exp Gerontol. 2020;130:110805. PubMed PMC
Lewis HC, Chinnadurai R, Bosinger SE, Galipeau J. The IDO inhibitor 1-methyl Tryptophan activates the Aryl hydrocarbon receptor response in mesenchymal stromal cells. Oncotarget. 2017;8(54):91914–27. PubMed PMC
Matheus LHG, Dalmazzo SV, Brito RBO, Pereira LA, de Almeida RJ, Camacho CP, et al. 1-Methyl-D-tryptophan activates Aryl hydrocarbon receptor, a pathway associated with bladder cancer progression. BMC Cancer. 2020;20(1):869. PubMed PMC
Bagchi DP, MacDougald OA. Wnt signaling: from mesenchymal cell fate to lipogenesis and other mature adipocyte functions. Diabetes. 2021;70(7):1419–30. PubMed PMC
Dou H, Duan Y, Zhang X, Yu Q, Di Q, Song Y, et al. Aryl hydrocarbon receptor (AhR) regulates adipocyte differentiation by assembling CRL4B ubiquitin ligase to target PPARγ for proteasomal degradation. J Biol Chem. 2019;294(48):18504–15. PubMed PMC
Li Y, Wang T, Li X, Li W, Lei Y, Shang Q, et al. SOD2 promotes the immunosuppressive function of mesenchymal stem cells at the expense of adipocyte differentiation. Mol Therapy: J Am Soc Gene Therapy. 2024;32(4):1144–57. PubMed PMC
Atashi F, Modarressi A, Pepper MS. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells Dev. 2015;24(10):1150–63. PubMed PMC
Wang S, Umrath F, Cen W, Salgado AJ, Reinert S, Alexander D. Pre-Conditioning with IFN-γ and hypoxia enhances the angiogenic potential of iPSC-Derived MSC secretome. Cells. 2022;11(6). PubMed PMC
Tai L, Saffery NS, Chin SP, Cheong SK. Secretome profile of TNF-α-induced human umbilical cord mesenchymal stem cells unveils biological processes relevant to skin wound healing. Regen Med. 2023;18(11):839–56. PubMed
Li C, Li G, Liu M, Zhou T, Zhou H. Paracrine effect of inflammatory cytokine-activated bone marrow mesenchymal stem cells and its role in osteoblast function. J Biosci Bioeng. 2016;121(2):213–9. PubMed
Zhu M, Chu Y, Shang Q, Zheng Z, Li Y, Cao L, et al. Mesenchymal stromal cells pretreated with pro-inflammatory cytokines promote skin wound healing through VEGFC-mediated angiogenesis. Stem Cells Transl Med. 2020;9(10):1218–32. PubMed PMC
Lenero C, Bowles AC, Correa D, Kouroupis D. Characterization and response to inflammatory stimulation of human endometrial-derived mesenchymal stem/stromal cells. Cytotherapy. 2022;24(2):124–36. PubMed
Tesarova L, Jaresova K, Simara P, Koutna I. Umbilical Cord-Derived mesenchymal stem cells are able to use bFGF treatment and represent a Superb tool for immunosuppressive clinical applications. Int J Mol Sci. 2020;21(15). PubMed PMC
Curti A, Trabanelli S, Salvestrini V, Baccarani M, Lemoli RM. The role of indoleamine 2,3-dioxygenase in the induction of immune tolerance: focus on hematology. Blood. 2009;113(11):2394–401. PubMed
Allmeroth K, Kim CS, Annibal A, Pouikli A, Chacón-Martínez CA, Latza C et al. Polyamine-controlled proliferation and protein biosynthesis are independent determinants of hair follicle stem cell fate. BioRxiv. 2020:2020.04.30.070201.
Kilpinen L, Tigistu-Sahle F, Oja S, Greco D, Parmar A, Saavalainen P, et al. Aging bone marrow mesenchymal stromal cells have altered membrane glycerophospholipid composition and functionality. J Lipid Res. 2013;54(3):622–35. PubMed PMC
Xie J, Lou Q, Zeng Y, Liang Y, Xie S, Xu Q, et al. Single-Cell atlas reveals fatty acid metabolites regulate the functional heterogeneity of mesenchymal stem cells. Front Cell Dev Biol. 2021;9:653308. PubMed PMC
Smith AN, Muffley LA, Bell AN, Numhom S, Hocking AM. Unsaturated fatty acids induce mesenchymal stem cells to increase secretion of angiogenic mediators. J Cell Physiol. 2012;227(9):3225–33. PubMed PMC
Sohn J, Lin H, Fritch MR, Tuan RS. Influence of cholesterol/caveolin-1/caveolae homeostasis on membrane properties and substrate adhesion characteristics of adult human mesenchymal stem cells. Stem Cell Res Ther. 2018;9(1):86. PubMed PMC
Li H, Guo H, Li H. Cholesterol loading affects osteoblastic differentiation in mouse mesenchymal stem cells. Steroids. 2013;78(4):426–33. PubMed