High-Throughput Sequencing Reveals Apple Virome Diversity and Novel Viruses in the Czech Republic
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
institutional support MZE-RO0423
Ministry of Agriculture of the Czech Republic
institutional support MZE-RO1525
Ministry of Agriculture of the Czech Republic
QK1910065
NAZV
RVO60077344
Czech Academy of Sciences, by the research project "Virology and Antiviral Strategy" within the program 'Strategy AV 21'
No 871029
European Virus Archive Global (EVA-GLOBAL) project, which received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement
PubMed
40431662
PubMed Central
PMC12115486
DOI
10.3390/v17050650
PII: v17050650
Knihovny.cz E-resources
- Keywords
- ARWV1, ARWV2, HTS, apple, coinfection, molecular variants, recombination,
- MeSH
- Phylogeny MeSH
- Genetic Variation * MeSH
- Genome, Viral MeSH
- Malus * virology MeSH
- Plant Diseases * virology MeSH
- Recombination, Genetic MeSH
- Plant Viruses * genetics classification isolation & purification MeSH
- Virome * genetics MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
Apple viruses pose significant threat to global apple production. In this study, HTS technology was used to investigate the apple virome in the Czech Republic. Previously reported viruses, including ACLSV, ASPV, ASGV, ApMV, AGCaV, and CCGaV, were confirmed, and near-complete genomes were assembled. Additionally, two novel viruses, ARWV1 and ARWV2 were identified for the first time in the Czech Republic. Phylogenetic analyses showed low genetic variability among ARWV2 isolates, suggesting a possible recent introduction or limited diversification. In contrast, ARWV1 isolates displayed distinct clustering in the coat protein coding region, separating symptomatic and asymptomatic samples, indicating a potential involvement of genetic determinants in symptom expression. Mixed infections were prevalent, with multiple molecular variants of ACLSV, ASPV, and AGCaV detected within individual samples, along with co-infections involving viruses from different families. Recombination analysis identified frequent recombination events in ACLSV and ASPV, often involving non-apple parental sequences, suggesting their potential for cross-host infections. Additionally, an interspecific recombination event was detected in an almond ApMV isolate, with PNRSV as a minor parent. These findings highlight the impact of agricultural practices on viral evolution and host adaptation. This study demonstrates the utility of HTS as a powerful tool for uncovering viral diversity, recombination events, and evolutionary dynamics.
See more in PubMed
Mansoor S., Ahmed N., Sharma V., Jan S., Nabi S.U., Mir J.I., Mir M.A., Masoodi K.Z. Elucidating Genetic Variability and Population Structure in Venturia Inaequalis Associated with Apple Scab Diseaseusing SSR Markers. PLoS ONE. 2019;14:e0224300. doi: 10.1371/journal.pone.0224300. PubMed DOI PMC
Menzel W., Zahn V., Maiss E. Multiplex RT-PCR-ELISA Compared with Bioassay for the Detection of Four Apple Viruses. J. Virol. Methods. 2003;110:153–157. doi: 10.1016/S0166-0934(03)00112-5. PubMed DOI
Grimová L., Winkowska L., Zíka L., Ryšánek P. Distribution of Viruses in Old Commercial and Abandoned Orchards and Wild Apple Trees. J. Plant Pathol. 2016;98:549–554. doi: 10.4454/JPP.V98I3.038. DOI
Balík J., Rop O., Mlček J., Híc P., Horák M., Řezníček V. Assessment of Nutritional Parameters of Native Apple Cultivars as New Gene Sources. Acta Univ. Agric. Silvic. Mendel. Brun. 2012;60:27–38. doi: 10.11118/actaun201260050027. DOI
Nabi S.U., Mir J.I., Sharma O.C., Singh D.B., Zaffer S., Sheikh M.A., Masoodi L., Khan K.A. Optimization of Tissue and Time for Rapid Serological and Molecular Detection of Apple Stem Pitting Virus and Apple Stem Grooving Virus in Apple’. Phytoparasitica. 2018;46:705–713. doi: 10.1007/s12600-018-0701-7. DOI
Cembali T., Folwell R.J., Wandschneider P., Eastwell K.C., Howell W.E. Economic Implications of a Virus Prevention Program in Deciduous Tree Fruits in the USA. Crop Prot. 2003;22:1149–1156. doi: 10.1016/S0261-2194(03)00156-X. DOI
Xiao H., Hao W., Storoschuk G., MacDonald J.L., Sanfaçon H. Characterizing the Virome of Apple Orchards Affected by Rapid Decline in the Okanagan and Similkameen Valleys of British Columbia (Canada) Pathogens. 2022;11:1231. doi: 10.3390/pathogens11111231. PubMed DOI PMC
Jiang T., Zhou T. Unraveling the Mechanisms of Virus-Induced Symptom Development in Plants. Plants. 2023;12:2830. doi: 10.3390/plants12152830. PubMed DOI PMC
Takahashi H., Fukuhara T., Kitazawa H., Kormelink R. Virus Latency and the Impact on Plants. Front. Microbiol. 2019;10:2764. doi: 10.3389/fmicb.2019.02764. PubMed DOI PMC
Simmonds P., Adriaenssens E., Lefkowitz E., Oksanen H., Siddell S., Zerbini F., Alfenas-Zerbini P., Aylward F., Dempsey D., Dutilh B., et al. Changes to Virus Taxonomy and the ICTV Statutes Ratified by the International Committee on Taxonomy of Viruses (2024) Arch. Virol. 2024;169:236. doi: 10.1007/s00705-024-06143-y. PubMed DOI PMC
Fuchs M. Viruses and Apple Propagation: Why Should I Worry? [(accessed on 10 October 2024)]. Available online: http://www.hort.cornell.edu/expo/proceedings/2016/TreeFruit.%20Viruses%20and%20apple%20propagation%20why%20should%20I%20worry.%20Fuchs.pdf.
Petri J.L., Hawerroth F.J., Fazio G., Francescatto P., Leite G.B. Advances in Fruit Crop Propagation in Brazil and Worldwide—Apple Trees. Rev. Bras. Frutic. 2019;41:e-004. doi: 10.1590/0100-29452019004. DOI
Hassan M., Polák J., Paprštein F. Detection and Distribution of Four Pome Fruit Viruses in Germplasm Collection in the Czech Republic. Acta Hortic. 2008;781:113–118. doi: 10.17660/ActaHortic.2008.781.16. DOI
Kundu J.K. Detection, Distribution and Genetic Diversities of Apple Stem Pitting Virus and Apple Stem Grooving Virus in the Czech Republic. Acta Hortic. 2008;781:135–142. doi: 10.17660/ActaHortic.2008.781.20. DOI
Adams I.P., Glover R.H., Monger W.A., Mumford R., Jackeviciene E., Navalinskiene M., Samuitiene M., Boonham N. Next-Generation Sequencing and Metagenomic Analysis: A Universal Diagnostic Tool in Plant Virology. Mol. Plant Pathol. 2009;10:537–545. doi: 10.1111/j.1364-3703.2009.00545.x. PubMed DOI PMC
Várallyay E., Přibylová J., Galbacs Z.N., Jahan A., Varga T., Špak J., Lenz O., Fránová J., Sedlák J., Koloniuk I. Detection of Apple Hammerhead Viroid, Apple Luteovirus 1 and Citrus Concave Gum-Associated Virus in Apple Propagation Materials and Orchards in the Czech Republic and Hungary. Viruses. 2022;14:2347. doi: 10.3390/v14112347. PubMed DOI PMC
Koloniuk I., Přibylová J., Fránová J., Špak J. Genomic Characterization of Malus Domestica Virus A (MdoVA), a Novel Velarivirus Infecting Apple. Arch. Virol. 2020;165:479–482. doi: 10.1007/s00705-019-04478-5. PubMed DOI
Koloniuk I., Přibylová J., Špak J. Complete Genome Sequence of a Mite-Associated Virus Obtained by High-Throughput Sequencing Analysis of an Apple Leaf Sample. Arch. Virol. 2020;165:1501–1504. doi: 10.1007/s00705-020-04620-8. PubMed DOI
Komínková M., Ben Mansour K., Komínek P., Brožová J., Střalková R. Multiple Infections with Viruses of the Family Tymoviridae in Czech Grapevines. Viruses. 2024;16:343. doi: 10.3390/v16030343. PubMed DOI PMC
Koloniuk I., Matyášová A., Brázdová S., Veselá J., Přibylová J., Várallyay E., Fránová J. Analysis of Virus-Derived SiRNAs in Strawberry Plants Co-Infected with Multiple Viruses and Their Genotypes. Plants. 2023;12:2564. doi: 10.3390/plants12132564. PubMed DOI PMC
Abascal F., Zardoya R., Telford M.J. TranslatorX: Multiple Alignment of Nucleotide Sequences Guided by Amino Acid Translations. Nucleic Acids Res. 2010;38:W7–W13. doi: 10.1093/nar/gkq291. PubMed DOI PMC
Katoh K., Rozewicki J., Yamada K.D. MAFFT Online Service: Multiple Sequence Alignment, Interactive Sequence Choice and Visualization. Brief. Bioinform. 2018;20:1160–1166. doi: 10.1093/bib/bbx108. PubMed DOI PMC
Hall T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999;41:95–98.
Martin D.P., Murrell B., Golden M., Khoosal A., Muhire B. RDP4: Detection and Analysis of Recombination Patterns in Virus Genomes. Virus Evol. 2015;1:vev003. doi: 10.1093/ve/vev003. PubMed DOI PMC
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC
Muhire B.M., Varsani A., Martin D.P. SDT: A Virus Classification Tool Based on Pairwise Sequence Alignment and Identity Calculation. PLoS ONE. 2014;9:e108277. doi: 10.1371/journal.pone.0108277. PubMed DOI PMC
Zuļģe N., Gospodaryk A., Moročko–Bičevska I. Genetic Diversity and Phylogenetic Relationships of Apple Chlorotic Leaf Spot Virus Isolates from Malus, Pyrus and Prunus Hosts in Latvia. Plant Pathol. 2023;72:900–911. doi: 10.1111/ppa.13712. DOI
Rollin J., Bester R., Brostaux Y., Caglayan K., De Jonghe K., Eichmeier A., Foucart Y., Haegeman A., Koloniuk I., Kominek P., et al. Detection of Single Nucleotide Polymorphisms in Virus Genomes Assembled from High-Throughput Sequencing Data: Large-Scale Performance Testing of Sequence Analysis Strategies. PeerJ. 2023;11:e15816. doi: 10.7717/peerj.15816. PubMed DOI PMC
Grimová L., Winkowska L., Konrady M., Ryšánek P. Apple Mosaic Virus. Phytopathol. Mediterr. 2016;55:1–19. doi: 10.14601/Phytopathol_Mediterr-16295. DOI
Herath V., Romay G., Urrutia C.D., Verchot J. Family Level Phylogenies Reveal Relationships of Plant Viruses within the Order Bunyavirales. Viruses. 2020;12:1010. doi: 10.3390/v12091010. PubMed DOI PMC
Ben Mansour K., Komínek P., Komínková M., Brožová J. Characterization of Prunus Necrotic Ringspot Virus and Cherry Virus A Infecting Myrobalan Rootstock. Viruses. 2023;15:1723. doi: 10.3390/v15081723. PubMed DOI PMC
Rott M.E., Kesanakurti P., Berwarth C., Rast H., Boyes I., Phelan J., Jelkmann W. Discovery of Negative-Sense RNA Viruses in Trees Infected with Apple Rubbery Wood Disease by next-Generation Sequencing. Plant Dis. 2018;102:1254–1263. doi: 10.1094/PDIS-06-17-0851-RE. PubMed DOI
Wright A.A., Szostek S.A., Beaver-Kanuya E., Harper S.J. Diversity of Three Bunya-like Viruses Infecting Apple. Arch. Virol. 2018;163:3339–3343. doi: 10.1007/s00705-018-3999-z. PubMed DOI
Nickel O., Fajardo T.V.M., Candresse T. First Report on Detection of Three Bunya-like Viruses in Apples in Brazil. Plant Dis. 2020;104:3088. doi: 10.1094/PDIS-02-20-0283-PDN. DOI
Hu G., Dong Y., Zhang Z., Fan X., Ren F., Lu X. First Report of Apple Rubbery Wood Virus 1 in Apple in China. Plant Dis. 2021;105:3324–3735. doi: 10.1094/PDIS-04-20-0864-PDN. DOI
Hu G.J., Dong Y.F., Zhang Z.P., Fan X.D., Ren F., Lu X.K. First Report of Apple Rubbery Wood Virus 2 Infection of Apples in China. Plant Dis. 2021;105:519. doi: 10.1094/PDIS-04-20-0864-PDN. DOI
Minutolo M., Cinque M., Di Serio F., Navarro B., Alioto D. Occurrence of Apple Rubbery Wood Virus 1 and Apple Rubbery Wood Virus 2 in Pear and Apple in Campania (Southern Italy) and Development of Degenerate Primers for the Rapid Detection of Rubodviruses. J. Plant Pathol. 2023;105:567–572. doi: 10.1007/s42161-023-01316-1. DOI
Lim S., Baek D., Moon J., Cho I., Choi G., Do Y., Lee D., Lee S.H. First Report of Apple Luteovirus 1 and Apple Rubbery Wood Virus 1 on Apple Tree Rootstocks in Korea. Plant Dis. 2019;103:591. doi: 10.1094/PDIS-08-18-1351-PDN. DOI
Bester R., Bougard K., Maree H. First Report of Apple Rubodvirus 2 Infecting Apples (Malus domestica) in South Africa. J. Plant Pathol. 2022;104:1199–1200. doi: 10.1007/s42161-022-01167-2. PubMed DOI
Wang Y., Wang G.P., Hong N., Wang Y.X., Yang Z.K., Guo J.S., Zhang Z., Li L., Li Y.J., Li Q.Y., et al. First Report of Apple Rubbery Wood Virus 2 Infecting Pear (Pyrus spp.) in China. Plant Dis. 2019;103:3293. doi: 10.1094/PDIS-07-19-1451-PDN. DOI
Bougard K., Maree H., Pietersen G., Meitz-Hopkins J., Bester R. First Report of Apple Rubodvirus 2 Infecting Pear (Pyrus communis) in South Africa. Plant Dis. 2022;106:1535. doi: 10.1094/PDIS-08-21-1631-PDN. PubMed DOI
Wang Y., Wang Y., Wang G., Li Q., Zhang Z., Li L., Lv Y., Yang Z., Guo J., Hong N. Molecular Characteristics and Incidence of Apple Rubbery Wood Virus 2 and Citrus Virus A Infecting Pear Trees in China. Viruses. 2022;14:576. doi: 10.3390/v14030576. PubMed DOI PMC
Cho I.S., Igori D., Lim S., Choi G.S., Hammond J., Lim H.S., Moon J.S. Deep Sequencing Analysis of Apple Infecting Viruses in Korea. Plant Pathol. J. 2016;32:441–451. doi: 10.5423/PPJ.OA.04.2016.0104. PubMed DOI PMC
Dhir S., Mathioudakis M.M., Hasiów-Jaroszewska B., Hallan V. Serological and Molecular Analysis Indicates the Presence of Distinct Viral Genotypes of Apple Stem Pitting Virus in India. 3 Biotech. 2021;11:278. doi: 10.1007/s13205-021-02798-5. PubMed DOI PMC
Wright A.A., Cross A.R., Harper S.J. A Bushel of Viruses: Identification of Seventeen Novel Putative Viruses by RNA-Seq in Six Apple Trees. PLoS ONE. 2020;15:e0227669. doi: 10.1371/journal.pone.0227669. PubMed DOI PMC
Jia X.J., Zhang Z.P., Fan X.D., Ren F., Dong Y.F., Hu G.J. Detection and Genetic Variation Analysis of Apple Chlorotic Leaf Spot Virus and Apple Stem Grooving Virus in Wild Apple (Malus sieversii) from Xinjiang, China. For. Pathol. 2022;52:e12771. doi: 10.1111/efp.12771. DOI
Canales C., Morán F., Olmos A., Ruiz-García A.B. First Detection and Molecular Characterization of Apple Stem Grooving Virus, Apple Chlorotic Leaf Spot Virus, and Apple Hammerhead Viroid in Loquat in Spain. Plants. 2021;10:2293. doi: 10.3390/plants10112293. PubMed DOI PMC
Hajizadeh M., Ben Mansour K., Gibbs A.J. A Genetic Study of Spillovers in the Bean Common Mosaic Subgroup of Potyviruses. Viruses. 2024;16:1351. doi: 10.3390/v16091351. PubMed DOI PMC
Morelli M., D’Attoma G., Saldarelli P., Minafra A. The Evolution of Wisteria Vein Mosaic Virus: A Case Study Approach to Track the Emergence of New Potyvirus Threats. Pathogens. 2024;13:1001. doi: 10.3390/pathogens13111001. PubMed DOI PMC
Ben Mansour K., Gibbs A.J., Komínková M., Komínek P., Brožová J., Kazda J., Zouhar M., Ryšánek P. Watermelon Mosaic Virus in the Czech Republic, Its Recent and Historical Origins. Plamt Pathol. 2023;72:1528–1538. doi: 10.1111/ppa.13766. DOI
Gibbs A.J., Hajizadeh M., Ohshima K., Jones R.A.C. The Potyviruses: An Evolutionary Synthesis Is Emerging. Viruses. 2020;12:132. doi: 10.3390/v12020132. PubMed DOI PMC
Suman R., Rani A., Rishi N., Dhir S., Hallan V., Chandel V. First Report of Apple Stem Grooving Virus Infection in Loquat from India. VirusDisease. 2022;33:334–337. doi: 10.1007/s13337-022-00783-x. PubMed DOI PMC
Mathioudakis M.M., Maliogka V.I., Candresse T., Nickel O., Fajardo T.V.M., Budzyńska D., Hasiów-Jaroszewska B., Katis N.I. Molecular Characterization of the Coat Protein Gene of Greek Apple Stem Pitting Virus Isolates: Evolution through Deletions, Insertions, and Recombination Events. Plants. 2021;10:917. doi: 10.3390/plants10050917. PubMed DOI PMC
Li C., Yaegashi H., Kishigami R., Kawakubo A., Yamagishi N., Ito T., Yoshikawa N. Apple Russet Ring and Apple Green Crinkle Diseases: Fulfillment of Koch’s Postulates by Virome Analysis, Amplification of Full-Length CDNA of Viral Genomes, in Vitro Transcription of Infectious Viral RNAs, and Reproduction of Symptoms on Fruits of Apple T. Front. Microbiol. 2020;11:1–15. doi: 10.3389/fmicb.2020.01627. PubMed DOI PMC
James D., Varga A., Jesperson G.D., Navratil M., Safarova D., Constable F., Horner M., Eastwell K., Jelkmann W. Identification and Complete Genome Analysis of a Virus Variant or Putative New Foveavirus Associated with Apple Green Crinkle Disease. Arch. Virol. 2013;158:1877–1887. doi: 10.1007/s00705-013-1678-7. PubMed DOI
Çelik A., Morca A.F., Coşkan S., Santosa A.I. Global Population Structure of Apple Mosaic Virus (ApMV, Genus Ilarvirus) Viruses. 2023;15:1221. doi: 10.3390/v15061221. PubMed DOI PMC
Noorani M.S., Baig M.S., Khan J.A., Pravej A. Whole Genome Characterization and Diagnostics of Prunus Necrotic Ringspot Virus (PNRSV) Infecting Apricot in India. Sci. Rep. 2023;13:4393. doi: 10.1038/s41598-023-31172-z. PubMed DOI PMC
GENBANK
PV014885- PV014920