Cytotoxicity and Binding to DNA, Lysozyme, Ribonuclease A, and Human Serum Albumin of the Diiodido Analog of Picoplatin

. 2025 May 12 ; 64 (18) : 8895-8905. [epub] 20250501

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40312957

Here we investigated cytotoxicity and DNA and protein binding of an iodido analog of picoplatin, the cis-ammine-diiodido(2-methylpyridine)platinum(II) complex (I-picoplatin). I-picoplatin (IC50 = 3.7-12.4 μM) outperforms picoplatin (IC50 = 11.8-22.6 μM) in the human cancer cell lines used and shows a greater ability to overcome the cisplatin resistance of A2780 ovarian cancer cells than does picoplatin. I-picoplatin also induces different cell cycle changes (reduced S-phase fraction and an increase in the G2/M phase arrest) in HeLa cervical carcinoma cells compared to both picoplatin and cisplatin. Binding of the metal compound to DNA model systems was investigated by ethidium bromide displacement assay and circular dichroism. Its reactivity with lysozyme (HEWL) and pancreatic RNase A was studied by X-ray diffraction and mass spectrometry experiments. I-picoplatin binds the DNA double helix and is able to retain the 2-methylpyridine ligand and at least one of the two iodido ligands when bound to the two proteins. Various Pt-containing moieties, including one based on the isomerized structure of I-picoplatin, coordinate the His and Met residues. A low-resolution structure of the I-picoplatin/human serum albumin (HSA) adduct has also been solved. The side chains of His146, Met289, and Met329 are the primary binding sites of the I-picoplatin moieties on HSA.

Zobrazit více v PubMed

Bodor J. N.; Kasireddy V.; Borghaei H. First-Line Therapies for Metastatic Lung Adenocarcinoma Without a Driver Mutation. J. Oncol. Pract. 2018, 14 (9), 529–535. 10.1200/JOP.18.00250. PubMed DOI

Rixe O.; Ortuzar W.; Alvarez M.; Parker R.; Reed E.; Paull K.; Fojo T. Oxaliplatin, Tetraplatin, Cisplatin, and Carboplatin: Spectrum of Activity in Drug-Resistant Cell Lines and in the Cell Lines of the National Cancer Institute’s Anticancer Drug Screen Panel. Biochem. Pharmacol. 1996, 52 (12), 1855–1865. 10.1016/S0006-2952(97)81490-6. PubMed DOI

Yusoh N. A.; Ahmad H.; Gill M. R. Combining PARP Inhibition with Platinum, Ruthenium or Gold Complexes for Cancer Therapy. ChemMedChem 2020, 15 (22), 2121–2135. 10.1002/cmdc.202000391. PubMed DOI PMC

Huang D.; Savage S. R.; Calinawan A. P.; Lin C.; Zhang B.; Wang P.; Starr T. K.; Birrer M. J.; Paulovich A. G. A Highly Annotated Database of Genes Associated with Platinum Resistance in Cancer. Oncogene 2021, 40 (46), 6395–6405. 10.1038/s41388-021-02055-2. PubMed DOI PMC

Dasari S.; Bernard Tchounwou P. Cisplatin in Cancer Therapy: Molecular Mechanisms of Action. Eur. J. Pharmacol. 2014, 740, 364–378. 10.1016/j.ejphar.2014.07.025. PubMed DOI PMC

Notaro A.; Gasser G. Monomeric and Dimeric Coordinatively Saturated and Substitutionally Inert Ru(ii) Polypyridyl Complexes as Anticancer Drug Candidates. Chem. Soc. Rev. 2017, 46 (23), 7317–7337. 10.1039/C7CS00356K. PubMed DOI

Meier-Menches S. M.; Gerner C.; Berger W.; Hartinger C. G.; Keppler B. K. Structure–Activity Relationships for Ruthenium and Osmium Anticancer Agents – towards Clinical Development. Chem. Soc. Rev. 2018, 47 (3), 909–928. 10.1039/C7CS00332C. PubMed DOI

Franz K. J.; Metzler-Nolte N. Introduction: Metals in Medicine. Chem. Rev. 2019, 119 (2), 727–729. 10.1021/acs.chemrev.8b00685. PubMed DOI

Metal-Based Anticancer Agents; Casini A.; Vessières A.; Meier-Menches S. M., Eds.; The Royal Society of Chemistry, 2019.

Treat J.; Schiller J.; Quoix E.; Mauer A.; Edelman M.; Modiano M.; Bonomi P.; Ramlau R.; Lemarie E. ZD0473 Treatment in Lung Cancer: An Overview of the Clinical Trial Results. Eur. J. Cancer 2002, 38, S13–S18. 10.1016/S0959-8049(02)80016-8. PubMed DOI

Raynaud F. I.; Boxall F. E.; Goddard P. M.; Valenti M.; Jones M.; Murrer B. A.; Abrams M.; Kelland L. R. Cis-Amminedichloro(2-Methylpyridine) Platinum(II) (AMD473), a Novel Sterically Hindered Platinum Complex: In Vivo Activity, Toxicology, and Pharmacokinetics in Mice. Clin. Cancer Res. 1997, 3 (11), 2063–2074. PubMed

Sharp S. Y.; O’Neill C. F.; Rogers P.; Boxall F. E.; Kelland L. R. Retention of Activity by the New Generation Platinum Agent AMD0473 in Four Human Tumour Cell Lines Possessing Acquired Resistance to Oxaliplatin. Eur. J. Cancer 2002, 38 (17), 2309–2315. 10.1016/S0959-8049(02)00244-7. PubMed DOI

Tang P.; Wang J.; Bourne P. Molecular Classifications of Breast Carcinoma with Similar Terminology and Different Definitions: Are They the Same?. Hum. Pathol. 2008, 39 (4), 506–513. 10.1016/j.humpath.2007.09.005. PubMed DOI

Shahlaei M.; Asl S. M.; Derakhshani A.; Kurek L.; Karges J.; Macgregor R.; Saeidifar M.; Kostova I.; Saboury A. A. Platinum-Based Drugs in Cancer Treatment: Expanding Horizons and Overcoming Resistance. J. Mol. Struct. 2024, 1301, 13736610.1016/j.molstruc.2023.137366. DOI

Ferraro G.; Loreto D.; Merlino A. Interaction of Platinum-Based Drugs with Proteins: An Overview of Representative Crystallographic Studies. Curr. Top. Med. Chem. 2021, 21 (1), 6–27. 10.2174/1568026620666200624162213. PubMed DOI

Messori L.; Merlino A. Cisplatin Binding to Proteins: A Structural Perspective. Coord. Chem. Rev. 2016, 315, 67–89. 10.1016/j.ccr.2016.01.010. DOI

Pinato O.; Musetti C.; Sissi C. Pt-Based Drugs: The Spotlight Will Be on Proteins. Metallomics 2014, 6 (3), 380–395. 10.1039/C3MT00357D. PubMed DOI

Pinato O.; Musetti C.; Farrell N. P.; Sissi C. Platinum-Based Drugs and Proteins: Reactivity and Relevance to DNA Adduct Formation. J. Inorg. Biochem. 2013, 122, 27–37. 10.1016/j.jinorgbio.2013.01.007. PubMed DOI PMC

Merlino A. Recent Advances in Protein Metalation: Structural Studies. Chem. Commun. 2021, 57 (11), 1295–1307. 10.1039/D0CC08053E. PubMed DOI

Merlino A.; Marzo T.; Messori L. Protein Metalation by Anticancer Metallodrugs: A Joint ESI MS and XRD Investigative Strategy. Chem.—Eur. J. 2017, 23 (29), 6942–6947. 10.1002/chem.201605801. PubMed DOI

Tanley S. W. M.; Schreurs A. M. M.; Kroon-Batenburg L. M. J.; Meredith J.; Prendergast R.; Walsh D.; Bryant P.; Levy C.; Helliwell J. R. Structural Studies of the Effect That Dimethyl Sulfoxide (DMSO) Has on Cisplatin and Carboplatin Binding to Histidine in a Protein. Acta Crystallogr., Sect. D 2012, 68 (5), 601–612. 10.1107/S0907444912006907. PubMed DOI

Messori L.; Merlino A. Cisplatin Binding to Proteins: Molecular Structure of the Ribonuclease A Adduct. Inorg. Chem. 2014, 53 (8), 3929–3931. 10.1021/ic500360f. PubMed DOI

Helliwell J. R.; Tanley S. W. M. The Crystal Structure Analysis of the Relative Binding of Cisplatin and Carboplatin in a Mixture with Histidine in a Protein Studied at 100 and 300 K with Repeated X-Ray Irradiation. Acta Crystallogr., Sect. D 2013, 69 (1), 121–125. 10.1107/S090744491204423X. PubMed DOI

Picone D.; Donnarumma F.; Ferraro G.; Russo Krauss I.; Fagagnini A.; Gotte G.; Merlino A. Platinated Oligomers of Bovine Pancreatic Ribonuclease: Structure and Stability. J. Inorg. Biochem. 2015, 146, 37–43. 10.1016/j.jinorgbio.2015.02.011. PubMed DOI

Ferraro G.; Pica A.; Russo Krauss I.; Pane F.; Amoresano A.; Merlino A. Effect of Temperature on the Interaction of Cisplatin with the Model Protein Hen Egg White Lysozyme. J. Biol. Inorg. Chem. 2016, 21 (4), 433–442. 10.1007/s00775-016-1352-0. PubMed DOI

Messori L.; Marzo T.; Gabbiani C.; Valdes A. A.; Quiroga A. G.; Merlino A. Peculiar Features in the Crystal Structure of the Adduct Formed between Cis -PtI 2 (NH3)2 and Hen Egg White Lysozyme. Inorg. Chem. 2013, 52 (24), 13827–13829. 10.1021/ic402611m. PubMed DOI

Ferraro G.; Lyčková T.; Massai L.; Štarha P.; Messori L.; Merlino A. Picoplatin Binding to Proteins: X-Ray Structures and Mass Spectrometry Data on the Adducts with Lysozyme and Ribonuclease A. Dalton Trans. 2024, 53 (20), 8535–8540. 10.1039/D4DT00773E. PubMed DOI

Štarha P.; Drahoš B.; Herchel R. An Unexpected In-Solution Instability of Diiodido Analogue of Picoplatin Complicates Its Biological Characterization. Dalton Trans. 2021, 50 (18), 6071–6075. 10.1039/D1DT00740H. PubMed DOI

Tanley S. W. M.; Schreurs A. M. M.; Kroon-Batenburg L. M. J.; Helliwell J. R. Room-Temperature X-Ray Diffraction Studies of Cisplatin and Carboplatin Binding to His15 of HEWL after Prolonged Chemical Exposure. Acta Crystallogr., Sect. F 2012, 68 (11), 1300–1306. 10.1107/S1744309112042005. PubMed DOI PMC

Tanley S. W. M.; Schreurs A. M. M.; Kroon-Batenburg L. M. J.; Helliwell J. R. Re-Refinement of 4g4a: Room-Temperature X-Ray Diffraction Study of Cisplatin and Its Binding to His15 of HEWL after 14 Months Chemical Exposure in the Presence of DMSO. Acta Crystallogr., Sect. F 2016, 72 (3), 253–254. 10.1107/S2053230X16000856. PubMed DOI PMC

Tanley S. W. M.; Helliwell J. R. Chemical Conversion of Cisplatin and Carboplatin with Histidine in a Model Protein Crystallized under Sodium Iodide Conditions. Acta Crystallogr., Sect. F 2014, 70 (9), 1127–1131. 10.1107/S2053230X14013995. PubMed DOI PMC

Ferraro G.; Massai L.; Messori L.; Merlino A. Cisplatin Binding to Human Serum Albumin: A Structural Study. Chem. Commun. 2015, 51 (46), 9436–9439. 10.1039/C5CC01751C. PubMed DOI

Chen S.; Yuan C.; Jiang L.; Luo Z.; Huang M. Crystallographic Analysis of Interaction between Cisplatin and Human Serum Albumin: Effect of Fatty Acid. Int. J. Biol. Macromol. 2022, 216, 172–178. 10.1016/j.ijbiomac.2022.06.181. PubMed DOI

Vonrhein C.; Flensburg C.; Keller P.; Sharff A.; Smart O.; Paciorek W.; Womack T.; Bricogne G. Data Processing and Analysis with the autoPROC Toolbox. Acta Crystallogr., Sect. D 2011, 67 (4), 293–302. 10.1107/S0907444911007773. PubMed DOI PMC

McCoy A. J.; Grosse-Kunstleve R. W.; Adams P. D.; Winn M. D.; Storoni L. C.; Read R. J. Phaser Crystallographic Software. J. Appl. Crystallogr. 2007, 40 (4), 658–674. 10.1107/S0021889807021206. PubMed DOI PMC

Vitagliano L.; Merlino A.; Zagari A.; Mazzarella L. Reversible Substrate-induced Domain Motions in Ribonuclease A. Proteins 2002, 46 (1), 97–104. 10.1002/prot.10033. PubMed DOI

Vaney M. C.; Maignan S.; Riès-Kautt M.; Ducruix A. High-Resolution Structure (1.33 Å) of a HEW Lysozyme Tetragonal Crystal Grown in the APCF Apparatus. Data and Structural Comparison with a Crystal Grown under Microgravity from SpaceHab-01 Mission. Acta Crystallogr., Sect. D 1996, 52 (3), 505–517. 10.1107/S090744499501674X. PubMed DOI

Murshudov G. N.; Skubák P.; Lebedev A. A.; Pannu N. S.; Steiner R. A.; Nicholls R. A.; Winn M. D.; Long F.; Vagin A. A. REFMAC 5 for the Refinement of Macromolecular Crystal Structures. Acta Crystallogr., Sect. D 2011, 67 (4), 355–367. 10.1107/S0907444911001314. PubMed DOI PMC

Nicholls R. A.; Fischer M.; McNicholas S.; Murshudov G. N. Conformation-Independent Structural Comparison of Macromolecules with ProSMART. Acta Crystallogr., Sect. D 2014, 70 (9), 2487–2499. 10.1107/S1399004714016241. PubMed DOI PMC

Emsley P.; Lohkamp B.; Scott W. G.; Cowtan K. Features and Development of Coot. Acta Crystallogr., Sect. D 2010, 66 (4), 486–501. 10.1107/S0907444910007493. PubMed DOI PMC

Holford J.; Sharp S.; Murrer B.; Abrams M.; Kelland L. In Vitro Circumvention of Cisplatin Resistance by the Novel Sterically Hindered Platinum Complex AMD473. Br. J. Cancer 1998, 77 (3), 366–373. 10.1038/bjc.1998.59. PubMed DOI PMC

Kelland L. Broadening the Clinical Use of Platinum Drug–Based Chemotherapy with New Analogues: Satraplatin and Picoplatin. Expert Opin. Invest. Drugs 2007, 16 (7), 1009–1021. 10.1517/13543784.16.7.1009. PubMed DOI

Siddik Z. H. Cisplatin: Mode of Cytotoxic Action and Molecular Basis of Resistance. Oncogene 2003, 22 (47), 7265–7279. 10.1038/sj.onc.1206933. PubMed DOI

Intini F. P.; Zajac J.; Novohradsky V.; Saltarella T.; Pacifico C.; Brabec V.; Natile G.; Kasparkova J. Novel Antitumor Platinum(II) Conjugates Containing the Nonsteroidal Anti-Inflammatory Agent Diclofenac: Synthesis and Dual Mechanisms of Antiproliferative Effects. Inorg. Chem. 2017, 56 (3), 1483–1497. 10.1021/acs.inorgchem.6b02553. PubMed DOI

Cheung-Ong K.; Giaever G.; Nislow C. DNA-Damaging Agents in Cancer Chemotherapy: Serendipity and Chemical Biology. Chem. Biol. 2013, 20 (5), 648–659. 10.1016/j.chembiol.2013.04.007. PubMed DOI

Sharma S.; Shah N. A.; Joiner A. M.; Roberts K. H.; Canman C. E. DNA Polymerase ζ Is a Major Determinant of Resistance to Platinum-Based Chemotherapeutic Agents. Mol. Pharmacol. 2012, 81 (6), 778–787. 10.1124/mol.111.076828. PubMed DOI PMC

Merlino A. Metallodrug Binding to Serum Albumin: Lessons from Biophysical and Structural Studies. Coord. Chem. Rev. 2023, 480, 21502610.1016/j.ccr.2023.215026. DOI

Tanley S. W. M.; Diederichs K.; Kroon-Batenburg L. M. J.; Levy C.; Schreurs A. M. M.; Helliwell J. R. Carboplatin Binding to Histidine. Acta Crystallogr., Sect. F 2014, 70 (9), 1135–1142. 10.1107/S2053230X14016161. PubMed DOI PMC

Messori L.; Merlino A. Protein Metalation by Metal-Based Drugs: X-Ray Crystallography and Mass Spectrometry Studies. Chem. Commun. 2017, 53 (85), 11622–11633. 10.1039/C7CC06442J. PubMed DOI

Marasco D.; Messori L.; Marzo T.; Merlino A. Oxaliplatin vs. Cisplatin: Competition Experiments on Their Binding to Lysozyme. Dalton Trans. 2015, 44 (22), 10392–10398. 10.1039/C5DT01279A. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...