Detection of single nucleotide polymorphisms in virus genomes assembled from high-throughput sequencing data: large-scale performance testing of sequence analysis strategies
Language English Country United States Media electronic-ecollection
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
37601254
PubMed Central
PMC10439718
DOI
10.7717/peerj.15816
PII: 15816
Knihovny.cz E-resources
- Keywords
- Bioinformatic, Genomic, Plant, Variant, Virus,
- MeSH
- Genome, Viral genetics MeSH
- Polymorphism, Single Nucleotide * genetics MeSH
- Humans MeSH
- Computational Biology MeSH
- High-Throughput Nucleotide Sequencing * MeSH
- Knowledge MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Recent developments in high-throughput sequencing (HTS) technologies and bioinformatics have drastically changed research in virology, especially for virus discovery. Indeed, proper monitoring of the viral population requires information on the different isolates circulating in the studied area. For this purpose, HTS has greatly facilitated the sequencing of new genomes of detected viruses and their comparison. However, bioinformatics analyses allowing reconstruction of genome sequences and detection of single nucleotide polymorphisms (SNPs) can potentially create bias and has not been widely addressed so far. Therefore, more knowledge is required on the limitations of predicting SNPs based on HTS-generated sequence samples. To address this issue, we compared the ability of 14 plant virology laboratories, each employing a different bioinformatics pipeline, to detect 21 variants of pepino mosaic virus (PepMV) in three samples through large-scale performance testing (PT) using three artificially designed datasets. To evaluate the impact of bioinformatics analyses, they were divided into three key steps: reads pre-processing, virus-isolate identification, and variant calling. Each step was evaluated independently through an original, PT design including discussion and validation between participants at each step. Overall, this work underlines key parameters influencing SNPs detection and proposes recommendations for reliable variant calling for plant viruses. The identification of the closest reference, mapping parameters and manual validation of the detection were recognized as the most impactful analysis steps for the success of the SNPs detections. Strategies to improve the prediction of SNPs are also discussed.
Biology Centre CAS Ceske Budejovice Czech Republic
Citrus Research International Matieland South Africa
Crop Research Institute Praha Czech Republic
Department of Biosystems Science and Engineering ETH Zurich Basel 4058 Switzerland
Department of Chemistry and Biotechnology Tallinn University of Technology Tallinn Estonia
Department of Genetics Stellenbosch University Matieland South Africa
Fisheries and Food Plant Sciences Unit Flanders Research Institute for Agriculture Merelbeke Belgium
Laboratory of Plant Pathology TERRA Gembloux Agro Bio Tech University of Liège Gembloux Belgium
Natural Resources Institute Finland Helsinki Finland
Plant Protection Department Agricultural Faculty Hatay Mustafa Kemal University Hatay Turkey
Plant Protection Department Agroscope Nyon Switzerland
Plant Protection Department Faculty of Agriculture University of Maragheh Maragheh Iran
Swiss Institute of Bioinformatics Basel Switzerland
Wageningen University and Research Wageningen The Netherlands
See more in PubMed
Barbitoff YA, Abasov R, Tvorogova VE, Glotov AS, Predeus AV. Systematic benchmark of state-of-the-art variant calling pipelines identifies major factors affecting accuracy of coding sequence variant discovery. BMC Genomics. 2022;23(1):1–17. doi: 10.1186/s12864-022-08365-3. PubMed DOI PMC
Bomba L, Walter K, Soranzo N. The impact of rare and low-frequency genetic variants in common disease. Genome Biology. 2017;18(1):1–17. doi: 10.1186/s13059-017-1212-4. PubMed DOI PMC
Bordería AV, Isakov O, Moratorio G, Henningsson R, Agüera-González S, Organtini L, Gnädig NF, Blanc H, Alcover A, Hafenstein S, Fontes M, Shomron N, Vignuzzi M. Group selection and contribution of minority variants during virus adaptation determines virus fitness and phenotype. PLOS Pathogens. 2015;11(5):e1004838. doi: 10.1371/journal.ppat.1004838. PubMed DOI PMC
Černi S, Ruščić J, Nolasco G, Gatin Z, Krajačić M, Škorić D. Stem pitting and seedling yellows symptoms of Citrus tristeza virus infection may be determined by minor sequence variants. Virus Genes. 2008;36(1):241–249. doi: 10.1007/s11262-007-0183-z. PubMed DOI
Clevenger J, Chavarro C, Pearl SA, Ozias-Akins P, Jackson SA. Single nucleotide polymorphism identification in polyploids: a review, example, and recommendations. Molecular Plant. 2015;8(6):831–846. doi: 10.1016/j.molp.2015.02.002. PubMed DOI
Deng ZL, Dhingra A, Fritz A, Götting J, Münch PC, Steinbrück L, Schulz TF, Ganzenmüller T, McHardy AC. Evaluating assembly and variant calling software for strain-resolved analysis of large DNA viruses. Briefings in Bioinformatics. 2021;22(3):1–12. doi: 10.1093/bib/bbaa123. PubMed DOI PMC
Domingo E, Perales C. Viral quasispecies. PLOS Genetics. 2019;15(10):e1008271. doi: 10.1371/journal.pgen.1008271. PubMed DOI PMC
Elena SF, Fraile A, García-Arenal F. Evolution and emergence of plant viruses. Virus Structure and Assembly. 2014;88:161–191. doi: 10.1016/B978-0-12-800098-4.00003-9. PubMed DOI
Gaafar YZA, Westenberg M, Botermans M, László K, De Jonghe K, Foucart Y, Ferretti L, Kutnjak D, Pecman A, Mehle N, Kreuze J, Muller G, Vakirlis N, Beris D, Varveri C, Ziebell H. Interlaboratory comparison study on ribodepleted total RNA high-throughput sequencing for plant virus diagnostics and bioinformatic competence. Pathogens. 2021;10(9):1174. doi: 10.3390/pathogens10091174. PubMed DOI PMC
Gibbs MJ, Weiller GF. Evidence that a plant virus switched hosts to infect a vertebrate and then recombined with a vertebrate-infecting virus. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(14):8022. doi: 10.1073/PNAS.96.14.8022. PubMed DOI PMC
Guirao-Rico S, González J. Benchmarking the performance of Pool-seq SNP callers using simulated and real sequencing data. Molecular Ecology Resources. 2021;21(4):1216. doi: 10.1111/1755-0998.13343. PubMed DOI PMC
Hirabara SM, Serdan TDA, Gorjao R, Masi LN, Pithon-Curi TC, Covas DT, Curi R, Durigon EL. SARS-COV-2 variants: differences and potential of immune evasion. Frontiers in Cellular and Infection Microbiology. 2022;11:1401. doi: 10.3389/fcimb.2021.781429. PubMed DOI PMC
Huang W, Li L, Myers JR, Marth GT. ART: a next-generation sequencing read simulator. Bioinformatics. 2012;28(4):593. doi: 10.1093/bioinformatics/btr708. PubMed DOI PMC
Koboldt DC. Best practices for variant calling in clinical sequencing. Genome Medicine. 2020;12(1):1–13. doi: 10.1186/s13073-020-00791-w. PubMed DOI PMC
Krishnamurthy SR, Wang D. Origins and challenges of viral dark matter. Virus Research. 2017;239(3):136–142. doi: 10.1016/j.virusres.2017.02.002. PubMed DOI
Kutnjak D, Elena SF, Ravnikar M. Time-sampled population sequencing reveals the interplay of selection and genetic drift in experimental evolution of potato virus Y. Journal of Virology. 2017;91(16):e00690-17. doi: 10.1128/JVI.00690-17. PubMed DOI PMC
Kutnjak D, Rupar M, Gutierrez-Aguirre I, Curk T, Kreuze JF, Ravnikar M. Deep sequencing of virus-derived small interfering RNAs and RNA from viral particles shows highly similar mutational landscapes of a plant virus population. Journal of Virology. 2015;89(9):4760–4769. doi: 10.1128/JVI.03685-14. PubMed DOI PMC
Lebas B, Adams I, Al Rwahnih M, Baeyen S, Bilodeau GJ, Blouin AG, Boonham N, Candresse T, Chandelier A, De Jonghe K, Fox A, Gaafar YZA, Gentit P, Haegeman A, Ho W, Hurtado-Gonzales O, Jonkers W, Kreuze J, Kutjnak D, Landa B, Liu M, Maclot F, Malapi-Wight M, Maree HJ, Martoni F, Mehle N, Minafra A, Mollov D, Moreira A, Nakhla M, Petter F, Piper AM, Ponchart J, Rae R, Remenant B, Rivera Y, Rodoni B, Roenhorst JW, Rollin J, Saldarelli P, Santala J, Souza-Richards R, Spadaro D, Studholme DJ, Sultmanis S, van der Vlugt R, Tamisier L, Trontin C, Vazquez-Iglesias I, Vicente CSL, Vossenberg BTLH, Wetzel T, Ziebell H, Massart S. Facilitating the adoption of high-throughput sequencing technologies as a plant pest diagnostic test in laboratories: a step-by-step description. EPPO Bulletin. 2022;52(2):394–418. doi: 10.1111/epp.12863. DOI
Massart S, Chiumenti M, Jonghe KDe, Glover R, Haegeman A, Koloniuk I, Komínek P, Kreuze J, Kutnjak D, Lotos L, Maclot F, Maliogka V, Maree HJ, Olivier T, Olmos A, Pooggin MM, Reynard JS, Ruiz-García AB, Safarova D, Schneeberger PHH, Sela N, Turco S, Vainio EJ, Varallyay E, Verdin E, Westenberg M, Brostaux Y, Candresse T. Virus detection by high-throughput sequencing of small RNAs: large-scale performance testing of sequence analysis strategies. Phytopathology. 2019;109(3):488–497. doi: 10.1094/PHYTO-02-18-0067-R. PubMed DOI
Nguyen NTT, Contreras-Moreira B, Castro-Mondragon JA, Santana-Garcia W, Ossio R, Robles-Espinoza CD, Bahin M, Collombet S, Vincens P, Thieffry D, van Helden J, Medina-Rivera A, Thomas-Chollier M. RSAT 2018: regulatory sequence analysis tools 20th anniversary. Nucleic Acids Research. 2018;46(W1):W209–W214. doi: 10.1093/nar/gky317. PubMed DOI PMC
Nyirakanani C, Tamisier L, Bizimana JP, Rollin J, Nduwumuremyi A, de Paul Bigirimana V, Selmi I, Lasois L, Vanderschuren H, Massart S. Going beyond consensus genome sequences: an innovative SNP-based methodology reconstructs different Uganda cassava brown streak virus haplotypes geographically clustered at the country-wide level. Virus Evolution. in press. PubMed PMC
Pappas N, Roux S, Hölzer M, Lamkiewicz K, Mock F, Marz M. Virus bioinformatics. Encyclopedia of Virology. 2021;27:124–132. doi: 10.1016/B978-0-12-814515-9.00034-5. DOI
Ramesh S, Govindarajulu M, Parise RS, Neel L, Shankar T, Patel S, Lowery P, Smith F, Dhanasekaran M, Moore T. Emerging SARS-CoV-2 variants: a review of its mutations, its implications and vaccine efficacy. Vaccines. 2021;9(10):1195. doi: 10.3390/VACCINES9101195. PubMed DOI PMC
Rubio L, Galipienso L, Ferriol I. Detection of plant viruses and disease management: relevance of genetic diversity and evolution. Frontiers in Plant Science. 2020;11:1092. doi: 10.3389/FPLS.2020.01092/BIBTEX. PubMed DOI PMC
Simon-Loriere E, Holmes EC. Why do RNA viruses recombine? Nature Reviews Microbiology. 2011;9(8):617. doi: 10.1038/nrmicro2614. PubMed DOI PMC
Tamisier L, Haegeman A, Foucart Y, Fouillien N, Al Rwahnih M, Buzkan N, Candresse T, Chiumenti M, De Jonghe K, Lefebvre, Massart S. Semi-artificial datasets as a resource for validation of bioinformatics pipelines for plant virus detection. Peer Community Journal. 2021;1(3):533. doi: 10.24072/pcjournal.62. DOI
Tromas N, Zwart MP, Maïté P, Elena SF. Estimation of the in vivo recombination rate for a plant RNA virus. Journal of General Virology. 2014;95(Pt 3):724–732. doi: 10.1099/vir.0.060822-0. PubMed DOI
Zheng Y, Gao S, Padmanabhan C, Li R, Galvez M, Gutierrez D, Fuentes S, Ling KS, Kreuze J, Fei Z. VirusDetect: an automated pipeline for efficient virus discovery using deep sequencing of small RNAs. Virology. 2017;500:130–138. doi: 10.1016/j.virol.2016.10.017. PubMed DOI