Podophyllotoxin Alleviates DSS-Induced Ulcerative Colitis via PI3K/AKT Pathway Activation
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
40432443
PubMed Central
PMC12148157
DOI
10.33549/physiolres.935487
PII: 935487
Knihovny.cz E-zdroje
- MeSH
- fosfatidylinositol-3-kinasy * metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- podofylotoxin * farmakologie terapeutické užití MeSH
- protoonkogenní proteiny c-akt * metabolismus MeSH
- signální transdukce účinky léků MeSH
- simulace molekulového dockingu MeSH
- síran dextranu toxicita MeSH
- ulcerózní kolitida * farmakoterapie chemicky indukované metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fosfatidylinositol-3-kinasy * MeSH
- podofylotoxin * MeSH
- protoonkogenní proteiny c-akt * MeSH
- síran dextranu MeSH
This study systematically evaluated the therapeutic effects of podophyllotoxin in a DSS-induced mouse model of ulcerative colitis. A total of 374 podophyllotoxin-related targets were identified through database screening, and by intersecting them with 1,741 UC-related targets, 120 potential therapeutic targets were obtained. Subsequent GO and KEGG enrichment analyses revealed that these targets are primarily involved in biological processes such as the positive regulation of protein kinase B signaling, cellular response to lipopolysaccharide, and inflammatory responses, with significant enrichment in key pathways like the PI3K-Akt signaling pathway. Molecular docking results indicated that podophyllotoxin has strong binding activity with several targets related to inflammation and signal transduction. Animal experiments further validated the significant therapeutic effects of podophyllotoxin in the DSS-induced ulcerative colitis mouse model. Particularly at high doses, podophyllotoxin effectively alleviated ulcerative colitis symptoms, reduced pathological damage to colonic tissues, and enhanced intestinal barrier function. Additionally, podophyllotoxin significantly lowered the levels of inflammatory cytokines (TNF-?, IL-1?, IL-6) in the serum and colonic tissues of ulcerative colitis model mice and improved oxidative stress status. More importantly, podophyllotoxin effectively restored the impaired intestinal mucosal barrier function by enhancing the expression of tight junction proteins such as ZO-1 and occludin. Finally, the study revealed that podophyllotoxin may alleviate ulcerative colitis symptoms and promote colonic tissue repair by activating the PI3K/AKT signaling pathway. These findings provide strong experimental evidence for the potential use of podophyllotoxin as a therapeutic agent for ulcerative colitis and offer valuable insights for the future development of ulcerative colitis treatment strategies targeting the PI3K/AKT pathway. Key words: Podophyllotoxin, Ulcerative Colitis, Inflammation, PI3K/AKT.
Department of Emergency The Affiliated Hospital of Southwest Medical University Luzhou Sichuan China
Zobrazit více v PubMed
Shah SC, Itzkowitz SH. Colorectal cancer in inflammatory bowel disease: mechanisms and management. Gastroenterology. 2022;162(3):715–30.e3. doi: 10.1053/j.gastro.2021.10.035. PubMed DOI PMC
Segal JP, LeBlanc J-F, Hart AL. Ulcerative colitis: an update. Clinical Medicine. 2021;21(2):135–9. doi: 10.7861/clinmed.2021-0080. PubMed DOI PMC
Nóbrega VG, SILVA INdN, Brito BS, Silva J, SILVA MCMd, Santana GO. The onset of clinical manifestations in inflammatory bowel disease patients. Arquivos de gastroenterologia. 2018;55(03):290–5. doi: 10.1590/s0004-2803.201800000-73. PubMed DOI
Seyedian SS, Nokhostin F, Malamir MD. A review of the diagnosis, prevention, and treatment methods of inflammatory bowel disease. Journal of medicine and life. 2019;12(2):113. doi: 10.25122/jml-2018-0075. PubMed DOI PMC
Gros B, Kaplan GG. Ulcerative colitis in adults: A review. Jama. 2023;330(10):951–65. doi: 10.1001/jama.2023.15389. PubMed DOI
Gajendran M, Loganathan P, Jimenez G, Catinella AP, Ng N, Umapathy C, Ziade N, Hashash JG. A comprehensive review and update on ulcerative colitis. Disease-a-month. 2019;65(12):100851. doi: 10.1016/j.disamonth.2019.02.004. PubMed DOI
Núñez FP, Quera R, Bay C, Castro F, Mezzano G. Drug-induced liver injury used in the treatment of inflammatory bowel disease. Journal of Crohn’s and Colitis. 2022;16(7):1168–76. doi: 10.1093/ecco-jcc/jjac013. PubMed DOI
Magro F, Cordeiro G, Dias AM, Estevinho MM. Inflammatory bowel disease-non-biological treatment. Pharmacological Research. 2020;160:105075. doi: 10.1016/j.phrs.2020.105075. PubMed DOI
Exarchos G, Gklavas A, Metaxa L, Papaconstantinou I. Quality of life of ulcerative colitis patients treated surgically with proctocolectomy and J-pouch formation: a comparative study before surgery and after closure of the defunctioning ileostomy. Annals of Gastroenterology. 2018;31(3):350. doi: 10.20524/aog.2018.0247. PubMed DOI PMC
Lee KE, Cantrell S, Shen B, Faye AS. Post-operative prevention and monitoring of Crohn’s disease recurrence. Gastroenterology Report. 2022;10:goac070. doi: 10.1093/gastro/goac070. PubMed DOI PMC
Motyka S, Jafernik K, Ekiert H, Sharifi-Rad J, Calina D, Al-Omari B, Szopa A, Cho WC. Podophyllotoxin and its derivatives: Potential anticancer agents of natural origin in cancer chemotherapy. Biomedicine & Pharmacotherapy. 2023;158:114145. doi: 10.1016/j.biopha.2022.114145. PubMed DOI
Fan H-y, Zhu Z-l, Xian H-c, Wang H-f, Chen B-j, Tang Y-J, Tang Y-l, Liang X-h. Insight into the molecular mechanism of podophyllotoxin derivatives as anticancer drugs. Frontiers in Cell and Developmental Biology. 2021;9:709075. doi: 10.3389/fcell.2021.709075. PubMed DOI PMC
Zhao W, Cong Y, Li H-M, Li S, Shen Y, Qi Q, Zhang Y, Li Y-Z, Tang Y-J. Challenges and potential for improving the druggability of podophyllotoxin-derived drugs in cancer chemotherapy. Natural Product Reports. 2021;38(3):470–88. doi: 10.1039/D0NP00041H. PubMed DOI
Hao M, Xu H. Chemistry and biology of podophyllotoxins: an update. Chemistry-A European Journal. 2024;30(4):e202302595. doi: 10.1002/chem.202302595. PubMed DOI
Lee S-O, Joo SH, Kwak A-W, Lee M-H, Seo J-H, Cho S-S, Yoon G, Chae J-I, Shim J-H. Podophyllotoxin induces ROS-mediated apoptosis and cell cycle arrest in human colorectal cancer cells via p38 MAPK signaling. Biomolecules & Therapeutics. 2021;29(6):658. doi: 10.4062/biomolther.2021.143. PubMed DOI PMC
Xu Y, He Z, Chen L, Wang H. Podophyllotoxin derivatives targeting tubulin: An update (2017–2022) Drug Discovery Today. 2023;28(8):103640. doi: 10.1016/j.drudis.2023.103640. PubMed DOI
Verma S, Kalita B, Bajaj S, Prakash H, Singh AK, Gupta ML. A combination of podophyllotoxin and rutin alleviates radiation-induced pneumonitis and fibrosis through modulation of lung inflammation in mice. Frontiers in immunology. 2017;8:658. doi: 10.3389/fimmu.2017.00658. PubMed DOI PMC
Shi R-j, Fan H-y, Yu X-h, Tang Y-l, Jiang J, Liang X-h. Advances of podophyllotoxin and its derivatives: Patterns and mechanisms. Biochemical Pharmacology. 2022;200:115039. doi: 10.1016/j.bcp.2022.115039. PubMed DOI
Suh S-J, Kim J-R, Jin U-H, Choi H-S, Chang Y-C, Lee Y-C, Kim S-H, Lee I-S, Moon TC, Chang H-W. Deoxypodophyllotoxin, flavolignan, from Anthriscus sylvestris Hoffm. inhibits migration and MMP-9 via MAPK pathways in TNF-α-induced HASMC. Vascular pharmacology. 2009;51(1):13–20. doi: 10.1016/j.vph.2008.10.004. PubMed DOI
Li Q, Zheng S, Niu K, Qiao Y, Liu Y, Zhang Y, Li B, Zheng C, Yu B. Paeoniflorin improves ulcerative colitis via regulation of PI3K-AKT based on network pharmacology analysis. Experimental and Therapeutic Medicine. 2024;27(4):1–12. https://doi.org/10.3892/etm.2024.12414 https://doi.org/10.3892/etm.2025.12827 https://doi.org/10.3892/etm.2025.12831 . PubMed DOI PMC
Zheng J-D, He Y, Yu H-Y, Liu Y-L, Ge Y-X, Li X-T, Li X, Wang Y, Guo M-R, Qu Y-L. Unconjugated bilirubin alleviates experimental ulcerative colitis by regulating intestinal barrier function and immune inflammation. World Journal of Gastroenterology. 2019;25(15):1865. doi: 10.3748/wjg.v25.i15.1865. PubMed DOI PMC
Chelakkot C, Ghim J, Ryu SH. Mechanisms regulating intestinal barrier integrity and its pathological implications. Experimental & molecular medicine. 2018;50(8):1–9. doi: 10.1038/s12276-018-0126-x. PubMed DOI PMC
Kumar MA, Khan TA, Al Marzooqi SK, Abdulla A, Masoodi T, Akil ASA-S, Bhat AA, Macha MA. Tight Junctions in Inflammation and Cancer. Springer; 2023. Molecular Architecture and Function of Tight Junctions; pp. 145–69. DOI
Moonwiriyakit A, Pathomthongtaweechai N, Steinhagen PR, Chantawichitwong P, Satianrapapong W, Pongkorpsakol P. Tight junctions: from molecules to gastrointestinal diseases. Tissue Barriers. 2023;11(2):2077620. doi: 10.1080/21688370.2022.2077620. PubMed DOI PMC
Slifer ZM, Blikslager AT. The integral role of tight junction proteins in the repair of injured intestinal epithelium. International journal of molecular sciences. 2020;21(3):972. doi: 10.3390/ijms21030972. PubMed DOI PMC
Reiche J, Huber O. Post-translational modifications of tight junction transmembrane proteins and their direct effect on barrier function. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2020;1862(9):183330. doi: 10.1016/j.bbamem.2020.183330. PubMed DOI
Dunleavy KA, Raffals LE, Camilleri M. Intestinal barrier dysfunction in inflammatory bowel disease: underpinning pathogenesis and therapeutics. Digestive diseases and sciences. 2023;68(12):4306–20. doi: 10.1007/s10620-023-08122-w. PubMed DOI PMC
Kuo W-T, Zuo L, Odenwald MA, Madha S, Singh G, Gurniak CB, Abraham C, Turner JR. The tight junction protein ZO-1 is dispensable for barrier function but critical for effective mucosal repair. Gastroenterology. 2021;161(6):1924–39. doi: 10.1053/j.gastro.2021.08.047. PubMed DOI PMC
Yu S, Sun Y, Shao X, Zhou Y, Yu Y, Kuai X, Zhou C. Leaky gut in IBD: Intestinal barrier-gut microbiota interaction. Journal of microbiology and biotechnology. 2022;32(7):825. doi: 10.4014/jmb.2203.03022. PubMed DOI PMC
Tan Y, Peng L, Wen L, Yang L, Zhu Y, Lai Y, Liu X, Liu F. Correlations of inflammatory cytokines in the intestinal mucosa, serum inflammation, oxidative stresses and immune changes with vitamin deficiency in ulcerative colitis patients. Cellular and Molecular Biology. 2022;68(7):101–6. doi: 10.14715/cmb/2022.68.7.17. PubMed DOI
Wang Y, Ren R, Sun G, Peng L, Tian Y, Yang Y. Pilot study of cytokine changes evaluation after fecal microbiota transplantation in patients with ulcerative colitis. International Immunopharmacology. 2020;85:106661. doi: 10.1016/j.intimp.2020.106661. PubMed DOI
Tatiya-Aphiradee N, Chatuphonprasert W, Jarukamjorn K. Immune response and inflammatory pathway of ulcerative colitis. Journal of basic and clinical physiology and pharmacology. 2018;30(1):1–10. doi: 10.1515/jbcpp-2018-0036. PubMed DOI
Nakase H, Sato N, Mizuno N, Ikawa Y. The influence of cytokines on the complex pathology of ulcerative colitis. Autoimmunity reviews. 2022;21(3):103017. doi: 10.1016/j.autrev.2021.103017. PubMed DOI
Farré R, Fiorani M, Abdu Rahiman S, Matteoli G. Intestinal permeability, inflammation and the role of nutrients. Nutrients. 2020;12(4):1185. doi: 10.3390/nu12041185. PubMed DOI PMC
Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, Marasco G, Stanghellini V. Inflammatory and microbiota-related regulation of the intestinal epithelial barrier. Frontiers in nutrition. 2021;8:718356. https://doi.org/10.3389/fnut.2021.718356 https://doi.org/10.3389/fnut.2021.790387 . PubMed DOI PMC
Wan Y, Yang L, Jiang S, Qian D, Duan J. Excessive apoptosis in ulcerative colitis: crosstalk between apoptosis, ROS, ER stress, and intestinal homeostasis. Inflammatory bowel diseases. 2022;28(4):639–48. doi: 10.1093/ibd/izab277. PubMed DOI
Alzoghaibi MA, Al Mofleh IA, Al-Jebreen AM. Lipid peroxides in patients with inflammatory bowel disease. Saudi Journal of Gastroenterology. 2007;13(4):187–90. doi: 10.4103/1319-3767.36750. PubMed DOI
Ghulam Mohyuddin S, Khan I, Zada A, Qamar A, Arbab AAI, Ma X-b, Yu Z-c, Liu X-X, Yong Y-H, Ju XH. Influence of heat stress on intestinal epithelial barrier function, tight junction protein, and immune and reproductive physiology. BioMed Research International. 2022;2022(1):8547379. doi: 10.1155/2022/8547379. PubMed DOI PMC
Alzoghaibi MA, Al-Mofleh IA, Al-Jebreen AM. Antioxidant activities for superoxide dismutase in patients with Crohn’s disease. Journal of Basic and Clinical Physiology and Pharmacology. 2014;25(1):59–62. doi: 10.1515/jbcpp-2013-0042. PubMed DOI
Vaidya FU, Chhipa AS, Sagar N, Pathak C. Oxidative stress and inflammation can fuel cancer. Role of oxidative stress in pathophysiology of diseases. 2020:229–58. doi: 10.1007/978-981-15-1568-2_14. DOI
Zhu L, Shen H, Gu P-Q, Liu Y-J, Zhang L, Cheng J-F. Baicalin alleviates TNBS-induced colitis by inhibiting PI3K/AKT pathway activation. Experimental and therapeutic medicine. 2020;20(1):581–90. doi: 10.3892/etm.2020.8718. PubMed DOI PMC
Li C, Wang L, Zhao J, Wei Y, Zhai S, Tan M, Guan K, Huang Z, Chen C. Lonicera rupicola Hook. f. et Thoms flavonoids ameliorated dysregulated inflammatory responses, intestinal barrier, and gut microbiome in ulcerative colitis via PI3K/AKT pathway. Phytomedicine. 2022;104:154284. doi: 10.1016/j.phymed.2022.154284. PubMed DOI
Acosta-Martinez M, Cabail MZ. The PI3K/Akt pathway in meta-inflammation. International journal of molecular sciences. 2022;23(23):15330. doi: 10.3390/ijms232315330. PubMed DOI PMC