• This record comes from PubMed

Viable bacterial communities in freshly pumped human milk and their changes during cold storage conditions

. 2025 May 29 ; 20 (1) : 44. [epub] 20250529

Language English Country Great Britain, England Media electronic

Document type Journal Article, Observational Study

Grant support
LM2023069 Ministerstvo Školství, Mládeže a Tělovýchovy
857560 Horizon 2020 Framework Programme

Links

PubMed 40442718
PubMed Central PMC12123816
DOI 10.1186/s13006-025-00738-0
PII: 10.1186/s13006-025-00738-0
Knihovny.cz E-resources

BACKGROUND: Human milk harbors diverse bacterial communities that contribute to infant health. Although pumping and storing milk is a common practice, the viable bacterial composition of pumped milk and the impact of storage practice on these bacteria remains under-explored. This metagenomic observational study aimed to characterize viable bacterial communities in freshly pumped human milk and its changes under different storage conditions. METHODS: In 2023, twelve lactating mothers from the CELSPAC: TNG cohort (Czech Republic) provided freshly pumped milk samples. These samples were stored under various conditions (refrigeration for 24 h, 48 h, or freezing for six weeks) and treated with propidium monoazide (PMA) to selectively identify viable cells. The DNA extracted from individual samples was subsequently analyzed using 16S rRNA amplicon sequencing on the Illumina platform. RESULTS: The genera Streptococcus, Staphylococcus, Diaphorobacter, Cutibacterium, and Corynebacterium were the most common viable bacteria in fresh human milk. The median sequencing depth and Shannon index of fresh human milk samples treated with PMA (+ PMA) were significantly lower than in untreated (-PMA) samples (p < 0.05 for all), which was true also for each time point. Also, significant changes in these parameters were observed between fresh human milk samples and their paired frozen samples (p < 0.05), while no differences were found between fresh human milk samples and those refrigerated for up to 48 h (p > 0.05). Of specific genera, only + PMA frozen human milk samples showed a significant decrease in the central log-ratio transformed relative abundances of the genera Diaphorobacter and Cutibacterium (p < 0.05) in comparison to + PMA fresh human milk samples. CONCLUSIONS: The study demonstrated that the bacterial profiles significantly differed between human milk samples treated with PMA, which represent only viable bacteria, and those untreated. While storage at 4 °C for up to 48 h did not significantly alter the overall diversity and composition of viable bacteria in human milk, freezing notably affected both the viability and relative abundances of some bacterial genera.

See more in PubMed

Moossavi S, Miliku K, Sepehri S, Khafipour E, Azad MB. The prebiotic and probiotic properties of human milk: Implications for infant immune development and pediatric asthma. Front Pediatr. 2018;6:197. 10.3389/fped.2018.00197. PubMed PMC

Asnicar, F.; Manara, S.; Zolfo, M.; Truong, D.T.; Scholz, M.; Armanini, F.; et al. Studying vertical microbiome transmission from mothers to infants by strain-level metagenomic profiling. mSystems 2017; 2:e00164–16. 10.1128/mSystems.00164-16. PubMed PMC

Biagi E, Quercia S, Aceti A, Beghetti I, Rampelli S, Turroni S, et al. The bacterial ecosystem of mother’s milk and infant’s mouth and gut. Front Microbiol. 2017;8:1214. 10.3389/fmicb.2017.01214. PubMed PMC

Biesbroek G, Bosch AATM, Wang X, Keijser BJF, Veenhoven RH, Sanders EAM, et al. The impact of breastfeeding on nasopharyngeal microbial communities in infants. Am J Respir Crit Care Med. 2014;190:298–308. 10.1164/rccm.201401-0073OC. PubMed

Ward TL, Hosid S, Ioshikhes I, Altosaar I. Human milk metagenome: A functional capacity analysis. BMC Microbiol. 2013;13:116. 10.1186/1471-2180-13-116. PubMed PMC

Li R, Tun HM, Jahan M, Zhang Z, Kumar A, Dilantha Fernando WG, et al. Comparison of DNA-, PMA-, and RNA-based 16S rRNA Illumina sequencing for detection of live bacteria in water. Sci Rep. 2017;7:5752. 10.1038/s41598-017-02516-3. PubMed PMC

Wang Y, Yan Y, Thompson KN, Bae S, Accorsi EK, Zhang Y, et al. Whole microbial community viability is not quantitatively reflected by propidium monoazide sequencing approach. Microbiome. 2021;9:17. 10.1186/s40168-020-00961-3. PubMed PMC

Nocker, A.; Cheung, C.-Y.; Camper, A.K. Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J Microbiol Methods 2006; 67:310–320. 10.1016/j.mimet.2006.04.015. PubMed

Turunen J, Tejesvi MV, Paalanne N, Hekkala J, Lindgren O, Kaakinen M, et al. Presence of distinctive microbiome in the first-pass meconium of newborn infants. Sci Rep. 2021;11:19449. 10.1038/s41598-021-98951-4. PubMed PMC

Dong L, Liu H, Meng L, Xing M, Wang J, Wang C, et al. Quantitative PCR coupled with sodium dodecyl sulfate and propidium monoazide for detection of viable Staphylococcus aureus in milk. J Dairy Sci. 2018;101:4936–43. 10.3168/jds.2017-14087. PubMed

Miotto M, Barretta C, Ossai SO, da Silva HS, Kist A, Vieira CRW, et al. Optimization of a propidium monoazide-qPCR method for Escherichia coli quantification in raw seafood. Int J Food Microbiol. 2020;318: 108467. 10.1016/j.ijfoodmicro.2019.108467. PubMed

Stinson LF, Trevenen ML, Geddes DT. The viable microbiome of human milk differs from the metataxonomic profile. Nutrients. 2021;13:4445. 10.3390/nu13124445. PubMed PMC

Schwab C, Voney E, Ramirez Garcia A, Vischer M, Lacroix C. Characterization of the cultivable microbiota in fresh and stored mature human breast milk. Front Microbiol. 2019;10:2666. 10.3389/fmicb.2019.02666. PubMed PMC

Stinson LF, Trevenen ML, Geddes DT. Effect of cold storage on the viable and total bacterial populations in human milk. Nutrients. 2022;14:1875. 10.3390/nu14091875. PubMed PMC

Peters MDJ, McArthur A, Munn Z. Safe management of expressed breast milk: A systematic review. Women Birth. 2016;29:473–81. 10.1016/j.wombi.2016.05.007. PubMed

Becker, G.E.; Smith, H.A.; Cooney, F. Methods of milk expression for lactating women. Cochrane Database Syst Rev 2016; 9:CD006170. 10.1002/14651858.CD006170.pub5. PubMed PMC

Kotásková I, Syrovátka V, Obručová H, Vídeňská P, Zwinsová B, Holá V, et al. Actinotignum schaalii: Relation to concomitants and connection to patients’ conditions in polymicrobial biofilms of urinary tract catheters and urines. Microorganisms. 2021;9:669. 10.3390/microorganisms9030669. PubMed PMC

Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A. 2011;108:4516–22. 10.1073/pnas.1000080107. PubMed PMC

Straub D, Blackwell N, Langarica-Fuentes A, Peltzer A, Nahnsen S, Kleindienst S. Interpretations of environmental microbial community studies are biased by the selected 16S rRNA (gene) amplicon sequencing pipeline. Front Microbiol. 2020;11: 550420. 10.3389/fmicb.2020.550420. PubMed PMC

Grüning B, Dale R, Sjödin A, Chapman BA, Rowe J, Tomkins-Tinch CH, et al. Bioconda: Sustainable and comprehensive software distribution for the life sciences. Nat Methods. 2018;15:475–6. 10.1038/s41592-018-0046-7. PubMed PMC

da Veiga Leprevost F, Grüning BA, Alves Aflitos S, Röst HL, Uszkoreit J, Barsnes H, et al. BioContainers: An open-source and community-driven framework for software standardization. Bioinformatics. 2017;33:2580–2. 10.1093/bioinformatics/btx192. PubMed PMC

Babraham Bioinformatics. FastQC: A quality control tool for high throughput sequence data. Available from: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ [Accessed 9 Apr 2024].

Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32:3047–8. 10.1093/bioinformatics/btw354. PubMed PMC

Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3. 10.1038/nmeth.3869. PubMed PMC

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6. 10.1093/nar/gks1219. PubMed PMC

Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7. 10.1038/s41587-019-0209-9. PubMed PMC

R Core Team. R: A language and environment for statistical computing. Available from: https://www.r-project.org/ [Accessed 7 Sep 2024].

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin P, O’Hara B, et al. vegan: Community ecology package. R package version. 2015;2:2–1.

Gloor GB, Macklaim JM, Fernandes AD. Displaying variation in large datasets: A visual summary of effect sizes. J Comput Graph Stat. 2016. 10.1080/10618600.2015.1131161.

Paradis E, Schliep K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–8. PubMed

Wickham, H. ggplot2: Elegant graphics for data analysis. Springer; 2016. ISBN 978–3–319–24275–0.

Ahlmann-Eltze, C.; Patil, I. ggsignif: R package for displaying significance brackets for ggplot2. 2021.

Patil I. Visualizations with statistical details: The ggstatsplot approach. J Open Source Softw. 2021;6:3167. 10.21105/joss.03167.

Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32:2847–9. 10.1093/bioinformatics/btw313. PubMed

McGuire MK, McGuire MA. Got bacteria? The astounding, yet not-so-surprising, microbiome of human milk. Curr Opin Biotechnol. 2017;44:63–8. 10.1016/j.copbio.2016.11.013. PubMed

Fraher MH, O’Toole PW, Quigley EMM. Techniques used to characterize the gut microbiota: A guide for the clinician. Nat Rev Gastroenterol Hepatol. 2012;9:312–22. 10.1038/nrgastro.2012.44. PubMed

Martín R, Heilig HGHJ, Zoetendal EG, Jiménez E, Fernández L, Smidt H, et al. Cultivation-independent assessment of the bacterial diversity of breast milk among healthy women. Res Microbiol. 2007;158:31–7. 10.1016/j.resmic.2006.11.004. PubMed

Jiménez E, de Andrés J, Manrique M, Pareja-Tobes P, Tobes R, Martínez-Blanch JF, et al. Metagenomic analysis of milk of healthy and mastitis-suffering women. J Hum Lact. 2015;31:406–15. 10.1177/0890334415585078. PubMed

Heikkilä MP, Saris PEJ. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J Appl Microbiol. 2003;95:471–8. 10.1046/j.1365-2672.2003.02002.x. PubMed

Demmelmair, H.; Jiménez, E.; Collado, M.C.; Salminen, S.; McGuire, M.K. Maternal and perinatal factors associated with the human milk microbiome. Curr Dev Nutr 2020; 4:nzaa027. 10.1093/cdn/nzaa027. PubMed PMC

Edwards CA, Loo-Bouwman CAV, Diepen JAV, Schoemaker MH, Ozanne SE, Venema K, et al. A systematic review of breast milk microbiota composition and the evidence for transfer to and colonisation of the infant gut. Benef Microbes. 2022;13:365–81. 10.3920/BM2021.0098. PubMed

Moossavi S, Azad MB. Origins of human milk microbiota: New evidence and arising questions. Gut Microbes. 2020;12:1667722. 10.1080/19490976.2019.1667722. PubMed PMC

Perez PF, Doré J, Leclerc M, Levenez F, Benyacoub J, Serrant P, et al. Bacterial imprinting of the neonatal immune system: Lessons from maternal cells? Pediatrics. 2007;119:e724-732. 10.1542/peds.2006-1649. PubMed

Serghiou IR, Webber MA, Hall LJ. An update on the current understanding of the infant skin microbiome and research challenges. Curr Opin Microbiol. 2023;75: 102364. 10.1016/j.mib.2023.102364. PubMed

Ramsay DT, Kent JC, Owens RA, Hartmann PE. Ultrasound imaging of milk ejection in the breast of lactating women. Pediatrics. 2004;113:361–7. 10.1542/peds.113.2.361. PubMed

Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12:87. 10.1186/s12915-014-0087-z. PubMed PMC

Dahlberg J, Sun L, Waller KP, Östensson K, McGuire M, Agenäs S, et al. Microbiota data from low biomass milk samples is markedly affected by laboratory and reagent contamination. PLoS ONE. 2019;14: e0218257. 10.1371/journal.pone.0218257. PubMed PMC

Mallardi D, Piemontese P, Liotto N, Colombo RM, Dodaro A, Schiavello A, et al. New operating approach to limit Bacillus cereus contamination of donor human milk. J Hum Lact. 2021;38:102–7. 10.1177/08903344211002563. PubMed

Urbaniak C, Cummins J, Brackstone M, Macklaim JM, Gloor GB, Baban CK, et al. Microbiota of human breast tissue. Appl Environ Microbiol. 2014;80:3007–14. 10.1128/AEM.00242-14. PubMed PMC

Jiménez E, Arroyo R, Cárdenas N, Marín M, Serrano P, Fernández L, et al. Mammary candidiasis: A medical condition without scientific evidence? PLoS ONE. 2017;12: e0181071. 10.1371/journal.pone.0181071. PubMed PMC

Leech SM, Gilbert MC, Clifton VL, Kumar S, Rae KM, Borg D, et al. Insufficient evidence of a breastmilk microbiota at six-weeks postpartum: A pilot study. Nutrients. 2023;15:696. 10.3390/nu15030696. PubMed PMC

Reyes SM, Allen DL, Williams JE, McGuire MA, McGuire MK, Hay AG, et al. Pumping supplies alter the microbiome of pumped human milk: An in-home, randomized, crossover trial. Am J Clin Nutr. 2021;114:1960–70. 10.1093/ajcn/nqab273. PubMed PMC

Engür D, Çakmak BÇ, Türkmen MK, Telli M, Eyigör M, Güzünler M. A milk pump as a source for spreading Acinetobacter baumannii in a neonatal intensive care unit. Breastfeed Med. 2014;9:551–4. 10.1089/bfm.2014.0054. PubMed

Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V, Fedi S, et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe. 2018;24:133-145.e5. 10.1016/j.chom.2018.06.005. PubMed PMC

Huang T, Zeng Z, Liang X, Tang X, Luo H, Wang D, et al. Effect of breast milk with or without bacteria on infant gut microbiota. BMC Pregnancy Childbirth. 2022;22:595. 10.1186/s12884-022-04930-6. PubMed PMC

Centers for Disease Control and Prevention (CDC). Proper storage and preparation of breast milk. Available from: https://www.cdc.gov/breastfeeding/recommendations/handling_breastmilk.htm [Accessed 11 Mar 2024].

NHS. Expressing and storing breast milk. Available from: https://www.nhs.uk/conditions/baby/breastfeeding-and-bottle-feeding/breastfeeding/expressing-breast-milk/ [Accessed 11 Mar 2024].

La Leche League International. Storing human milk. Available from: https://llli.org/breastfeeding-info/storingmilk/ [Accessed 11 Mar 2024].

Kontopodi, E.; Arslanoglu, S.; Bernatowicz-Lojko, U.; Bertino, E.; Bettinelli, M.E.; Buffin, R.; et al. Donor milk banking: Improving the future. A survey on the operation of the European donor human milk banks. PLoS One 2021; 16:e0256435. 10.1371/journal.pone.0256435. PubMed PMC

Li, N.; Siddique, A.; Liu, N.; Teng, L.; Ed-Dra, A.; Yue, M.; et al. Global epidemiology and health risks of Bacillus cereus infections: Special focus on infant foods. Food Res Int 2025; 201:115650. 10.1016/j.foodres.2024.115650. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...