Cytotoxicity and Binding to DNA, Lysozyme, Ribonuclease A, and Human Serum Albumin of the Diiodido Analog of Picoplatin
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40312957
PubMed Central
PMC12076543
DOI
10.1021/acs.inorgchem.4c05424
Knihovny.cz E-zdroje
- MeSH
- DNA * metabolismus chemie MeSH
- lidé MeSH
- lidský sérový albumin * metabolismus chemie MeSH
- molekulární struktura MeSH
- muramidasa * metabolismus chemie MeSH
- nádorové buněčné linie MeSH
- organoplatinové sloučeniny * chemie farmakologie chemická syntéza metabolismus MeSH
- pankreatická ribonukleasa * metabolismus chemie MeSH
- proliferace buněk účinky léků MeSH
- protinádorové látky * farmakologie chemie chemická syntéza metabolismus MeSH
- screeningové testy protinádorových léčiv MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA * MeSH
- lidský sérový albumin * MeSH
- muramidasa * MeSH
- organoplatinové sloučeniny * MeSH
- pankreatická ribonukleasa * MeSH
- protinádorové látky * MeSH
Here we investigated cytotoxicity and DNA and protein binding of an iodido analog of picoplatin, the cis-ammine-diiodido(2-methylpyridine)platinum(II) complex (I-picoplatin). I-picoplatin (IC50 = 3.7-12.4 μM) outperforms picoplatin (IC50 = 11.8-22.6 μM) in the human cancer cell lines used and shows a greater ability to overcome the cisplatin resistance of A2780 ovarian cancer cells than does picoplatin. I-picoplatin also induces different cell cycle changes (reduced S-phase fraction and an increase in the G2/M phase arrest) in HeLa cervical carcinoma cells compared to both picoplatin and cisplatin. Binding of the metal compound to DNA model systems was investigated by ethidium bromide displacement assay and circular dichroism. Its reactivity with lysozyme (HEWL) and pancreatic RNase A was studied by X-ray diffraction and mass spectrometry experiments. I-picoplatin binds the DNA double helix and is able to retain the 2-methylpyridine ligand and at least one of the two iodido ligands when bound to the two proteins. Various Pt-containing moieties, including one based on the isomerized structure of I-picoplatin, coordinate the His and Met residues. A low-resolution structure of the I-picoplatin/human serum albumin (HSA) adduct has also been solved. The side chains of His146, Met289, and Met329 are the primary binding sites of the I-picoplatin moieties on HSA.
Zobrazit více v PubMed
Bodor J. N.; Kasireddy V.; Borghaei H. First-Line Therapies for Metastatic Lung Adenocarcinoma Without a Driver Mutation. J. Oncol. Pract. 2018, 14 (9), 529–535. 10.1200/JOP.18.00250. PubMed DOI
Rixe O.; Ortuzar W.; Alvarez M.; Parker R.; Reed E.; Paull K.; Fojo T. Oxaliplatin, Tetraplatin, Cisplatin, and Carboplatin: Spectrum of Activity in Drug-Resistant Cell Lines and in the Cell Lines of the National Cancer Institute’s Anticancer Drug Screen Panel. Biochem. Pharmacol. 1996, 52 (12), 1855–1865. 10.1016/S0006-2952(97)81490-6. PubMed DOI
Yusoh N. A.; Ahmad H.; Gill M. R. Combining PARP Inhibition with Platinum, Ruthenium or Gold Complexes for Cancer Therapy. ChemMedChem 2020, 15 (22), 2121–2135. 10.1002/cmdc.202000391. PubMed DOI PMC
Huang D.; Savage S. R.; Calinawan A. P.; Lin C.; Zhang B.; Wang P.; Starr T. K.; Birrer M. J.; Paulovich A. G. A Highly Annotated Database of Genes Associated with Platinum Resistance in Cancer. Oncogene 2021, 40 (46), 6395–6405. 10.1038/s41388-021-02055-2. PubMed DOI PMC
Dasari S.; Bernard Tchounwou P. Cisplatin in Cancer Therapy: Molecular Mechanisms of Action. Eur. J. Pharmacol. 2014, 740, 364–378. 10.1016/j.ejphar.2014.07.025. PubMed DOI PMC
Notaro A.; Gasser G. Monomeric and Dimeric Coordinatively Saturated and Substitutionally Inert Ru(ii) Polypyridyl Complexes as Anticancer Drug Candidates. Chem. Soc. Rev. 2017, 46 (23), 7317–7337. 10.1039/C7CS00356K. PubMed DOI
Meier-Menches S. M.; Gerner C.; Berger W.; Hartinger C. G.; Keppler B. K. Structure–Activity Relationships for Ruthenium and Osmium Anticancer Agents – towards Clinical Development. Chem. Soc. Rev. 2018, 47 (3), 909–928. 10.1039/C7CS00332C. PubMed DOI
Franz K. J.; Metzler-Nolte N. Introduction: Metals in Medicine. Chem. Rev. 2019, 119 (2), 727–729. 10.1021/acs.chemrev.8b00685. PubMed DOI
Metal-Based Anticancer Agents; Casini A.; Vessières A.; Meier-Menches S. M., Eds.; The Royal Society of Chemistry, 2019.
Treat J.; Schiller J.; Quoix E.; Mauer A.; Edelman M.; Modiano M.; Bonomi P.; Ramlau R.; Lemarie E. ZD0473 Treatment in Lung Cancer: An Overview of the Clinical Trial Results. Eur. J. Cancer 2002, 38, S13–S18. 10.1016/S0959-8049(02)80016-8. PubMed DOI
Raynaud F. I.; Boxall F. E.; Goddard P. M.; Valenti M.; Jones M.; Murrer B. A.; Abrams M.; Kelland L. R. Cis-Amminedichloro(2-Methylpyridine) Platinum(II) (AMD473), a Novel Sterically Hindered Platinum Complex: In Vivo Activity, Toxicology, and Pharmacokinetics in Mice. Clin. Cancer Res. 1997, 3 (11), 2063–2074. PubMed
Sharp S. Y.; O’Neill C. F.; Rogers P.; Boxall F. E.; Kelland L. R. Retention of Activity by the New Generation Platinum Agent AMD0473 in Four Human Tumour Cell Lines Possessing Acquired Resistance to Oxaliplatin. Eur. J. Cancer 2002, 38 (17), 2309–2315. 10.1016/S0959-8049(02)00244-7. PubMed DOI
Tang P.; Wang J.; Bourne P. Molecular Classifications of Breast Carcinoma with Similar Terminology and Different Definitions: Are They the Same?. Hum. Pathol. 2008, 39 (4), 506–513. 10.1016/j.humpath.2007.09.005. PubMed DOI
Shahlaei M.; Asl S. M.; Derakhshani A.; Kurek L.; Karges J.; Macgregor R.; Saeidifar M.; Kostova I.; Saboury A. A. Platinum-Based Drugs in Cancer Treatment: Expanding Horizons and Overcoming Resistance. J. Mol. Struct. 2024, 1301, 13736610.1016/j.molstruc.2023.137366. DOI
Ferraro G.; Loreto D.; Merlino A. Interaction of Platinum-Based Drugs with Proteins: An Overview of Representative Crystallographic Studies. Curr. Top. Med. Chem. 2021, 21 (1), 6–27. 10.2174/1568026620666200624162213. PubMed DOI
Messori L.; Merlino A. Cisplatin Binding to Proteins: A Structural Perspective. Coord. Chem. Rev. 2016, 315, 67–89. 10.1016/j.ccr.2016.01.010. DOI
Pinato O.; Musetti C.; Sissi C. Pt-Based Drugs: The Spotlight Will Be on Proteins. Metallomics 2014, 6 (3), 380–395. 10.1039/C3MT00357D. PubMed DOI
Pinato O.; Musetti C.; Farrell N. P.; Sissi C. Platinum-Based Drugs and Proteins: Reactivity and Relevance to DNA Adduct Formation. J. Inorg. Biochem. 2013, 122, 27–37. 10.1016/j.jinorgbio.2013.01.007. PubMed DOI PMC
Merlino A. Recent Advances in Protein Metalation: Structural Studies. Chem. Commun. 2021, 57 (11), 1295–1307. 10.1039/D0CC08053E. PubMed DOI
Merlino A.; Marzo T.; Messori L. Protein Metalation by Anticancer Metallodrugs: A Joint ESI MS and XRD Investigative Strategy. Chem.—Eur. J. 2017, 23 (29), 6942–6947. 10.1002/chem.201605801. PubMed DOI
Tanley S. W. M.; Schreurs A. M. M.; Kroon-Batenburg L. M. J.; Meredith J.; Prendergast R.; Walsh D.; Bryant P.; Levy C.; Helliwell J. R. Structural Studies of the Effect That Dimethyl Sulfoxide (DMSO) Has on Cisplatin and Carboplatin Binding to Histidine in a Protein. Acta Crystallogr., Sect. D 2012, 68 (5), 601–612. 10.1107/S0907444912006907. PubMed DOI
Messori L.; Merlino A. Cisplatin Binding to Proteins: Molecular Structure of the Ribonuclease A Adduct. Inorg. Chem. 2014, 53 (8), 3929–3931. 10.1021/ic500360f. PubMed DOI
Helliwell J. R.; Tanley S. W. M. The Crystal Structure Analysis of the Relative Binding of Cisplatin and Carboplatin in a Mixture with Histidine in a Protein Studied at 100 and 300 K with Repeated X-Ray Irradiation. Acta Crystallogr., Sect. D 2013, 69 (1), 121–125. 10.1107/S090744491204423X. PubMed DOI
Picone D.; Donnarumma F.; Ferraro G.; Russo Krauss I.; Fagagnini A.; Gotte G.; Merlino A. Platinated Oligomers of Bovine Pancreatic Ribonuclease: Structure and Stability. J. Inorg. Biochem. 2015, 146, 37–43. 10.1016/j.jinorgbio.2015.02.011. PubMed DOI
Ferraro G.; Pica A.; Russo Krauss I.; Pane F.; Amoresano A.; Merlino A. Effect of Temperature on the Interaction of Cisplatin with the Model Protein Hen Egg White Lysozyme. J. Biol. Inorg. Chem. 2016, 21 (4), 433–442. 10.1007/s00775-016-1352-0. PubMed DOI
Messori L.; Marzo T.; Gabbiani C.; Valdes A. A.; Quiroga A. G.; Merlino A. Peculiar Features in the Crystal Structure of the Adduct Formed between Cis -PtI 2 (NH3)2 and Hen Egg White Lysozyme. Inorg. Chem. 2013, 52 (24), 13827–13829. 10.1021/ic402611m. PubMed DOI
Ferraro G.; Lyčková T.; Massai L.; Štarha P.; Messori L.; Merlino A. Picoplatin Binding to Proteins: X-Ray Structures and Mass Spectrometry Data on the Adducts with Lysozyme and Ribonuclease A. Dalton Trans. 2024, 53 (20), 8535–8540. 10.1039/D4DT00773E. PubMed DOI
Štarha P.; Drahoš B.; Herchel R. An Unexpected In-Solution Instability of Diiodido Analogue of Picoplatin Complicates Its Biological Characterization. Dalton Trans. 2021, 50 (18), 6071–6075. 10.1039/D1DT00740H. PubMed DOI
Tanley S. W. M.; Schreurs A. M. M.; Kroon-Batenburg L. M. J.; Helliwell J. R. Room-Temperature X-Ray Diffraction Studies of Cisplatin and Carboplatin Binding to His15 of HEWL after Prolonged Chemical Exposure. Acta Crystallogr., Sect. F 2012, 68 (11), 1300–1306. 10.1107/S1744309112042005. PubMed DOI PMC
Tanley S. W. M.; Schreurs A. M. M.; Kroon-Batenburg L. M. J.; Helliwell J. R. Re-Refinement of 4g4a: Room-Temperature X-Ray Diffraction Study of Cisplatin and Its Binding to His15 of HEWL after 14 Months Chemical Exposure in the Presence of DMSO. Acta Crystallogr., Sect. F 2016, 72 (3), 253–254. 10.1107/S2053230X16000856. PubMed DOI PMC
Tanley S. W. M.; Helliwell J. R. Chemical Conversion of Cisplatin and Carboplatin with Histidine in a Model Protein Crystallized under Sodium Iodide Conditions. Acta Crystallogr., Sect. F 2014, 70 (9), 1127–1131. 10.1107/S2053230X14013995. PubMed DOI PMC
Ferraro G.; Massai L.; Messori L.; Merlino A. Cisplatin Binding to Human Serum Albumin: A Structural Study. Chem. Commun. 2015, 51 (46), 9436–9439. 10.1039/C5CC01751C. PubMed DOI
Chen S.; Yuan C.; Jiang L.; Luo Z.; Huang M. Crystallographic Analysis of Interaction between Cisplatin and Human Serum Albumin: Effect of Fatty Acid. Int. J. Biol. Macromol. 2022, 216, 172–178. 10.1016/j.ijbiomac.2022.06.181. PubMed DOI
Vonrhein C.; Flensburg C.; Keller P.; Sharff A.; Smart O.; Paciorek W.; Womack T.; Bricogne G. Data Processing and Analysis with the autoPROC Toolbox. Acta Crystallogr., Sect. D 2011, 67 (4), 293–302. 10.1107/S0907444911007773. PubMed DOI PMC
McCoy A. J.; Grosse-Kunstleve R. W.; Adams P. D.; Winn M. D.; Storoni L. C.; Read R. J. Phaser Crystallographic Software. J. Appl. Crystallogr. 2007, 40 (4), 658–674. 10.1107/S0021889807021206. PubMed DOI PMC
Vitagliano L.; Merlino A.; Zagari A.; Mazzarella L. Reversible Substrate-induced Domain Motions in Ribonuclease A. Proteins 2002, 46 (1), 97–104. 10.1002/prot.10033. PubMed DOI
Vaney M. C.; Maignan S.; Riès-Kautt M.; Ducruix A. High-Resolution Structure (1.33 Å) of a HEW Lysozyme Tetragonal Crystal Grown in the APCF Apparatus. Data and Structural Comparison with a Crystal Grown under Microgravity from SpaceHab-01 Mission. Acta Crystallogr., Sect. D 1996, 52 (3), 505–517. 10.1107/S090744499501674X. PubMed DOI
Murshudov G. N.; Skubák P.; Lebedev A. A.; Pannu N. S.; Steiner R. A.; Nicholls R. A.; Winn M. D.; Long F.; Vagin A. A. REFMAC 5 for the Refinement of Macromolecular Crystal Structures. Acta Crystallogr., Sect. D 2011, 67 (4), 355–367. 10.1107/S0907444911001314. PubMed DOI PMC
Nicholls R. A.; Fischer M.; McNicholas S.; Murshudov G. N. Conformation-Independent Structural Comparison of Macromolecules with ProSMART. Acta Crystallogr., Sect. D 2014, 70 (9), 2487–2499. 10.1107/S1399004714016241. PubMed DOI PMC
Emsley P.; Lohkamp B.; Scott W. G.; Cowtan K. Features and Development of Coot. Acta Crystallogr., Sect. D 2010, 66 (4), 486–501. 10.1107/S0907444910007493. PubMed DOI PMC
Holford J.; Sharp S.; Murrer B.; Abrams M.; Kelland L. In Vitro Circumvention of Cisplatin Resistance by the Novel Sterically Hindered Platinum Complex AMD473. Br. J. Cancer 1998, 77 (3), 366–373. 10.1038/bjc.1998.59. PubMed DOI PMC
Kelland L. Broadening the Clinical Use of Platinum Drug–Based Chemotherapy with New Analogues: Satraplatin and Picoplatin. Expert Opin. Invest. Drugs 2007, 16 (7), 1009–1021. 10.1517/13543784.16.7.1009. PubMed DOI
Siddik Z. H. Cisplatin: Mode of Cytotoxic Action and Molecular Basis of Resistance. Oncogene 2003, 22 (47), 7265–7279. 10.1038/sj.onc.1206933. PubMed DOI
Intini F. P.; Zajac J.; Novohradsky V.; Saltarella T.; Pacifico C.; Brabec V.; Natile G.; Kasparkova J. Novel Antitumor Platinum(II) Conjugates Containing the Nonsteroidal Anti-Inflammatory Agent Diclofenac: Synthesis and Dual Mechanisms of Antiproliferative Effects. Inorg. Chem. 2017, 56 (3), 1483–1497. 10.1021/acs.inorgchem.6b02553. PubMed DOI
Cheung-Ong K.; Giaever G.; Nislow C. DNA-Damaging Agents in Cancer Chemotherapy: Serendipity and Chemical Biology. Chem. Biol. 2013, 20 (5), 648–659. 10.1016/j.chembiol.2013.04.007. PubMed DOI
Sharma S.; Shah N. A.; Joiner A. M.; Roberts K. H.; Canman C. E. DNA Polymerase ζ Is a Major Determinant of Resistance to Platinum-Based Chemotherapeutic Agents. Mol. Pharmacol. 2012, 81 (6), 778–787. 10.1124/mol.111.076828. PubMed DOI PMC
Merlino A. Metallodrug Binding to Serum Albumin: Lessons from Biophysical and Structural Studies. Coord. Chem. Rev. 2023, 480, 21502610.1016/j.ccr.2023.215026. DOI
Tanley S. W. M.; Diederichs K.; Kroon-Batenburg L. M. J.; Levy C.; Schreurs A. M. M.; Helliwell J. R. Carboplatin Binding to Histidine. Acta Crystallogr., Sect. F 2014, 70 (9), 1135–1142. 10.1107/S2053230X14016161. PubMed DOI PMC
Messori L.; Merlino A. Protein Metalation by Metal-Based Drugs: X-Ray Crystallography and Mass Spectrometry Studies. Chem. Commun. 2017, 53 (85), 11622–11633. 10.1039/C7CC06442J. PubMed DOI
Marasco D.; Messori L.; Marzo T.; Merlino A. Oxaliplatin vs. Cisplatin: Competition Experiments on Their Binding to Lysozyme. Dalton Trans. 2015, 44 (22), 10392–10398. 10.1039/C5DT01279A. PubMed DOI