Viable bacterial communities in freshly pumped human milk and their changes during cold storage conditions
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, pozorovací studie
Grantová podpora
LM2023069
Ministerstvo Školství, Mládeže a Tělovýchovy
857560
Horizon 2020 Framework Programme
PubMed
40442718
PubMed Central
PMC12123816
DOI
10.1186/s13006-025-00738-0
PII: 10.1186/s13006-025-00738-0
Knihovny.cz E-zdroje
- Klíčová slova
- 16S rRNA, Human milk, Microbiome, Milk expression, Next-generation sequencing, Propidium monoazide, Pumped milk, Storage, Viable bacteria,
- MeSH
- Bacteria * izolace a purifikace genetika klasifikace MeSH
- chlazení MeSH
- dospělí MeSH
- lidé MeSH
- mateřské mléko * mikrobiologie MeSH
- mikrobiota * MeSH
- RNA ribozomální 16S MeSH
- skladování potravin * metody MeSH
- zmrazování MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
- Názvy látek
- azidy MeSH
- propidium monoazide MeSH Prohlížeč
- propidium MeSH
- RNA ribozomální 16S MeSH
BACKGROUND: Human milk harbors diverse bacterial communities that contribute to infant health. Although pumping and storing milk is a common practice, the viable bacterial composition of pumped milk and the impact of storage practice on these bacteria remains under-explored. This metagenomic observational study aimed to characterize viable bacterial communities in freshly pumped human milk and its changes under different storage conditions. METHODS: In 2023, twelve lactating mothers from the CELSPAC: TNG cohort (Czech Republic) provided freshly pumped milk samples. These samples were stored under various conditions (refrigeration for 24 h, 48 h, or freezing for six weeks) and treated with propidium monoazide (PMA) to selectively identify viable cells. The DNA extracted from individual samples was subsequently analyzed using 16S rRNA amplicon sequencing on the Illumina platform. RESULTS: The genera Streptococcus, Staphylococcus, Diaphorobacter, Cutibacterium, and Corynebacterium were the most common viable bacteria in fresh human milk. The median sequencing depth and Shannon index of fresh human milk samples treated with PMA (+ PMA) were significantly lower than in untreated (-PMA) samples (p < 0.05 for all), which was true also for each time point. Also, significant changes in these parameters were observed between fresh human milk samples and their paired frozen samples (p < 0.05), while no differences were found between fresh human milk samples and those refrigerated for up to 48 h (p > 0.05). Of specific genera, only + PMA frozen human milk samples showed a significant decrease in the central log-ratio transformed relative abundances of the genera Diaphorobacter and Cutibacterium (p < 0.05) in comparison to + PMA fresh human milk samples. CONCLUSIONS: The study demonstrated that the bacterial profiles significantly differed between human milk samples treated with PMA, which represent only viable bacteria, and those untreated. While storage at 4 °C for up to 48 h did not significantly alter the overall diversity and composition of viable bacteria in human milk, freezing notably affected both the viability and relative abundances of some bacterial genera.
Zobrazit více v PubMed
Moossavi S, Miliku K, Sepehri S, Khafipour E, Azad MB. The prebiotic and probiotic properties of human milk: Implications for infant immune development and pediatric asthma. Front Pediatr. 2018;6:197. 10.3389/fped.2018.00197. PubMed PMC
Asnicar, F.; Manara, S.; Zolfo, M.; Truong, D.T.; Scholz, M.; Armanini, F.; et al. Studying vertical microbiome transmission from mothers to infants by strain-level metagenomic profiling. mSystems 2017; 2:e00164–16. 10.1128/mSystems.00164-16. PubMed PMC
Biagi E, Quercia S, Aceti A, Beghetti I, Rampelli S, Turroni S, et al. The bacterial ecosystem of mother’s milk and infant’s mouth and gut. Front Microbiol. 2017;8:1214. 10.3389/fmicb.2017.01214. PubMed PMC
Biesbroek G, Bosch AATM, Wang X, Keijser BJF, Veenhoven RH, Sanders EAM, et al. The impact of breastfeeding on nasopharyngeal microbial communities in infants. Am J Respir Crit Care Med. 2014;190:298–308. 10.1164/rccm.201401-0073OC. PubMed
Ward TL, Hosid S, Ioshikhes I, Altosaar I. Human milk metagenome: A functional capacity analysis. BMC Microbiol. 2013;13:116. 10.1186/1471-2180-13-116. PubMed PMC
Li R, Tun HM, Jahan M, Zhang Z, Kumar A, Dilantha Fernando WG, et al. Comparison of DNA-, PMA-, and RNA-based 16S rRNA Illumina sequencing for detection of live bacteria in water. Sci Rep. 2017;7:5752. 10.1038/s41598-017-02516-3. PubMed PMC
Wang Y, Yan Y, Thompson KN, Bae S, Accorsi EK, Zhang Y, et al. Whole microbial community viability is not quantitatively reflected by propidium monoazide sequencing approach. Microbiome. 2021;9:17. 10.1186/s40168-020-00961-3. PubMed PMC
Nocker, A.; Cheung, C.-Y.; Camper, A.K. Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J Microbiol Methods 2006; 67:310–320. 10.1016/j.mimet.2006.04.015. PubMed
Turunen J, Tejesvi MV, Paalanne N, Hekkala J, Lindgren O, Kaakinen M, et al. Presence of distinctive microbiome in the first-pass meconium of newborn infants. Sci Rep. 2021;11:19449. 10.1038/s41598-021-98951-4. PubMed PMC
Dong L, Liu H, Meng L, Xing M, Wang J, Wang C, et al. Quantitative PCR coupled with sodium dodecyl sulfate and propidium monoazide for detection of viable Staphylococcus aureus in milk. J Dairy Sci. 2018;101:4936–43. 10.3168/jds.2017-14087. PubMed
Miotto M, Barretta C, Ossai SO, da Silva HS, Kist A, Vieira CRW, et al. Optimization of a propidium monoazide-qPCR method for Escherichia coli quantification in raw seafood. Int J Food Microbiol. 2020;318: 108467. 10.1016/j.ijfoodmicro.2019.108467. PubMed
Stinson LF, Trevenen ML, Geddes DT. The viable microbiome of human milk differs from the metataxonomic profile. Nutrients. 2021;13:4445. 10.3390/nu13124445. PubMed PMC
Schwab C, Voney E, Ramirez Garcia A, Vischer M, Lacroix C. Characterization of the cultivable microbiota in fresh and stored mature human breast milk. Front Microbiol. 2019;10:2666. 10.3389/fmicb.2019.02666. PubMed PMC
Stinson LF, Trevenen ML, Geddes DT. Effect of cold storage on the viable and total bacterial populations in human milk. Nutrients. 2022;14:1875. 10.3390/nu14091875. PubMed PMC
Peters MDJ, McArthur A, Munn Z. Safe management of expressed breast milk: A systematic review. Women Birth. 2016;29:473–81. 10.1016/j.wombi.2016.05.007. PubMed
Becker, G.E.; Smith, H.A.; Cooney, F. Methods of milk expression for lactating women. Cochrane Database Syst Rev 2016; 9:CD006170. 10.1002/14651858.CD006170.pub5. PubMed PMC
Kotásková I, Syrovátka V, Obručová H, Vídeňská P, Zwinsová B, Holá V, et al. Actinotignum schaalii: Relation to concomitants and connection to patients’ conditions in polymicrobial biofilms of urinary tract catheters and urines. Microorganisms. 2021;9:669. 10.3390/microorganisms9030669. PubMed PMC
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A. 2011;108:4516–22. 10.1073/pnas.1000080107. PubMed PMC
Straub D, Blackwell N, Langarica-Fuentes A, Peltzer A, Nahnsen S, Kleindienst S. Interpretations of environmental microbial community studies are biased by the selected 16S rRNA (gene) amplicon sequencing pipeline. Front Microbiol. 2020;11: 550420. 10.3389/fmicb.2020.550420. PubMed PMC
Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, et al. Bioconda: Sustainable and comprehensive software distribution for the life sciences. Nat Methods. 2018;15:475–6. 10.1038/s41592-018-0046-7. PubMed PMC
da Veiga Leprevost F, Grüning BA, Alves Aflitos S, Röst HL, Uszkoreit J, Barsnes H, et al. BioContainers: An open-source and community-driven framework for software standardization. Bioinformatics. 2017;33:2580–2. 10.1093/bioinformatics/btx192. PubMed PMC
Babraham Bioinformatics. FastQC: A quality control tool for high throughput sequence data. Available from: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ [Accessed 9 Apr 2024].
Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32:3047–8. 10.1093/bioinformatics/btw354. PubMed PMC
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3. 10.1038/nmeth.3869. PubMed PMC
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6. 10.1093/nar/gks1219. PubMed PMC
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7. 10.1038/s41587-019-0209-9. PubMed PMC
R Core Team. R: A language and environment for statistical computing. Available from: https://www.r-project.org/ [Accessed 7 Sep 2024].
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin P, O’Hara B, et al. vegan: Community ecology package. R package version. 2015;2:2–1.
Gloor GB, Macklaim JM, Fernandes AD. Displaying variation in large datasets: A visual summary of effect sizes. J Comput Graph Stat. 2016. 10.1080/10618600.2015.1131161.
Paradis E, Schliep K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–8. PubMed
Wickham, H. ggplot2: Elegant graphics for data analysis. Springer; 2016. ISBN 978–3–319–24275–0.
Ahlmann-Eltze, C.; Patil, I. ggsignif: R package for displaying significance brackets for ggplot2. 2021.
Patil I. Visualizations with statistical details: The ggstatsplot approach. J Open Source Softw. 2021;6:3167. 10.21105/joss.03167.
Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32:2847–9. 10.1093/bioinformatics/btw313. PubMed
McGuire MK, McGuire MA. Got bacteria? The astounding, yet not-so-surprising, microbiome of human milk. Curr Opin Biotechnol. 2017;44:63–8. 10.1016/j.copbio.2016.11.013. PubMed
Fraher MH, O’Toole PW, Quigley EMM. Techniques used to characterize the gut microbiota: A guide for the clinician. Nat Rev Gastroenterol Hepatol. 2012;9:312–22. 10.1038/nrgastro.2012.44. PubMed
Martín R, Heilig HGHJ, Zoetendal EG, Jiménez E, Fernández L, Smidt H, et al. Cultivation-independent assessment of the bacterial diversity of breast milk among healthy women. Res Microbiol. 2007;158:31–7. 10.1016/j.resmic.2006.11.004. PubMed
Jiménez E, de Andrés J, Manrique M, Pareja-Tobes P, Tobes R, Martínez-Blanch JF, et al. Metagenomic analysis of milk of healthy and mastitis-suffering women. J Hum Lact. 2015;31:406–15. 10.1177/0890334415585078. PubMed
Heikkilä MP, Saris PEJ. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J Appl Microbiol. 2003;95:471–8. 10.1046/j.1365-2672.2003.02002.x. PubMed
Demmelmair, H.; Jiménez, E.; Collado, M.C.; Salminen, S.; McGuire, M.K. Maternal and perinatal factors associated with the human milk microbiome. Curr Dev Nutr 2020; 4:nzaa027. 10.1093/cdn/nzaa027. PubMed PMC
Edwards CA, Loo-Bouwman CAV, Diepen JAV, Schoemaker MH, Ozanne SE, Venema K, et al. A systematic review of breast milk microbiota composition and the evidence for transfer to and colonisation of the infant gut. Benef Microbes. 2022;13:365–81. 10.3920/BM2021.0098. PubMed
Moossavi S, Azad MB. Origins of human milk microbiota: New evidence and arising questions. Gut Microbes. 2020;12:1667722. 10.1080/19490976.2019.1667722. PubMed PMC
Perez PF, Doré J, Leclerc M, Levenez F, Benyacoub J, Serrant P, et al. Bacterial imprinting of the neonatal immune system: Lessons from maternal cells? Pediatrics. 2007;119:e724-732. 10.1542/peds.2006-1649. PubMed
Serghiou IR, Webber MA, Hall LJ. An update on the current understanding of the infant skin microbiome and research challenges. Curr Opin Microbiol. 2023;75: 102364. 10.1016/j.mib.2023.102364. PubMed
Ramsay DT, Kent JC, Owens RA, Hartmann PE. Ultrasound imaging of milk ejection in the breast of lactating women. Pediatrics. 2004;113:361–7. 10.1542/peds.113.2.361. PubMed
Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12:87. 10.1186/s12915-014-0087-z. PubMed PMC
Dahlberg J, Sun L, Waller KP, Östensson K, McGuire M, Agenäs S, et al. Microbiota data from low biomass milk samples is markedly affected by laboratory and reagent contamination. PLoS ONE. 2019;14: e0218257. 10.1371/journal.pone.0218257. PubMed PMC
Mallardi D, Piemontese P, Liotto N, Colombo RM, Dodaro A, Schiavello A, et al. New operating approach to limit Bacillus cereus contamination of donor human milk. J Hum Lact. 2021;38:102–7. 10.1177/08903344211002563. PubMed
Urbaniak C, Cummins J, Brackstone M, Macklaim JM, Gloor GB, Baban CK, et al. Microbiota of human breast tissue. Appl Environ Microbiol. 2014;80:3007–14. 10.1128/AEM.00242-14. PubMed PMC
Jiménez E, Arroyo R, Cárdenas N, Marín M, Serrano P, Fernández L, et al. Mammary candidiasis: A medical condition without scientific evidence? PLoS ONE. 2017;12: e0181071. 10.1371/journal.pone.0181071. PubMed PMC
Leech SM, Gilbert MC, Clifton VL, Kumar S, Rae KM, Borg D, et al. Insufficient evidence of a breastmilk microbiota at six-weeks postpartum: A pilot study. Nutrients. 2023;15:696. 10.3390/nu15030696. PubMed PMC
Reyes SM, Allen DL, Williams JE, McGuire MA, McGuire MK, Hay AG, et al. Pumping supplies alter the microbiome of pumped human milk: An in-home, randomized, crossover trial. Am J Clin Nutr. 2021;114:1960–70. 10.1093/ajcn/nqab273. PubMed PMC
Engür D, Çakmak BÇ, Türkmen MK, Telli M, Eyigör M, Güzünler M. A milk pump as a source for spreading Acinetobacter baumannii in a neonatal intensive care unit. Breastfeed Med. 2014;9:551–4. 10.1089/bfm.2014.0054. PubMed
Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V, Fedi S, et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe. 2018;24:133-145.e5. 10.1016/j.chom.2018.06.005. PubMed PMC
Huang T, Zeng Z, Liang X, Tang X, Luo H, Wang D, et al. Effect of breast milk with or without bacteria on infant gut microbiota. BMC Pregnancy Childbirth. 2022;22:595. 10.1186/s12884-022-04930-6. PubMed PMC
Centers for Disease Control and Prevention (CDC). Proper storage and preparation of breast milk. Available from: https://www.cdc.gov/breastfeeding/recommendations/handling_breastmilk.htm [Accessed 11 Mar 2024].
NHS. Expressing and storing breast milk. Available from: https://www.nhs.uk/conditions/baby/breastfeeding-and-bottle-feeding/breastfeeding/expressing-breast-milk/ [Accessed 11 Mar 2024].
La Leche League International. Storing human milk. Available from: https://llli.org/breastfeeding-info/storingmilk/ [Accessed 11 Mar 2024].
Kontopodi, E.; Arslanoglu, S.; Bernatowicz-Lojko, U.; Bertino, E.; Bettinelli, M.E.; Buffin, R.; et al. Donor milk banking: Improving the future. A survey on the operation of the European donor human milk banks. PLoS One 2021; 16:e0256435. 10.1371/journal.pone.0256435. PubMed PMC
Li, N.; Siddique, A.; Liu, N.; Teng, L.; Ed-Dra, A.; Yue, M.; et al. Global epidemiology and health risks of Bacillus cereus infections: Special focus on infant foods. Food Res Int 2025; 201:115650. 10.1016/j.foodres.2024.115650. PubMed