• This record comes from PubMed

Investigating the Flexural Properties of 3D-Printed Nylon CF12 with Respect to the Correlation Between Loading and Layering Directions

. 2025 Mar 16 ; 17 (6) : . [epub] 20250316

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

Grant support
APVV-19-0550 Ministry of Education, Science, Research and Sport of the Slovak Republic
KEGA 042TUKE-4/2025 Ministry of Education, Science, Research and Sports of the Slovak Republic

The article deals with the investigation of the flexural properties of 3D-printed Nylon CF12 with regard to the correlation between the loading and layering directions. It also discusses the prospective consideration of a suitable combination of lightweight material, 3D-printing, and cellular structures for application in sports, such as the production of poles for pole vaulting. Full-volume samples (with and without orbital shell) and porous (Diamond, Primitive, and Gyroid) samples sizes of 20 × 20 × 250 mm were fabricated and subjected to experimental three-point bending tests. The force-displacement dependencies were plotted, and the data were further evaluated. The results showed that the flexural properties of 3D-printed full-volume beams are significantly influenced by the direction of loading relative to the layering, while for porous beams with cellular structures, the differences in properties are very small. Also, the mismatches between the material properties listed in the datasheets and achieved within the research were identified and indicate the necessity to verify mechanical properties of newly developed products experimentally.

See more in PubMed

Grbović A., Kastratović G., Božić Ž., Božić I., Obradović A., Sedmak A., Sedmak S. Experimental and numerical evaluation of fracture characteristics of composite material used in the aircraft engine cover manufacturing. Eng. Fail. Anal. 2022;137:106286. doi: 10.1016/j.engfailanal.2022.106286. DOI

Bellini C., Borrelli R., Di Caprio F., Di Cocco V., Franchitti S., Iacoviello F., Mocanu L.P., Sorrentino L. Manufacturing process effect on the bending characteristics of titanium-lattice/FRP hybrid structures. Procedia Struct. Integr. 2022;42:196–201. doi: 10.1016/j.prostr.2022.12.024. DOI

Mitrovic N., Milosevic M., Momcilovic N., Petrovic A., Miskovic Z., Sedmak A., Popovic P. Key Engineering Materials. Volume 586. Trans Tech Publications Ltd.; Zurich, Switzerland: 2014. Local Strain and Stress Analysis of Globe Valve Housing Subjected to External Axial Loading; pp. 214–217.

Kadkhodapour J., Montazerian H., Darabi A.C., Anaraki A.P., Ahmadi S.M., Zadpoor A.A., Schmauder S. Failure mechanisms of additively manufactured porous biomaterials. J. Mech. Behav. Biomed. Mater. 2015;50:180–191. doi: 10.1016/j.jmbbm.2015.06.012. PubMed DOI

Tkac J., Samborski S., Monkova K., Debski H. Analysis of mechanical properties of a lattice structure produced with the additive technology. Compos. Struct. 2020;242:112138. doi: 10.1016/j.compstruct.2020.112138. DOI

Adil S., Lazoglu I. A review on additive manufacturing of carbon fiber-reinforced polymers: Current methods, materials, mechanical properties, applications and challenges. J. Appl. Polym. Sci. 2023;140:e53476. doi: 10.1002/app.53476. DOI

Dickson A.N., Abourayana H.M., Dowling D.P. 3D Printing of Fibre-Reinforced Thermoplastic Composites Using Fused Filament Fabrication—A Review. Polymers. 2020;12:2188. doi: 10.3390/polym12102188. PubMed DOI PMC

Guo K., Ren Y., Han G., Xie T., Jiang H. Hygrothermal aging and durability prediction of 3D-printed hybrid fiber composites with continuous carbon/Kevlar-fiber and short carbon-fiber. Eng. Fail. Anal. 2025;167 Pt A:108958. doi: 10.1016/j.engfailanal.2024.108958. DOI

Liam T. Mondo Duplantis: Breaking down the Biomechanics Behind the Best-Ever Pole Vaulter. [(accessed on 10 August 2024)]. Available online: https://www.nytimes.com/athletic/5646961/2024/08/05/mondo-duplantis-biomechanics-pole-vault/

Makaruk H., Porter M., Starzak M., Szymczak E. An examination of approach run kinematics in track and field jumping events. Polish J. Sport Tour. 2016;23:82–87. doi: 10.1515/pjst-2016-0009. DOI

Linthorne N.P. Energy loss in the pole vault take-off and the advantage of the flexible pole. Sports Eng. 2000;3:205–218. doi: 10.1046/j.1460-2687.2000.00058.x. DOI

Heck A., Uylings P. Fierljeppen: Pole vaulting for distance. Phys. Educ. 2020;55:045007. doi: 10.1088/1361-6552/ab7fc7. DOI

Chau S., Mukherjee R. Kinetic to Potential Energy Transformation Using a Spring as an Intermediary: Application to the Pole Vault Problem. J. Appl. Mech. 2019 doi: 10.1115/1.4042576. DOI

Frere J., Sanchez H., Homo S., Rabita G., Morin J.B., Cassirame J. Influence of pole carriage on sprint mechanical properties during pole vault run-up. Comput. Methods Biomech. Biomed. Engin. 2017;20:83–84. doi: 10.1080/10255842.2017.1382872. PubMed DOI

Schade F., Arampatzis A., Bruggemann G.-P. Reproducibility of energy parameters in the pole vault. J. Biomech. 2006;39:1464–1471. doi: 10.1016/j.jbiomech.2005.03.027. PubMed DOI

Georgia Gwinnett College . The Future of Pole Vaulting. Technical Report; Georgia Gwinnett College; Lawrenceville, GA, USA: 2017.

Morlier J., Mesnard M., Cid M. Pole-vaulting: Identification of the pole local bending rigidities by an updating technique. J. Appl. Biomech. 2008;24:140–148. doi: 10.1123/jab.24.2.140. PubMed DOI

Moore A., Hubbard M. Modeling and real-time strain measurement of the non-uniform vaulting pole. In: Hubbard M., Mehta R.D., Pallis J.M., editors. The Engineering of Sport 5. Volume 1. Central Plain Books Manufacturing; Winfield, KS, USA: 2004. pp. 312–318.

Xu R., Huang Y., Lin Y., Bai B., Huang T. In-plane flexural behaviour and failure prediction of carbon fibre-reinforced aluminium laminates. J. Reinf. Plast. Compos. 2017;36:1384–1399. doi: 10.1177/0731684417708871. DOI

De Toro E.V., Sobrino J.C., Martínez A.M., Eguía V.M. Analysis of the influence of the variables of the fused deposition modeling (FDM) process on the mechanical properties of a carbon fiber-reinforced polyamide. Procedia Manuf. 2019;41:731–738. doi: 10.1016/j.promfg.2019.09.064. DOI

Christodoulou T.I., Alexopoulou V.E., Markopoulos A.P. An experimental investigation of the mechanical properties of fused filament fabricated nylon-carbon fiber composites. Cut. Tools Technol. Syst. 2024;100:148–167. doi: 10.20998/2078-7405.2024.100.11. DOI

Bellini C., Di Cocco V., Iacoviello F., Sorrentino L. Comparison between long and short beam flexure of a carbon fibre based FML. Procedia Struct. Integr. 2020;26:120–128. doi: 10.1016/j.prostr.2020.06.015. DOI

Majko J., Handrik M., Vaško M., Piroh O., Vaško A. Effect of v-notch on impact toughness of fibre reinforced laminates produced by fff method. Eng. Fail. Anal. 2024;165:108717. doi: 10.1016/j.engfailanal.2024.108717. DOI

Khosravani M.R., Reinicke T. Effects of fiber on the fracture behavior of 3D-printed fiber reinforced nylon. Procedia Struct. Integr. 2022;35:59–65. doi: 10.1016/j.prostr.2021.12.048. DOI

Lawcock G., Ye L., Mai Y., Sun C. Effects of fibre/matrix adhesion on carbon-fibre-reinforced metal laminates—I. Compos. Sci. Technol. 1998;57:1609–1619. doi: 10.1016/S0266-3538(97)00108-5. DOI

FDM Nylon 12 Carbon Fiber Data Sheet; 2018 Stratasys Ltd. [(accessed on 10 August 2024)]. Available online: https://www.stratasys.com/siteassets/materials/materials-catalog/fdm-materials/nylon-12cf/mds_fdm_nylon-12cf_0921a.pdf?v=48e2e4.

Thompson M.K., Moroni G., Vaneker T., Fadel G., Campbell R.I., Gibson I., Bernard A., Schulz J., Graf P., Ahuja B., et al. Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints. CIRP Ann. 2016;65:737–760. doi: 10.1016/j.cirp.2016.05.004. DOI

Kinik D., Gánovská B., Hloch S., Monka P., Monková K., Hutyrová Z. On-line monitoring of technological process of material abrasive water jet cutting. Teh. Vjesn.—Tech. Gaz. 2015;22:351–357. doi: 10.17559/TV-20130904111939. DOI

Monkova K., Monka P.P., Vodilka A. Comparison of the Bending Behavior of Cylindrically Shaped Lattice Specimens with Radially and Orthogonally Arranged Cells Made of ABS. Polymers. 2024;16:979. doi: 10.3390/polym16070979. PubMed DOI PMC

Monkova K., Monka P.P., Žaludek M., Beňo P., Hricová R., Šmeringaiová A. Study of the Bending Behaviour of the Neovius Porous Structure Made Additively from Aluminium Alloy. Aerospace. 2023;10:361. doi: 10.3390/aerospace10040361. DOI

Gado M.G., Al-Ketan O., Aziz M., Al-Rub R.A., Ookawara S. Triply Periodic Minimal Surface Structures: Design, Fabrication, 3D Printing Techniques, State-of-the-Art Studies, and Prospective Thermal Applications for Efficient Energy Utilization. Energy Technol. 2024;12:2301287. doi: 10.1002/ente.202301287. DOI

Korol M., Török J., Monka P.P., Baron P., Mrugalska B., Monkova K. Researching on the Effect of Input Parameters on the Quality and Manufacturability of 3D-Printed Cellular Samples from Nylon 12 CF in Synergy with Testing Their Behavior in Bending. Polymers. 2024;16:1429. doi: 10.3390/polym16101429. PubMed DOI PMC

Plastics Determination of Flexural Properties. ISO; Geneva, Switzerland: 2019.

Korol M. Ph.D. Thesis. Faculty of Manufacturing Technologies with a seat in Presov, Technical University in Kosice; Kosice, Slovakia: 2024. Research on the Adaptation of the Characteristics of Cellular Structures for the Distribution of Stress in the Components.

Kahraman M.F., İriç S., Genel K. Comparative failure behavior of metal honeycomb structures under bending: A finite element-based study. Eng. Fail. Anal. 2024;157:107963. doi: 10.1016/j.engfailanal.2024.107963. DOI

Heo J., Cho N.-K., Kim D.K. Enhanced energy absorption and reusability of 3D printed continuous carbon fibre reinforced honeycomb beams under three-point bending loads. Eng. Struct. 2025;329:119877. doi: 10.1016/j.engstruct.2025.119877. DOI

Oberlercher H., Heim R., Laux M., Berndt A., Becker C., Amancio-Filho S.T., Riemelmoser F.O. Additive manufacturing of continuous carbon fiber reinforced polyamide 6: The effect of process parameters on the microstructure and mechanical properties. Procedia Struct. Integr. 2021;34:111–120. doi: 10.1016/j.prostr.2021.12.017. DOI

Standard Test Method for Tensile Properties of Plastics. ASTM International; West Conshohocken, PA, USA: 2022.

Data-Sheet-EN-A4-FDM-Nylon-12CF-1; 2019 Ricoh Europe PLC. [(accessed on 10 August 2024)]. Available online: https://3d.ricoh.com/wp-content/uploads/2019/10/Ricoh-TDS-FDM-Nylon-12CF-Web-Final.pdf.

MAKERBOT NYLON 12 Carbon Fiber, Data Sheet. [(accessed on 10 August 2024)]. Available online: https://asset.dynamism.com/media/catalog/product/pdf/MakerBot_Nylon_12_Carbon_Fiber_TDS.pdf.

Vanca J., Monkova K., Žaludek M., Monka P.P., Koroľ M., Kozak D., Beno P., Ferroudji F. Investigation of the Influence of Orientation on the Tensile Properties of 3D Printed Samples with Gyroid Structure; Proceedings of the 2022 13th International Conference on Mechanical and Aerospace Engineering (ICMAE); Bratislava, Slovakia. 20–22 July 2022; pp. 526–531.

Monkova K., Monka P.P., Koroľ M., Torok J., Beňo P. Smart Cities: Importance of Management and Innovations for Sustainable Development. Mobility IoT 2023. EAI/Springer Innovations in Communication and Computing. Springer; Cham, Switzerland: 2024. The Effect of a Face Wall on a Cellular Structure During Bending. DOI

Khosravani M.R., Soltani P., Reinicke T. Failure and fracture in adhesively bonded 3D-printed joints: An overview on the current trends. Eng. Fail. Anal. 2023;153:107574. doi: 10.1016/j.engfailanal.2023.107574. DOI

Rajput M.S., Pathak H. Crack growth in sandwich-structured foam core graphite epoxy laminate composite using a phase-field modelling approach. Forces Mech. 2024;16:100284. doi: 10.1016/j.finmec.2024.100284. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...