Correlation of p53 oligomeric status and its subcellular localization in the presence of the AML-associated NPM mutant
Language English Country United States Media electronic-ecollection
Document type Journal Article
PubMed
40334261
PubMed Central
PMC12058200
DOI
10.1371/journal.pone.0322096
PII: PONE-D-24-49808
Knihovny.cz E-resources
- MeSH
- Leukemia, Myeloid, Acute * genetics metabolism MeSH
- Cell Nucleus metabolism MeSH
- Cytoplasm metabolism MeSH
- Nuclear Localization Signals metabolism MeSH
- Nuclear Proteins * genetics metabolism MeSH
- Humans MeSH
- Protein Multimerization MeSH
- Mutation * MeSH
- Cell Line, Tumor MeSH
- Tumor Suppressor Protein p53 * metabolism genetics chemistry MeSH
- Nucleophosmin MeSH
- Nuclear Export Signals MeSH
- Protein Transport MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Nuclear Localization Signals MeSH
- Nuclear Proteins * MeSH
- Tumor Suppressor Protein p53 * MeSH
- NPM1 protein, human MeSH Browser
- Nucleophosmin MeSH
- Nuclear Export Signals MeSH
- TP53 protein, human MeSH Browser
Tumor suppressor p53 is a key player in the cell response to DNA damage that suffers by frequent inactivating aberrations. Some of them disturb p53 oligomerization and influence cell decision between proliferation, growth arrest and apoptosis. Active p53 resides mostly in the nucleus, degradation occurs in the cytoplasm. Acute myeloid leukemia (AML)-related mutation of NPM (NPMmut) induces massive mislocalization of p53 to the cytoplasm, which might be related to leukemia initiation. Since both proteins interact and execute their function as oligomers, we investigated the role of perturbed p53 oligomerization in the p53 mislocalization process in live cells by FLIM (fluorescence lifetime imaging microscopy), fluorescence anisotropy imaging (FAIM), fluorescence cross-correlation spectroscopy (FCCS) and immunochemical methods. On a set of fluorescently labeled p53 variants, monomeric R337G and L344P, dimeric L344A, and multimeric D352G and A353S, we correlated their cellular localization, oligomerization and interaction with NPMmut. Interplay between nuclear export signal (NES) and nuclear localization signal (NLS) of p53 was investigated as well. While NLS was found critical for the nuclear p53 localization, NES plays less significant role. We observed cytoplasmic translocation only for multimeric A353S variant with sufficient stability and strong interaction with NPMmut. Less stable multimer D352G and L344A dimer were not translocated, monomeric p53 variants always resided in the nucleus independently of the presence of NPMmut and NES intactness. Oligomeric state of NPMmut is not required for p53 translocation, which happens also in the presence of the nonoligomerizing NPMmut variant. The prominent structural and functional role of the R337 residue is shown.
Department of Proteomics Institute of Hematology and Blood Transfusion Prague Czech Republic
Faculty of Mathematics and Physics Institute of Physics Charles University Prague Czech Republic
Imaging Methods Core Facility at BIOCEV Faculty of Science Charles University Vestec Czech Republic
See more in PubMed
Miyashita T, Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 1995. 80(2):293–9. PubMed
Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B. A model for p53-induced apoptosis. Nature [Internet]. 1997;389(6648):300–5. [cited 2024 Sep 12] Available from: https://pubmed.ncbi.nlm.nih.gov/9305847/ PubMed
El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, et al.. WAF1, a potential mediator of p53 tumor suppression. Cell [Internet]. 1993. Nov 19;75(4):817–25. [cited 2024 Sep 12] Available from: https://pubmed.ncbi.nlm.nih.gov/8242752/ PubMed
Kastan MB, Zhan Q, el-Deiry WS, Carrier F, Jacks T, Walsh WV, et al.. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell. 1992;71(4):587–97. doi: 10.1016/0092-8674(92)90593-2 PubMed DOI
Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D. p21 is a universal inhibitor of cyclin kinases. Nature [Internet]. 1993. [cited 2024 Sep 12];366(6456):701–4. Available from: https://pubmed.ncbi.nlm.nih.gov/8259214/. PubMed
Levine AJ. The many faces of p53: something for everyone. J Mol Cell Biol. 2019;11(7):524–30. doi: 10.1093/jmcb/mjz026 PubMed DOI PMC
Baresova P, Musilova J, Pitha PM, Lubyova B. p53 Tumor Suppressor Protein Stability and Transcriptional Activity Are Targeted by Kaposi’s Sarcoma-Associated Herpesvirus-Encoded Viral Interferon Regulatory Factor 3. Mol Cell Biol. 2014. Feb 1;34(3):386. [cited 2024 Oct 5]; Available from:/pmc/articles/PMC3911520/ PubMed PMC
Davison TS, Yin P, Nie E, Kay C, Arrowsmith CH. Characterization of the oligomerization defects of two p53 mutants found in families with Li-Fraumeni and Li-Fraumeni-like syndrome. Oncogene. 1998;17(5):651–6. doi: 10.1038/sj.onc.1202062 PubMed DOI
Kastenhuber ER, Lowe SW. Putting p53 in Context. Cell. 2017;170(6):1062–78. doi: 10.1016/j.cell.2017.08.028 PubMed DOI PMC
Donehower LA, Bradley A. The tumor suppressor p53. Biochim Biophys Acta. 1993;1155(2):181–205. doi: 10.1016/0304-419x(93)90004-v PubMed DOI
Ko LJ, Prives C. p53: puzzle and paradigm. Genes Dev. 1996;10(9):1054–72. doi: 10.1101/gad.10.9.1054 PubMed DOI
Levine AJ. p53, the cellular gatekeeper for growth and division. Cell. 1997;88(3):323–31. doi: 10.1016/s0092-8674(00)81871-1 PubMed DOI
Vousden KH, Prives C. Blinded by the Light: The Growing Complexity of p53. Cell. 2009;137(3):413–31. doi: 10.1016/j.cell.2009.04.037 PubMed DOI
Vaseva AV, Moll UM. The mitochondrial p53 pathway. Biochim Biophys Acta. 2009;1787(5):414–20. doi: 10.1016/j.bbabio.2008.10.005 PubMed DOI PMC
Wei H, Qu L, Dai S, Li Y, Wang H, Feng Y, et al.. Structural insight into the molecular mechanism of p53-mediated mitochondrial apoptosis. Nat Commun. 2021;12(1):2280. doi: 10.1038/s41467-021-22655-6 PubMed DOI PMC
Kato S, Han S-Y, Liu W, Otsuka K, Shibata H, Kanamaru R, et al.. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci U S A. 2003;100(14):8424–9. doi: 10.1073/pnas.1431692100 PubMed DOI PMC
Chen X, Zhang T, Su W, Dou Z, Zhao D, Jin X, et al. . Mutant p53 in cancer: from molecular mechanism to therapeutic modulation. Cell Death Dis [Internet]. 2022. Nov 1;13(11). [cited 2024 Sep 17] Available from: https://pubmed.ncbi.nlm.nih.gov/36400749/ PubMed PMC
Gencel-Augusto J, Lozano G. p53 tetramerization: at the center of the dominant-negative effect of mutant p53. Genes Dev. 2020;34(17–18):1128–46. doi: 10.1101/gad.340976.120 PubMed DOI PMC
Choe JH, Kawase T, Xu A, Guzman A, Obradovic AZ, Low-Calle AM, et al.. Li-Fraumeni syndrome-associated dimer-forming Mutant p53 promotes transactivation-independent mitochondrial cell death. Cancer Discov. 2023;13(5):1250–73. doi: 10.1158/2159-8290.CD-22-0882 PubMed DOI PMC
Lomax ME, Barnes DM, Hupp TR, Picksley SM, Camplejohn RS. Characterization of p53 oligomerization domain mutations isolated from Li-Fraumeni and Li-Fraumeni like family members. Oncogene. 1998;17(5):643–9. doi: 10.1038/sj.onc.1201974 PubMed DOI
Monti P, Menichini P, Speciale A, Cutrona G, Fais F, Taiana E, et al. . Heterogeneity of TP53 Mutations and P53 Protein Residual Function in Cancer: Does It Matter? Front Oncol [Internet]. 2020. Oct 28;10. [cited 2024 Sep 12] : Available from: https://pubmed.ncbi.nlm.nih.gov/33194757/ PubMed PMC
Ishioka C, Englert C, Winge P, Yan YX, Engelstein M, Friend SH. Mutational analysis of the carboxy-terminal portion of p53 using both yeast and mammalian cell assays in vivo. Oncogene. 1995;10(8):1485–92. PubMed
Gencel-Augusto J, Su X, Qi Y, Whitley EM, Pant V, Xiong S, et al.. Dimeric p53 Mutant Elicits Unique Tumor-Suppressive Activities through an Altered Metabolic Program. Cancer Discov [Internet]. 2023. May 1 [cited 2024 Sep 20];13(5):1230–49. Available from: https://pubmed.ncbi.nlm.nih.gov/37067911/. PubMed PMC
Stieg D, Casey K, Murphy ME. p53 Oligomerization Domain Mutants: A New Class of Mutants That Retain “License to Kill”. Cancer Discov. 2023;13(5):1046–8. doi: 10.1158/2159-8290.CD-23-0200 PubMed DOI
Fischer NW, Prodeus A, Malkin D, Gariépy J. p53 oligomerization status modulates cell fate decisions between growth, arrest and apoptosis. Cell Cycle. 2016;15(23):3210–9. doi: 10.1080/15384101.2016.1241917 PubMed DOI PMC
Malcikova J, Tichy B, Damborsky J, Kabathova J, Trbusek M, Mayer J, et al.. Analysis of the DNA-binding activity of p53 mutants using functional protein microarrays and its relationship to transcriptional activation. Biol Chem. 2010;391(2–3):197–205. doi: 10.1515/bc.2010.027 PubMed DOI
Gajjar M, Candeias MM, Malbert-Colas L, Mazars A, Fujita J, Olivares-Illana V, et al.. The p53 mRNA-Mdm2 interaction controls Mdm2 nuclear trafficking and is required for p53 activation following DNA damage. Cancer Cell. 2012;21(1):25–35. doi: 10.1016/j.ccr.2011.11.016 PubMed DOI
García-Cano J, Sánchez-Tena S, Sala-Gaston J, Figueras A, Viñals F, Bartrons R, et al.. Regulation of the MDM2‐p53 pathway by the ubiquitin ligase HERC2. Mol Oncol [Internet]. 2020. Jan 1 [cited 2024 Sep 12];14(1):69. Available from:/pmc/articles/PMC6944118/ PubMed PMC
Mathias C, Bortoletto S, Centa A, Komechen H, Lima RS, Fonseca AS, et al. Frequency of the TP53 R337H variant in sporadic breast cancer and its impact on genomic instability. Sci Rep. 2020. Dec 1;10(1). Available from: https://pubmed.ncbi.nlm.nih.gov/33024147/ [cited 2024 Sep 12] PubMed PMC
Achatz M, Zambetti G. The Inherited p53 Mutation in the Brazilian Population. Cold Spring Harb Perspect Med. [Internet]. 2016;6(12). Available from: /pmc/articles/PMC5131754/ PubMed PMC
Rigoli M, Spagnolli G, Lorengo G, Monti P, Potestio R, Biasini E, et al. Structural Basis of Mutation-Dependent p53 Tetramerization Deficiency. Int J Mol Sci [Internet]. 2022. Jul 1 [cited 2024 Sep 12];23:(14). https://pubmed.ncbi.nlm.nih.gov/35887312/ PubMed PMC
Rajagopalan S, Huang F, Fersht AR. Single-Molecule characterization of oligomerization kinetics and equilibria of the tumor suppressor p53. Nucleic Acids Res. 2011;39(6):2294–303. doi: 10.1093/nar/gkq800 PubMed DOI PMC
Gaglia G, Guan Y, Shah JV, Lahav G. Activation and control of p53 tetramerization in individual living cells. Proc Natl Acad Sci U S A. 2013;110(38):15497–501. doi: 10.1073/pnas.1311126110 PubMed DOI PMC
Natan E, Hirschberg D, Morgner N, Robinson C V, Fersht AR. Ultraslow oligomerization equilibria of p53 and its implications. Proc Natl Acad Sci U S A [Internet]. 2009. Aug 25 [cited 2024 Sep 12];106(34):14327–32. Available from: https://pubmed.ncbi.nlm.nih.gov/19667193/ PubMed PMC
Weinberg RL, Veprintsev DB, Fersht AR. Cooperative binding of tetrameric p53 to DNA. J Mol Biol. 2004;341(5):1145–59. doi: 10.1016/j.jmb.2004.06.071 PubMed DOI
Johnson CR, Freire E, Morin PE, Arrowsmith CH. Thermodynamic analysis of the structural stability of the tetrameric oligomerization domain of p53 tumor suppressor. Biochemistry [Internet]. 1995 Apr 1 [cited 2024 Sep 12]; 34(16):5309–16. https://pubmed.ncbi.nlm.nih.gov/7727392/ PubMed
Mateu MG, Fersht AR. Nine hydrophobic side chains are key determinants of the thermodynamic stability and oligomerization status of tumour suppressor p53 tetramerization domain. EMBO J. 1998;17(10):2748–58. doi: 10.1093/emboj/17.10.2748 PubMed DOI PMC
Kamada R, Toguchi Y, Nomura T, Imagawa T, Sakaguchi K. Tetramer formation of tumor suppressor protein p53: Structure, function, and applications. Biopolymers. 2016;106(4):598–612. doi: 10.1002/bip.22772 PubMed DOI
Gaglia G, Lahav G. Constant rate of p53 tetramerization in response to DNA damage controls the p53 response. Mol Syst Biol. [Internet]. 2014. Oct [cited 2024 Sep 12]; 10(10). https://pubmed.ncbi.nlm.nih.gov/25344068/ PubMed PMC
Aramayo R, Sherman MB, Brownless K, Lurz R, Okorokov AL, Orlova E V. Quaternary structure of the specific p53-DNA complex reveals the mechanism of p53 mutant dominance. Nucleic Acids Res. [Internet]. 2011. Nov [cited 2024 Sep 20]; 39(20):8960–71. Available from: https://pubmed.ncbi.nlm.nih.gov/21764777/ PubMed PMC
Fischer NW, Prodeus A, Tran J, Malkin D, Gariepy J. Association Between the Oligomeric Status of p53 and Clinical Outcomes in Li-Fraumeni Syndrome. J Natl Cancer Inst. [Internet]. 2018 Dec 1 [cited 2024 Sep 17]; 110(12). Available from: https://pubmed.ncbi.nlm.nih.gov/29955864/ PubMed PMC
Katz C, Low-Calle AM, Choe JH, Laptenko O, Tong D, Joseph-Chowdhury J-SN, et al.. Wild-type and cancer-related p53 proteins are preferentially degraded by MDM2 as dimers rather than tetramers. Genes Dev. 2018;32(5–6):430–47. doi: 10.1101/gad.304071.117 PubMed DOI PMC
Luwang JW, Nair AR, Natesh R. Stability of p53 oligomers: Tetramerization of p53 impinges on its stability. Biochimie. 2021;189:99–107. doi: 10.1016/j.biochi.2021.06.012 PubMed DOI
Stommel JM, Marchenko ND, Jimenez GS, Moll UM, Hope TJ, Wahl GM. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J. 1999;18(6):1660–72. doi: 10.1093/emboj/18.6.1660 PubMed DOI PMC
Zhang Y, Xiong Y. A p53 amino-terminal nuclear export signal inhibited by DNA damage-induced phosphorylation. Science. 2001;292(5523):1910–5. doi: 10.1126/science.1058637 PubMed DOI
O’Keefe K, Li H, Zhang Y. Nucleocytoplasmic Shuttling of p53 Is Essential for MDM2-Mediated Cytoplasmic Degradation but Not Ubiquitination. Mol Cell Biol [Internet]. 2003. Sep 1 [cited 2024 Sep 12];23(18):6396. Available from:/pmc/articles/PMC193719/ PubMed PMC
Shaulsky G, Goldfinger N, Ben-Ze’ev A, Rotter V. Nuclear accumulation of p53 protein is mediated by several nuclear localization signals and plays a role in tumorigenesis. Mol Cell Biol. 1990;10(12):6565–77. doi: 10.1128/mcb.10.12.6565-6577.1990 PubMed DOI PMC
Liang SH, Clarke MF. A bipartite nuclear localization signal is required for p53 nuclear import regulated by a carboxyl-terminal domain. J Biol Chem. 1999;274(46):32699–703. doi: 10.1074/jbc.274.46.32699 PubMed DOI
Marchenko ND, Hanel W, Li D, Becker K, Reich N, Moll UM. Stress-mediated nuclear stabilization of p53 is regulated by ubiquitination and importin-alpha3 binding. Cell Death Differ. 2010;17(2):255–67. doi: 10.1038/cdd.2009.173 PubMed DOI PMC
Lee W, Harvey TS, Yin Y, Yau P, Litchfield D, Arrowsmith CH. Solution structure of the tetrameric minimum transforming domain of p53. Nat Struct Biol [Internet]. 1994. [cited 2024 Sep 12]; 1(12):877–90. Available from: https://pubmed.ncbi.nlm.nih.gov/7773777/ PubMed
Clore GM, Omichinski JG, Sakaguchi K, Zambrano N, Sakamoto H, Appella E, et al.. High-resolution structure of the oligomerization domain of p53 by multidimensional NMR. Science. 1994;265(5170):386–91. doi: 10.1126/science.8023159 PubMed DOI
Jeffrey PD, Gorina S, Pavletich NP. Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science. 1995;267(5203):1498–502. doi: 10.1126/science.7878469 PubMed DOI
Itahana Y, Ke H, Zhang Y. p53 Oligomerization is essential for its C-terminal lysine acetylation. J Biol Chem. 2009;284(8):5158–64. doi: 10.1074/jbc.M805696200 PubMed DOI PMC
Boyd MT, Vlatković N, Rubbi CP. The nucleolus directly regulates p53 export and degradation. J Cell Biol [Internet]. 2011. Sep 9 [cited 2024 Sep 16]; 194(5):689. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3171122/ PubMed PMC
Nie L, Sasaki M, Maki CG. Regulation of p53 nuclear export through sequential changes in conformation and ubiquitination. J Biol Chem. 2007;282(19):14616–25. doi: 10.1074/jbc.M610515200 PubMed DOI
Wu X, Bayle JH, Olson D, Levine AJ. The p53-mdm-2 autoregulatory feedback loop. Genes Dev. 1993;7(7A):1126–32. doi: 10.1101/gad.7.7a.1126 PubMed DOI
Zhang Y, Xiong Y, Yarbrough WG. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell [Internet]. 1998. Mar 20 [cited 2024 Sep 17];92(6):725–34. Available from: https://pubmed.ncbi.nlm.nih.gov/9529249/ PubMed
Kurki S, Peltonen K, Latonen L, Kiviharju TM, Ojala PM, Meek D, et al.. Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell. 2004;5(5):465–75. doi: 10.1016/s1535-6108(04)00110-2 PubMed DOI
Foo RSY, Nam YJ, Ostreicher MJ, Metzl MD, Whelan RS, Peng CF, et al. . Regulation of p53 tetramerization and nuclear export by ARC. Proc Natl Acad Sci U S A [Internet]. 2007. Dec 12 [cited 2024 Sep 12];104(52):20826. Available from: /pmc/articles/PMC2409226/ PubMed PMC
Liang SH, Clarke MF. The nuclear import of p53 is determined by the presence of a basic domain and its relative position to the nuclear localization signal. Oncogene. 1999;18(12):2163–6. doi: 10.1038/sj.onc.1202350 PubMed DOI
Santiago A, Li D, Zhao LY, Godsey A, Liao D. p53 SUMOylation promotes its nuclear export by facilitating its release from the nuclear export receptor CRM1. Mol Biol Cell. 2013;24(17):2739–52. doi: 10.1091/mbc.E12-10-0771 PubMed DOI PMC
Holoubek A, Strachotová D, Otevřelová P, Röselová P, Heřman P, Brodská B. AML-Related NPM Mutations Drive p53 delocalization into the cytoplasm with possible impact on p53-dependent stress response. Cancers (Basel). 2021;13(13):3266. doi: 10.3390/cancers13133266 PubMed DOI PMC
Brodská B, Šašinková M, Kuželová K. Nucleophosmin in leukemia: Consequences of anchor loss. Int J Biochem Cell Biol. 2019;111:52–62. doi: 10.1016/j.biocel.2019.04.007 PubMed DOI
Šašinková M. The impact of nucleophosmin gene mutations on its interaction potential [Internet]. Prague: Charles University; 2022 [cited 2025 Jan 22]. Available from: http://hdl.handle.net/20.500.11956/174785
Falini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, et al.. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med. 2005;352(3):254–66. doi: 10.1056/NEJMoa041974 PubMed DOI
Šašinková M, Heřman P, Holoubek A, Strachotová D, Otevřelová P, Grebeňová D, et al.. NSC348884 cytotoxicity is not mediated by inhibition of nucleophosmin oligomerization. Sci Rep. 2021;11(1):1084. doi: 10.1038/s41598-020-80224-1 PubMed DOI PMC
Colombo E, Marine J-C, Danovi D, Falini B, Pelicci PG. Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol. 2002;4(7):529–33. doi: 10.1038/ncb814 PubMed DOI
Lambert B, Buckle M. Characterisation of the interface between nucleophosmin (NPM) and p53: potential role in p53 stabilisation. FEBS Lett. 2006;580(1):345–50. doi: 10.1016/j.febslet.2005.12.025 PubMed DOI
Prokocimer M, Molchadsky A, Rotter V. Dysfunctional diversity of p53 proteins in adult acute myeloid leukemia: projections on diagnostic workup and therapy. Blood. 2017;130(6):699–712. doi: 10.1182/blood-2017-02-763086 PubMed DOI PMC
Strachotová D, Holoubek A, Wolfová K, Brodská B, Heřman P. Cytoplasmic localization of Mdm2 in cells expressing mutated NPM is mediated by p53. FEBS J. 2023;290(17):4281–99. doi: 10.1111/febs.16810 PubMed DOI
Rizzo MA, Springer GH, Granada B, Piston DW. An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol. 2004;22(4):445–9. doi: 10.1038/nbt945 PubMed DOI
Sarkisyan KS, Goryashchenko AS, Lidsky PV, Gorbachev DA, Bozhanova NG, Gorokhovatsky AY, et al.. Green fluorescent protein with anionic tryptophan-based chromophore and long fluorescence lifetime. Biophys J. 2015;109(2):380–9. doi: 10.1016/j.bpj.2015.06.018 PubMed DOI PMC
Brodská B, Kráčmarová M, Holoubek A, Kuželová K. Localization of AML-related nucleophosmin mutant depends on its subtype and is highly affected by its interaction with wild-type NPM. PLoS One. 2017;12(4):e0175175. doi: 10.1371/journal.pone.0175175 PubMed DOI PMC
Herman P, Holoubek A, Brodska B. Lifetime-based photoconversion of EGFP as a tool for FLIM. Biochim Biophys Acta Gen Subj. 2019;1863(1):266–77. doi: 10.1016/j.bbagen.2018.10.016 PubMed DOI
Davis CC, King TA. Single Photon Counting Pileup Corrections for Time-Varying Light Sources. Review of Scientific Instruments. 1970;41(3):407–8. doi: 10.1063/1.1684528 DOI
Axelrod D. Chapter 12 Fluorescence Polarization Microscopy. Methods Cell Biol. 30(C):333–52. 1989. Jan 1 PubMed
Lakowicz JR. Principles of fluorescence spectroscopy. 3rd ed. New York: Springer;2006
Levitt JA, Matthews DR, Ameer-Beg SM, Suhling K. Fluorescence lifetime and polarization-resolved imaging in cell biology. Curr Opin Biotechnol [Internet]. 2009. Feb [cited 2024 Oct 5]; 20(1):28–36. Available from: https://pubmed.ncbi.nlm.nih.gov/19268568/ PubMed
Tkachenko N. Version Control with Git and Github. Data Insight Foundations. 2024:75–9. doi: 10.1007/979-8-8688-0580-6_9 DOI
Wohland T, Maiti S, Macháň R. An Introduction to Fluorescence Correlation Spectroscopy. 2020 Nov 1;
Kawaguchi T, Kato S, Otsuka K, Watanabe G, Kumabe T, Tominaga T, et al.. The relationship among p53 oligomer formation, structure and transcriptional activity using a comprehensive missense mutation library. Oncogene. 2005;24(46):6976–81. doi: 10.1038/sj.onc.1208839 PubMed DOI
Squire A, Verveer PJ, Rocks O, Bastiaens PIH. Red-edge anisotropy microscopy enables dynamic imaging of homo-FRET between green fluorescent proteins in cells. J Struct Biol. 2004;147(1):62–9. PubMed
Sadamoto H, Muto H. Fluorescence Cross-correlation Spectroscopy (FCCS) to Observe Dimerization of Transcription Factors in Living Cells. Methods Mol Biol [Internet]. 2013. [cited 2024 Sep 20];977:229–41. Available from: https://pubmed.ncbi.nlm.nih.gov/23436366/ PubMed
Ma L, Wagner J, Rice JJ, Hu W, Levine AJ, Stolovitzky GA. A plausible model for the digital response of p53 to DNA damage. Proc Natl Acad Sci U S A. 2005;102(40):14266–71. doi: 10.1073/pnas.0501352102 PubMed DOI PMC
Lwin T, Durant J, Bashford D. A fluid salt-bridging cluster and the stabilization of p53. J Mol Biol [Internet]. 2007. Nov 9 [cited 2024 Sep 20];373(5):1334–47. Available from: https://pubmed.ncbi.nlm.nih.gov/17900613/ PubMed PMC
Nicolini F, Todorovski T, Puig E, Díaz-Lobo M, Vilaseca M, García J, et al. . How Do Cancer-Related Mutations Affect the Oligomerisation State of the p53 Tetramerisation Domain? Curr Issues Mol Biol [Internet]. 2023. Jun 1 [cited 2024 Sep 20];45(6):4985–5004. Available from: /pmc/articles/PMC10296842/ PubMed PMC
Lang V, Pallara C, Zabala A, Lobato-Gil S, Lopitz-Otsoa F, Farrás R, et al. Tetramerization-defects of p53 result in aberrant ubiquitylation and transcriptional activity. Mol Oncol. 8(5):1026–42. 2014. [cited 2024 Sep 20]. https://pubmed.ncbi.nlm.nih.gov/24816189/ PubMed PMC
Liang SH, Clarke MF. Regulation of p53 localization. Eur J Biochem. 2001. [Internet]. [cited 2024 Oct 10]; 268(10):2779–83. Available from: https://pubmed.ncbi.nlm.nih.gov/11358492/ PubMed
Wang R, Brattain MG. The maximal size of protein to diffuse through the nuclear pore is larger than 60kDa. FEBS Lett. 2007;581(17):3164–70. doi: 10.1016/j.febslet.2007.05.082 PubMed DOI PMC
Krüger T, Scheer U. p53 localizes to intranucleolar regions distinct from the ribosome production compartments. J Cell Sci. [Internet]. 2010. Apr 15 [cited 2024 Oct 10];123(Pt 8):1203–8. Available from: https://pubmed.ncbi.nlm.nih.gov/20332106/ PubMed
Karni-Schmidt O, Zupnick A, Castillo M, Ahmed A, Matos T, Bouvet P, et al.. p53 is localized to a sub-nucleolar compartment after proteasomal inhibition in an energy-dependent manner. J Cell Sci. 2008;121(Pt 24):4098–105. doi: 10.1242/jcs.030098 PubMed DOI
Benninghoff J, Kartarius S, Teleb Z, Selter H, Unteregger G, Zwergel T, et al.. Two different forms of p53 localized differently within cells of urogenital tumours. Cancer Lett. 1999;144(1):55–64. doi: 10.1016/s0304-3835(99)00187-1 PubMed DOI
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al.. Highly accurate protein structure prediction with AlphaFold. Nature. 2021. Jul 15 [cited 2024 Sep 21];596(7873):583–9. [Internet]. Available from: https://www.nature.com/articles/s41586-021-03819-2 PubMed PMC