• This record comes from PubMed

The machinery of healthy vasodilatation: an overview

. 2025 Sep ; 477 (9) : 1135-1162. [epub] 20250606

Language English Country Germany Media print-electronic

Document type Journal Article, Review

Grant support
NU21-02-00135 Czech Research Health Council
GAUK 236923 Charles University, Czech Republic

Links

PubMed 40473983
PubMed Central PMC12420752
DOI 10.1007/s00424-025-03096-2
PII: 10.1007/s00424-025-03096-2
Knihovny.cz E-resources

Cardiovascular function depends on an adequate vascular tone facilitating appropriate blood flow to individual tissues according to their needs. The tone results from the interplay between vasodilatation and vasoconstriction. Its rapid and efficient regulation is secured by many interconnected physiological mechanisms, both at the level of the vascular smooth muscle and the endothelium. The purpose of this review is to provide an update of the current knowledge on the mechanisms of physiological vasodilatation. First, two principal intracellular signaling pathways linked to the activation of protein kinases PKA and PKG are introduced. Subsequently, the role of endothelium-derived relaxing factors together with the endothelium-dependent hyperpolarization is discussed. The roles of ion channels and gap junctions in the communication between endothelium and vascular smooth muscle cells are particularly discussed. Finally, principal vasodilatory stimuli (mechanical, thermal, chemical) and their mechanisms of action are briefly introduced.

Erratum In

PubMed

See more in PubMed

Abbink EJ, Walker AJ, van der Sluijs HA, Tack CJ, Smits P (2002) No role of calcium- and ATP-dependent potassium channels in insulin-induced vasodilation in humans in vivo. Diabetes Metab Res Rev 18:143–148. 10.1002/dmrr.269 PubMed

Adachi T, Weisbrod RM, Pimentel DR, Ying J, Sharov VS, Schöneich C, Cohen RA (2004) S-Glutathiolation by peroxynitrite activates SERCA during arterial relaxation by nitric oxide. Nat Med 10:1200–1207. 10.1038/nm1119 PubMed

Ahn SJ, Fancher IS, Bian JT, Zhang CX, Schwab S, Gaffin R, Phillips SA, Levitan I (2017) Inwardly rectifying K(+) channels are major contributors to flow-induced vasodilatation in resistance arteries. J Physiol 595:2339–2364. 10.1113/jp273255 PubMed PMC

Ahn SJ, Fancher IS, Granados ST, Do Couto NF, Hwang CL, Phillips SA, Levitan I (2022) Cholesterol-induced suppression of endothelial Kir channels is a driver of impairment of arteriolar flow-induced vasodilation in humans. Hypertension 79:126–138. 10.1161/hypertensionaha.121.17672 PubMed PMC

Alderton WK, Cooper CE, Knowles RG (2001) Nitric oxide synthases: structure, function and inhibition. Biochem J 357:593–615. 10.1042/0264-6021:3570593 PubMed PMC

Arnal JF, Fontaine C, Billon-Galés A, Favre J, Laurell H, Lenfant F, Gourdy P (2010) Estrogen receptors and endothelium. Arterioscler Thromb Vasc Biol 30:1506–1512. 10.1161/atvbaha.109.191221 PubMed

Arnaudeau S, Macrez-Leprêtre N, Mironneau J (1996) Activation of calcium sparks by angiotensin II in vascular myocytes. Biochem Biophys Res Commun 222:809–815. 10.1006/bbrc.1996.0808 PubMed

Arora S, Veves A, Caballaro AE, Smakowski P, LoGerfo FW (1998) Estrogen improves endothelial function. J Vasc Surg 27:1141–1146; discussion 1147. 10.1016/s0741-5214(98)70016-3 PubMed

Askew Page HR, Dalsgaard T, Baldwin SN, Jepps TA, Povstyan O, Olesen SP, Greenwood IA (2019) TMEM16A is implicated in the regulation of coronary flow and is altered in hypertension. Br J Pharmacol 176:1635–1648. 10.1111/bph.14598 PubMed PMC

Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468:232–243. 10.1038/nature09613 PubMed PMC

Averna M, Stifanese R, De Tullio R, Passalacqua M, Salamino F, Pontremoli S, Melloni E (2008) Functional role of HSP90 complexes with endothelial nitric-oxide synthase (eNOS) and calpain on nitric oxide generation in endothelial cells. J Biol Chem 283:29069–29076. 10.1074/jbc.M803638200 PubMed PMC

Bagher P, Beleznai T, Kansui Y, Mitchell R, Garland CJ, Dora KA (2012) Low intravascular pressure activates endothelial cell TRPV4 channels, local Ca2+ events, and IKCa channels, reducing arteriolar tone. Proc Natl Acad Sci U S A 109:18174–18179. 10.1073/pnas.1211946109 PubMed PMC

BelAiba RS, Djordjevic T, Petry A, Diemer K, Bonello S, Banfi B, Hess J, Pogrebniak A, Bickel C, Görlach A (2007) NOX5 variants are functionally active in endothelial cells. Free Radic Biol Med 42:446–459. 10.1016/j.freeradbiomed.2006.10.054 PubMed

Bergaya S, Hilgers RH, Meneton P, Dong Y, Bloch-Faure M, Inagami T, Alhenc-Gelas F, Lévy BI, Boulanger CM (2004) Flow-dependent dilation mediated by endogenous kinins requires angiotensin AT2 receptors. Circ Res 94:1623–1629. 10.1161/01.RES.0000131497.73744.1a PubMed

Berna-Erro A, Izquierdo-Serra M, Sepúlveda RV, Rubio-Moscardo F, Doñate-Macián P, Serra SA, Carrillo-Garcia J, Perálvarez-Marín A, González-Nilo F, Fernández-Fernández JM, Valverde MA (2017) Structural determinants of 5′,6′-epoxyeicosatrienoic acid binding to and activation of TRPV4 channel. Sci Rep 7:10522. 10.1038/s41598-017-11274-1 PubMed PMC

Billecke SS, Bender AT, Kanelakis KC, Murphy PJ, Lowe ER, Kamada Y, Pratt WB, Osawa Y (2002) hsp90 is required for heme binding and activation of apo-neuronal nitric-oxide synthase: geldanamycin-mediated oxidant generation is unrelated to any action of hsp90. J Biol Chem 277:20504–20509. 10.1074/jbc.M201940200 PubMed

Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C (2007) Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 297:842–857. 10.1001/jama.297.8.842 PubMed

Boettcher M, de Wit C (2011) Distinct endothelium-derived hyperpolarizing factors emerge in vitro and in vivo and are mediated in part via connexin 40-dependent myoendothelial coupling. Hypertension 57:802–808. 10.1161/hypertensionaha.110.165894 PubMed

Boo YC, Sorescu G, Boyd N, Shiojima I, Walsh K, Du J, Jo H (2002) Shear stress stimulates phosphorylation of endothelial nitric-oxide synthase at Ser1179 by Akt-independent mechanisms: role of protein kinase A. J Biol Chem 277:3388–3396. 10.1074/jbc.M108789200 PubMed

Bourmeyster N, Vignais PV (1996) Phosphorylation of Rho GDI stabilizes the Rho A-Rho GDI complex in neutrophil cytosol. Biochem Biophys Res Commun 218:54–60. 10.1006/bbrc.1996.0011 PubMed

Bourque SL, Davidge ST, Adams MA (2011) The interaction between endothelin-1 and nitric oxide in the vasculature: new perspectives. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 300:R1288–R1295. 10.1152/ajpregu.00397.2010 PubMed

Bubb KJ, Birgisdottir AB, Tang O, Hansen T, Figtree GA (2017) Redox modification of caveolar proteins in the cardiovascular system- role in cellular signalling and disease. Free Radic Biol Med 109:61–74. 10.1016/j.freeradbiomed.2017.02.012 PubMed

Campbell WB, Fleming I (2010) Epoxyeicosatrienoic acids and endothelium-dependent responses. Pflugers Arch 459:881–895. 10.1007/s00424-010-0804-6 PubMed PMC

Campbell WB, Gauthier KM (2013) Inducible endothelium-derived hyperpolarizing factor: role of the 15-lipoxygenase-EDHF pathway. J Cardiovasc Pharmacol 61:176–187.10.1097/FJC.0b013e31828165db PubMed PMC

Carlton-Carew SRE, Greenberg HZE, Connor EJ, Zadeh P, Greenwood IA, Albert AP (2024) Stimulation of the calcium-sensing receptor induces relaxations of rat mesenteric arteries by endothelium-dependent and -independent pathways via BK(Ca) and K(ATP) channels. Physiol Rep 12:e15926. 10.14814/phy2.15926 PubMed PMC

Carlton-Carew SRE, Greenberg HZE, Greenwood IA, Albert AP (2024) Stimulation of the calcium-sensing receptor induces relaxations through CGRP and NK1 receptor-mediated pathways in male rat mesenteric arteries. Physiol Rep 12:e16125. 10.14814/phy2.16125 PubMed PMC

Castello PR, David PS, McClure T, Crook Z, Poyton RO (2006) Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metab 3:277–287. 10.1016/j.cmet.2006.02.011 PubMed

Cil O, Chen X, Askew Page HR, Baldwin SN, Jordan MC, Myat Thwe P, Anderson MO, Haggie PM, Greenwood IA, Roos KP, Verkman AS (2021) A small molecule inhibitor of the chloride channel TMEM16A blocks vascular smooth muscle contraction and lowers blood pressure in spontaneously hypertensive rats. Kidney Int. 10.1016/j.kint.2021.03.025 PubMed PMC

Cipolla MJ, Gokina NI, Osol G (2002) Pressure-induced actin polymerization in vascular smooth muscle as a mechanism underlying myogenic behavior. Faseb j 16:72–76. 10.1096/cj.01-0104hyp PubMed

Chauhan SD, Nilsson H, Ahluwalia A, Hobbs AJ (2003) Release of C-type natriuretic peptide accounts for the biological activity of endothelium-derived hyperpolarizing factor. Proc Natl Acad Sci U S A 100:1426–1431. 10.1073/pnas.0336365100 PubMed PMC

Chen BR, Kozberg MG, Bouchard MB, Shaik MA, Hillman EM (2014) A critical role for the vascular endothelium in functional neurovascular coupling in the brain. J Am Heart Assoc 3:e000787. 10.1161/jaha.114.000787 PubMed PMC

Chen JG, Ping NN, Liang D, Li MY, Mi YN, Li S, Cao L, Cai Y, Cao YX (2017) The expression of bitter taste receptors in mesenteric, cerebral and omental arteries. Life Sci 170:16–24. 10.1016/j.lfs.2016.11.010 PubMed

Chen YL, Sonkusare SK (2020) Endothelial TRPV4 channels and vasodilator reactivity. Curr Top Membr 85:89–117. 10.1016/bs.ctm.2020.01.007 PubMed PMC

Chen ZP, Mitchelhill KI, Michell BJ, Stapleton D, Rodriguez-Crespo I, Witters LA, Power DA, Ortiz de Montellano PR, Kemp BE (1999) AMP-activated protein kinase phosphorylation of endothelial NO synthase. FEBS Lett 443:285–289. 10.1016/s0014-5793(98)01705-0 PubMed

Chiu JJ, Chien S (2011) Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 91:327–387. 10.1152/physrev.00047.2009 PubMed PMC

Colyer J (1998) Phosphorylation states of phospholamban. Ann N Y Acad Sci 853:79–91. 10.1111/j.1749-6632.1998.tb08258.x PubMed

Constantin B (2014) Dystrophin complex functions as a scaffold for signalling proteins. Biochim Biophys Acta 1838:635–642. 10.1016/j.bbamem.2013.08.023 PubMed

Conti MA, Adelstein RS (1981) The relationship between calmodulin binding and phosphorylation of smooth muscle myosin kinase by the catalytic subunit of 3′:5′ cAMP-dependent protein kinase. J Biol Chem 256:3178–3181 PubMed

Costa TJ, Barros PR, Arce C, Santos JD, da Silva-Neto J, Egea G, Dantas AP, Tostes RC, Jiménez-Altayó F (2021) The homeostatic role of hydrogen peroxide, superoxide anion and nitric oxide in the vasculature. Free Radical Biol Med 162:615–635. 10.1016/j.freeradbiomed.2020.11.021 PubMed

Dalkara T, Østergaard L, Heusch G, Attwell D (2025) Pericytes in the brain and heart: functional roles and response to ischaemia and reperfusion. Cardiovasc Res 120:2336–2348. 10.1093/cvr/cvae147 PubMed PMC

de Wit C, Boettcher M, Schmidt VJ (2008) Signaling across myoendothelial gap junctions–fact or fiction? Cell Commun Adhes 15:231–245. 10.1080/15419060802440260 PubMed

Dias P, Pourová J, Vopršalová M, Nejmanová I, Mladěnka P (2022) 3-Hydroxyphenylacetic acid: a blood pressure-reducing flavonoid metabolite. Nutrients 14. 10.3390/nu14020328 PubMed PMC

Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399:601–605. 10.1038/21224 PubMed

Dora KA, Damon DN, Duling BR (2000) Microvascular dilation in response to occlusion: a coordinating role for conducted vasomotor responses. Am J Physiol Heart Circ Physiol 279:H279-284. 10.1152/ajpheart.2000.279.1.H279 PubMed

Dora KA, Gallagher NT, McNeish A, Garland CJ (2008) Modulation of endothelial cell KCa3.1 channels during endothelium-derived hyperpolarizing factor signaling in mesenteric resistance arteries. Circ Res 102:1247–1255. 10.1161/circresaha.108.172379 PubMed PMC

Doseděl M, Jirkovský E, Macáková K, Krčmová LK, Javorská L, Pourová J, Mercolini L, Remião F, Nováková L, Mladěnka P, On Behalf Of The O (2021) Vitamin C-sources, physiological role, kinetics, deficiency, use, toxicity, and determination. Nutrients 13. 10.3390/nu13020615 PubMed PMC

Dou D, Zheng X, Liu J, Xu X, Ye L, Gao Y (2012) Hydrogen peroxide enhances vasodilatation by increasing dimerization of cGMP-dependent protein kinase type Iα. Circ J 76:1792–1798. 10.1253/circj.cj-11-1368 PubMed

Dunaway LS, Mills WA 3rd, Eyo UB, Isakson BE (2025) The cells of the vasculature: advances in the regulation of vascular tone in the brain and periphery. Basic Clin Pharmacol Toxicol 136:e70023. 10.1111/bcpt.70023 PubMed PMC

Dunn KM, Nelson MT (2010) Potassium channels and neurovascular coupling. Circ J 74:608–616. 10.1253/circj.cj-10-0174 PubMed PMC

Earley S, Brayden JE (2015) Transient receptor potential channels in the vasculature. Physiol Rev 95:645–690. 10.1152/physrev.00026.2014 PubMed PMC

Earley S, Gonzales AL, Crnich R (2009) Endothelium-dependent cerebral artery dilation mediated by TRPA1 and Ca2+-activated K+ channels. Circ Res 104:987–994. 10.1161/circresaha.108.189530 PubMed PMC

Earley S, Pauyo T, Drapp R, Tavares MJ, Liedtke W, Brayden JE (2009) TRPV4-dependent dilation of peripheral resistance arteries influences arterial pressure. Am J Physiol Heart Circ Physiol 297:H1096-1102. 10.1152/ajpheart.00241.2009 PubMed PMC

Ehmsen J, Poon E, Davies K (2002) The dystrophin-associated protein complex. J Cell Sci 115:2801–2803. 10.1242/jcs.115.14.2801 PubMed

Eroglu E, Saravi SSS, Sorrentino A, Steinhorn B, Michel T (2019) Discordance between eNOS phosphorylation and activation revealed by multispectral imaging and chemogenetic methods. Proc Natl Acad Sci U S A 116:20210–20217. 10.1073/pnas.1910942116 PubMed PMC

Evora PR, Cable DG, Chua YL, Rodrigues AJ, Pearson PJ, Schaff HV (2007) Nitric oxide and prostacyclin-dependent pathways involvement on in vitro induced hypothermia. Cryobiology 54:106–113. 10.1016/j.cryobiol.2006.12.002 PubMed

Fan G, Cui Y, Gollasch M, Kassmann M (2019) Elementary calcium signaling in arterial smooth muscle. Channels (Austin) 13:505–519. 10.1080/19336950.2019.1688910 PubMed PMC

Faraci FM, Sobey CG, Chrissobolis S, Lund DD, Heistad DD, Weintraub NL (2001) Arachidonate dilates basilar artery by lipoxygenase-dependent mechanism and activation of K(+) channels. Am J Physiol Regul Integr Comp Physiol 281:R246-253. 10.1152/ajpregu.2001.281.1.R246 PubMed

Filosa JA, Bonev AD, Straub SV, Meredith AL, Wilkerson MK, Aldrich RW, Nelson MT (2006) Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat Neurosci 9:1397–1403. 10.1038/nn1779 PubMed

Fischer D, Landmesser U, Spiekermann S, Hilfiker-Kleiner D, Hospely M, Müller M, Busse R, Fleming I, Drexler H (2007) Cytochrome P450 2C9 is involved in flow-dependent vasodilation of peripheral conduit arteries in healthy subjects and in patients with chronic heart failure. Eur J Heart Fail 9:770–775. 10.1016/j.ejheart.2007.05.005 PubMed

Fisslthaler B, Dimmeler S, Hermann C, Busse R, Fleming I (2000) Phosphorylation and activation of the endothelial nitric oxide synthase by fluid shear stress. Acta Physiol Scand 168:81–88. 10.1046/j.1365-201x.2000.00627.x PubMed

Fleming I, Fisslthaler B, Dimmeler S, Kemp BE, Busse R (2001) Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity. Circ Res 88:E68-75. 10.1161/hh1101.092677 PubMed

Fontana J, Fulton D, Chen Y, Fairchild TA, McCabe TJ, Fujita N, Tsuruo T, Sessa WC (2002) Domain mapping studies reveal that the M domain of hsp90 serves as a molecular scaffold to regulate Akt-dependent phosphorylation of endothelial nitric oxide synthase and NO release. Circ Res 90:866–873. 10.1161/01.res.0000016837.26733.be PubMed

Foote CA, Soares RN, Ramirez-Perez FI, Ghiarone T, Aroor A, Manrique-Acevedo C, Padilla J, Martinez-Lemus L (2022) Endothelial glycocalyx Compr Physiol 12:3781–3811. 10.1002/cphy.c210029 PubMed PMC

Foskett JK, White C, Cheung KH, Mak DO (2007) Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87:593–658. 10.1152/physrev.00035.2006 PubMed PMC

Friederich-Persson M, Nguyen Dinh Cat A, Persson P, Montezano AC, Touyz RM (2017) Brown adipose tissue regulates small artery function through NADPH oxidase 4-derived hydrogen peroxide and redox-sensitive protein kinase G-1α. Arterioscler Thromb Vasc Biol 37:455–465. 10.1161/atvbaha.116.308659 PubMed

Gao F, Sui D, Garavito RM, Worden RM, Wang DH (2009) Salt intake augments hypotensive effects of transient receptor potential vanilloid 4: functional significance and implication. Hypertension 53:228–235. 10.1161/hypertensionaha.108.117499 PubMed PMC

García-Redondo AB, Briones AM, Beltrán AE, Alonso MJ, Simonsen U, Salaices M (2009) Hypertension increases contractile responses to hydrogen peroxide in resistance arteries through increased thromboxane A2, Ca2+, and superoxide anion levels. J Pharmacol Exp Ther 328:19–27. 10.1124/jpet.108.144295 PubMed

Garland CJ, Bagher P, Powell C, Ye X, Lemmey HAL, Borysova L, Dora KA (2017) Voltage-dependent Ca(2+) entry into smooth muscle during contraction promotes endothelium-mediated feedback vasodilation in arterioles. Sci Signal 10. 10.1126/scisignal.aal3806 PubMed

Garland CJ, Dora KA (2017) EDH: endothelium-dependent hyperpolarization and microvascular signalling. Acta Physiol (Oxf) 219:152–161. 10.1111/apha.12649 PubMed

Garland CJ, Hiley CR, Dora KA (2011) EDHF: spreading the influence of the endothelium. Br J Pharmacol 164:839–852. 10.1111/j.1476-5381.2010.01148.x PubMed PMC

Gauthier KM, Goldman DH, Aggarwal NT, Chawengsub Y, Falck JR, Campbell WB (2011) Role of arachidonic acid lipoxygenase metabolites in acetylcholine-induced relaxations of mouse arteries. Am J Physiol Heart Circ Physiol 300:H725-735. 10.1152/ajpheart.00696.2009 PubMed PMC

Geiselhöringer A, Werner M, Sigl K, Smital P, Wörner R, Acheo L, Stieber J, Weinmeister P, Feil R, Feil S, Wegener J, Hofmann F, Schlossmann J (2004) IRAG is essential for relaxation of receptor-triggered smooth muscle contraction by cGMP kinase. Embo j 23:4222–4231. 10.1038/sj.emboj.7600440 PubMed PMC

Giachini FR, Carneiro FS, Lima VV, Carneiro ZN, Dorrance A, Webb RC, Tostes RC (2009) Upregulation of intermediate calcium-activated potassium channels counterbalance the impaired endothelium-dependent vasodilation in stroke-prone spontaneously hypertensive rats. Transl Res 154:183–193. 10.1016/j.trsl.2009.07.003 PubMed PMC

Gold MG (2019) Swimming regulations for protein kinase A catalytic subunit. Biochem Soc Trans 47:1355–1366. 10.1042/bst20190230 PubMed

Gong MC, Fuglsang A, Alessi D, Kobayashi S, Cohen P, Somlyo AV, Somlyo AP (1992) Arachidonic acid inhibits myosin light chain phosphatase and sensitizes smooth muscle to calcium. J Biol Chem 267:21492–21498 PubMed

Goto K, Edwards FR, Hill CE (2007) Depolarization evoked by acetylcholine in mesenteric arteries of hypertensive rats attenuates endothelium-dependent hyperpolarizing factor. J Hypertens 25:345–359. 10.1097/HJH.0b013e328010d616 PubMed

Gratton JP, Fontana J, O’Connor DS, Garcia-Cardena G, McCabe TJ, Sessa WC (2000) Reconstitution of an endothelial nitric-oxide synthase (eNOS), hsp90, and caveolin-1 complex in vitro. Evidence that hsp90 facilitates calmodulin stimulated displacement of eNOS from caveolin-1. J Biol Chem 275:22268–22272. 10.1074/jbc.M001644200 PubMed

Greenberg HZ, Shi J, Jahan KS, Martinucci MC, Gilbert SJ, Vanessa Ho WS, Albert AP (2016) Stimulation of calcium-sensing receptors induces endothelium-dependent vasorelaxations via nitric oxide production and activation of IKCa channels. Vascul Pharmacol 80:75–84. 10.1016/j.vph.2016.01.001 PubMed PMC

Grover Páez F, Esparza Pimentel J (2022) Endothelial dysfunction, molecular biology, physiopathology, diagnosis, and treatment. In: Abukabda A, Fonner C (eds) Endothelial Dysfunction - A Novel Paradigm. IntechOpen, Rijeka. 10.5772/intechopen.107481

Groves P, Kurz S, Just H, Drexler H (1995) Role of endogenous bradykinin in human coronary vasomotor control. Circulation 92:3424–3430. 10.1161/01.cir.92.12.3424 PubMed

Grubb S, Lauritzen M, Aalkjær C (2021) Brain capillary pericytes and neurovascular coupling. Comp Biochem Physiol A: Mol Integr Physiol 254:110893. 10.1016/j.cbpa.2020.110893 PubMed

Gudi T, Chen JC, Casteel DE, Seasholtz TM, Boss GR, Pilz RB (2002) cGMP-dependent protein kinase inhibits serum-response element-dependent transcription by inhibiting rho activation and functions. J Biol Chem 277:37382–37393. 10.1074/jbc.M204491200 PubMed

Hamabata T, Nakamura T, Tachibana Y, Horikami D, Murata T (2018) 5,6-DiHETE attenuates vascular hyperpermeability by inhibiting Ca(2+) elevation in endothelial cells. J Lipid Res 59:1864–1870. 10.1194/jlr.M085233 PubMed PMC

Hammond S, Mathewson AM, Baker PN, Mayhew TM, Dunn WR (2011) Gap junctions and hydrogen peroxide are involved in endothelium-derived hyperpolarising responses to bradykinin in omental arteries and veins isolated from pregnant women. Eur J Pharmacol 668:225–232. 10.1016/j.ejphar.2011.06.050 PubMed

Han H, Rosenhouse-Dantsker A, Gnanasambandam R, Epshtein Y, Chen Z, Sachs F, Minshall RD, Levitan I (2014) Silencing of Kir2 channels by caveolin-1: cross-talk with cholesterol. J Physiol 592:4025–4038. 10.1113/jphysiol.2014.273177 PubMed PMC

Hansen SB, Tao X, MacKinnon R (2011) Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature 477:495–498. 10.1038/nature10370 PubMed PMC

Harder DR (1987) Pressure-induced myogenic activation of cat cerebral arteries is dependent on intact endothelium. Circ Res 60:102–107. 10.1161/01.res.60.1.102 PubMed

Harraz OF, Abd El-Rahman RR, Bigdely-Shamloo K, Wilson SM, Brett SE, Romero M, Gonzales AL, Earley S, Vigmond EJ, Nygren A, Menon BK, Mufti RE, Watson T, Starreveld Y, Furstenhaupt T, Muellerleile PR, Kurjiaka DT, Kyle BD, Braun AP, Welsh DG (2014) Ca(V)3.2 channels and the induction of negative feedback in cerebral arteries. Circ Res 115:650–661. 10.1161/circresaha.114.304056 PubMed PMC

Harraz OF, Visser F, Brett SE, Goldman D, Zechariah A, Hashad AM, Menon BK, Watson T, Starreveld Y, Welsh DG (2015) CaV1.2/CaV3.x channels mediate divergent vasomotor responses in human cerebral arteries. J Gen Physiol 145:405–418. 10.1085/jgp.201511361 PubMed PMC

Haselden WD, Kedarasetti RT, Drew PJ (2020) Spatial and temporal patterns of nitric oxide diffusion and degradation drive emergent cerebrovascular dynamics. PLoS Comput Biol 16:e1008069. 10.1371/journal.pcbi.1008069 PubMed PMC

Heiss EH, Dirsch VM (2014) Regulation of eNOS enzyme activity by posttranslational modification. Curr Pharm Des 20:3503–3513. 10.2174/13816128113196660745 PubMed PMC

Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544. 10.1113/jphysiol.1952.sp004764 PubMed PMC

Hoffmann LS, Larson CJ, Pfeifer A (2016) cGMP and brown adipose tissue. Handb Exp Pharmacol 233:283–299. 10.1007/164_2015_3 PubMed

Hofmann F, Wegener JW (2013) cGMP-dependent protein kinases (cGK). Methods Mol Biol 1020:17–50. 10.1007/978-1-62703-459-3_2 PubMed

Hong K, Cope EL, DeLalio LJ, Marziano C, Isakson BE, Sonkusare SK (2018) TRPV4 (transient receptor potential vanilloid 4) channel-dependent negative feedback mechanism regulates G(q) protein-coupled receptor-induced vasoconstriction. Arterioscler Thromb Vasc Biol 38:542–554. 10.1161/atvbaha.117.310038 PubMed PMC

Huang Z, Shiva S, Kim-Shapiro DB, Patel RP, Ringwood LA, Irby CE, Huang KT, Ho C, Hogg N, Schechter AN, Gladwin MT (2005) Enzymatic function of hemoglobin as a nitrite reductase that produces NO under allosteric control. J Clin Invest 115:2099–2107. 10.1172/jci24650 PubMed PMC

Hügel HM, Jackson N, May B, Zhang AL, Xue CC (2016) Polyphenol protection and treatment of hypertension. Phytomedicine 23:220–231. 10.1016/j.phymed.2015.12.012 PubMed

Imig JD (2020) Eicosanoid blood vessel regulation in physiological and pathological states. Clin Sci (Lond) 134:2707–2727. 10.1042/cs20191209 PubMed

Institoris A, Vandal M, Peringod G, Catalano C, Tran CH, Yu X, Visser F, Breiteneder C, Molina L, Khakh BS, Nguyen MD, Thompson RJ, Gordon GR (2022) Astrocytes amplify neurovascular coupling to sustained activation of neocortex in awake mice. Nat Commun 13:7872. 10.1038/s41467-022-35383-2 PubMed PMC

Isakson BE, Ramos SI, Duling BR (2007) Ca2+ and inositol 1,4,5-trisphosphate-mediated signaling across the myoendothelial junction. Circ Res 100:246–254. 10.1161/01.Res.0000257744.23795.93 PubMed

Jackson WF (2000) Ion channels and vascular tone. Hypertension 35:173–178. 10.1161/01.hyp.35.1.173 PubMed PMC

Jackson WF (2020) Introduction to ion channels and calcium signaling in the microcirculation. Curr Top Membr 85:1–18. 10.1016/bs.ctm.2020.01.001 PubMed PMC

Jackson WF (2022) Endothelial ion channels and cell-cell communication in the microcirculation. Front Physiol 13:805149. 10.3389/fphys.2022.805149 PubMed PMC

Jaggar JH, Li A, Parfenova H, Liu J, Umstot ES, Dopico AM, Leffler CW (2005) Heme is a carbon monoxide receptor for large-conductance Ca2+-activated K+ channels. Circ Res 97:805–812. 10.1161/01.RES.0000186180.47148.7b PubMed PMC

Jaggar JH, Porter VA, Lederer WJ, Nelson MT (2000) Calcium sparks in smooth muscle. Am J Physiol Cell Physiol 278:C235-256. 10.1152/ajpcell.2000.278.2.C235 PubMed

Jani MS, Zou J, Veetil AT, Krishnan Y (2020) A DNA-based fluorescent probe maps NOS3 activity with subcellular spatial resolution. Nat Chem Biol 16:660–666. 10.1038/s41589-020-0491-3 PubMed

Jung SB, Kim CS, Naqvi A, Yamamori T, Mattagajasingh I, Hoffman TA, Cole MP, Kumar A, Dericco JS, Jeon BH, Irani K (2010) Histone deacetylase 3 antagonizes aspirin-stimulated endothelial nitric oxide production by reversing aspirin-induced lysine acetylation of endothelial nitric oxide synthase. Circ Res 107:877–887. 10.1161/circresaha.110.222968 PubMed PMC

Kanagy NL, Szabo C, Papapetropoulos A (2017) Vascular biology of hydrogen sulfide. Am J Physiol Cell Physiol 312:C537-c549. 10.1152/ajpcell.00329.2016 PubMed PMC

Kaßmann M, Szijártó IA, García-Prieto CF, Fan G, Schleifenbaum J, Anistan YM, Tabeling C, Shi Y, le Noble F, Witzenrath M, Huang Y, Markó L, Nelson MT, Gollasch M (2019) Role of ryanodine type 2 receptors in elementary Ca(2+) signaling in arteries and vascular adaptive responses. J Am Heart Assoc 8:e010090. 10.1161/jaha.118.010090 PubMed PMC

Kawka DW, Ouellet M, Hétu PO, Singer II, Riendeau D (2007) Double-label expression studies of prostacyclin synthase, thromboxane synthase and COX isoforms in normal aortic endothelium. Biochim Biophys Acta 1771:45–54. 10.1016/j.bbalip.2006.09.015 PubMed

Kenworthy AK, Han B, Ariotti N, Parton RG (2023) The role of membrane lipids in the formation and function of caveolae. Cold Spring Harb Perspect Biol 15. 10.1101/cshperspect.a041413 PubMed PMC

Keserü B, Barbosa-Sicard E, Popp R, Fisslthaler B, Dietrich A, Gudermann T, Hammock BD, Falck JR, Weissmann N, Busse R, Fleming I (2008) Epoxyeicosatrienoic acids and the soluble epoxide hydrolase are determinants of pulmonary artery pressure and the acute hypoxic pulmonary vasoconstrictor response. Faseb j 22:4306–4315. 10.1096/fj.08-112821 PubMed PMC

Khaddaj Mallat R, Mathew John C, Kendrick DJ, Braun AP (2017) The vascular endothelium: a regulator of arterial tone and interface for the immune system. Crit Rev Clin Lab Sci 54:458–470. 10.1080/10408363.2017.1394267 PubMed

Kitazawa T, Semba S, Huh YH, Kitazawa K, Eto M (2009) Nitric oxide-induced biphasic mechanism of vascular relaxation via dephosphorylation of CPI-17 and MYPT1. J Physiol 587:3587–3603. 10.1113/jphysiol.2009.172189 PubMed PMC

Knape MJ, Ahuja LG, Bertinetti D, Burghardt NC, Zimmermann B, Taylor SS, Herberg FW (2015) Divalent metal ions Mg PubMed PMC

Knorr M, Hausding M, Kröller-Schuhmacher S, Steven S, Oelze M, Heeren T, Scholz A, Gori T, Wenzel P, Schulz E, Daiber A, Münzel T (2011) Nitroglycerin-induced endothelial dysfunction and tolerance involve adverse phosphorylation and S-Glutathionylation of endothelial nitric oxide synthase: beneficial effects of therapy with the AT1 receptor blocker telmisartan. Arterioscler Thromb Vasc Biol 31:2223–2231. 10.1161/atvbaha.111.232058 PubMed

Ko EA, Han J, Jung ID, Park WS (2008) Physiological roles of K+ channels in vascular smooth muscle cells. J Smooth Muscle Res 44:65–81. 10.1540/jsmr.44.65 PubMed

Kong BW, Man RY, Gao Y, Vanhoutte PM, Leung SW (2015) Reduced activity of SKC a and Na-K ATPase underlies the accelerated impairment of EDH-type relaxations in mesenteric arteries of aging spontaneously hypertensive rats. Pharmacol Res Perspect 3:e00150. 10.1002/prp2.150 PubMed PMC

Kovacevic I, Müller M, Kojonazarov B, Ehrke A, Randriamboavonjy V, Kohlstedt K, Hindemith T, Schermuly RT, Fleming I, Hoffmeister M, Oess S (2015) The F-BAR protein NOSTRIN dictates the localization of the muscarinic M3 receptor and regulates cardiovascular function. Circ Res 117:460–469. 10.1161/circresaha.115.306187 PubMed

Kuhn M (2003) Structure, regulation, and function of mammalian membrane guanylyl cyclase receptors, with a focus on guanylyl cyclase-A. Circ Res 93:700–709. 10.1161/01.Res.0000094745.28948.4d PubMed

Kuo C-HCC-Y (2016) Characterization of human aortic endothelial cells, endothelial progenitor cells, and cardiomyocytes. J Tradit Med Clin Natur 6. 10.4172/2573-4555.1000203

Kutz JL, Greaney JL, Santhanam L, Alexander LM (2015) Evidence for a functional vasodilatatory role for hydrogen sulphide in the human cutaneous microvasculature. J Physiol 593:2121–2129. 10.1113/jp270054 PubMed PMC

Kwan HY, Shen B, Ma X, Kwok YC, Huang Y, Man YB, Yu S, Yao X (2009) TRPC1 associates with BK(Ca) channel to form a signal complex in vascular smooth muscle cells. Circ Res 104:670–678. 10.1161/circresaha.108.188748 PubMed

Lassègue B, Griendling KK (2010) NADPH oxidases: functions and pathologies in the vasculature. Arterioscler Thromb Vasc Biol 30:653–661. 10.1161/atvbaha.108.181610 PubMed PMC

Ledoux J, Taylor MS, Bonev AD, Hannah RM, Solodushko V, Shui B, Tallini Y, Kotlikoff MI, Nelson MT (2008) Functional architecture of inositol 1,4,5-trisphosphate signaling in restricted spaces of myoendothelial projections. Proc Natl Acad Sci U S A 105:9627–9632. 10.1073/pnas.0801963105 PubMed PMC

Leffler CW, Parfenova H, Jaggar JH (2011) Carbon monoxide as an endogenous vascular modulator. Am J Physiol Heart Circ Physiol 301:H1-h11. 10.1152/ajpheart.00230.2011 PubMed PMC

Leonoudakis D, Conti LR, Anderson S, Radeke CM, McGuire LM, Adams ME, Froehner SC, Yates JR 3rd, Vandenberg CA (2004) Protein trafficking and anchoring complexes revealed by proteomic analysis of inward rectifier potassium channel (Kir2.x)-associated proteins. J Biol Chem 279:22331–22346. 10.1074/jbc.M400285200 PubMed

Leung FP, Yung LM, Leung HS, Au CL, Yao X, Vanhoutte PM, Laher I, Huang Y (2007) Therapeutic concentrations of raloxifene augment nitric oxide-dependent coronary artery dilatation in vitro. Br J Pharmacol 152:223–229. 10.1038/sj.bjp.0707387 PubMed PMC

Levitan I (2009) Cholesterol and Kir channels. IUBMB Life 61:781–790. 10.1002/iub.192 PubMed PMC

Lezoualc’h F, Fazal L, Laudette M, Conte C (2016) Cyclic AMP sensor EPAC proteins and their role in cardiovascular function and disease. Circ Res 118:881–897. 10.1161/circresaha.115.306529 PubMed

Lim JE, Bernatchez P, Nabi IR (2024) Scaffolds and the scaffolding domain: an alternative paradigm for caveolin-1 signaling. Biochem Soc Trans 52:947–959. 10.1042/bst20231570 PubMed PMC

Ling K, Men F, Wang WC, Zhou YQ, Zhang HW, Ye DW (2018) Carbon monoxide and its controlled release: therapeutic application, detection, and development of carbon monoxide releasing molecules (CORMs). J Med Chem 61:2611–2635. 10.1021/acs.jmedchem.6b01153 PubMed

Liu Y, Bubolz AH, Mendoza S, Zhang DX, Gutterman DD (2011) H2O2 is the transferrable factor mediating flow-induced dilation in human coronary arterioles. Circ Res 108:566–573. 10.1161/circresaha.110.237636 PubMed PMC

Liu Z, Khalil RA (2018) Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochem Pharmacol 153:91–122. 10.1016/j.bcp.2018.02.012 PubMed PMC

Loirand G, Guilluy C, Pacaud P (2006) Regulation of Rho proteins by phosphorylation in the cardiovascular system. Trends Cardiovasc Med 16:199–204. 10.1016/j.tcm.2006.03.010 PubMed

Longden TA, Dabertrand F, Koide M, Gonzales AL, Tykocki NR, Brayden JE, Hill-Eubanks D, Nelson MT (2017) Capillary K(+)-sensing initiates retrograde hyperpolarization to increase local cerebral blood flow. Nat Neurosci 20:717–726. 10.1038/nn.4533 PubMed PMC

Longden TA, Isaacs D (2025) Pericyte electrical signalling and brain haemodynamics. Basic Clin Pharmacol Toxicol 136:e70030. 10.1111/bcpt.70030 PubMed PMC

Longden TA, Mughal A, Hennig GW, Harraz OF, Shui B, Lee FK, Lee JC, Reining S, Kotlikoff MI, König GM, Kostenis E, Hill-Eubanks D, Nelson MT (2021) Local IP(3) receptor-mediated Ca(2+) signals compound to direct blood flow in brain capillaries. Sci Adv 7. 10.1126/sciadv.abh0101 PubMed PMC

Lu TW, Wu J, Aoto PC, Weng JH, Ahuja LG, Sun N, Cheng CY, Zhang P, Taylor SS (2019) Two PKA RIα holoenzyme states define ATP as an isoform-specific orthosteric inhibitor that competes with the allosteric activator, cAMP. Proc Natl Acad Sci U S A 116:16347–16356. 10.1073/pnas.1906036116 PubMed PMC

Ma MM, Gao M, Guo KM, Wang M, Li XY, Zeng XL, Sun L, Lv XF, Du YH, Wang GL, Zhou JG, Guan YY (2017) TMEM16A contributes to endothelial dysfunction by facilitating Nox2 NADPH oxidase-derived reactive oxygen species generation in hypertension. Hypertension 69:892–901. 10.1161/hypertensionaha.116.08874 PubMed

Ma Y, Zhang P, Li J, Lu J, Ge J, Zhao Z, Ma X, Wan S, Yao X, Shen B (2015) Epoxyeicosatrienoic acids act through TRPV4-TRPC1-KCa1.1 complex to induce smooth muscle membrane hyperpolarization and relaxation in human internal mammary arteries. Biochim Biophys Acta 1852:552–559. 10.1016/j.bbadis.2014.12.010 PubMed

MacKay CE, Leo MD, Fernández-Peña C, Hasan R, Yin W, Mata-Daboin A, Bulley S, Gammons J, Mancarella S, Jaggar JH (2020) Intravascular flow stimulates PKD2 (polycystin-2) channels in endothelial cells to reduce blood pressure. Elife 9. 10.7554/eLife.56655 PubMed PMC

Mahavadi S, Nalli A, Al-Shboul O, Murthy KS (2014) Inhibition of MLC20 phosphorylation downstream of Ca2+ and RhoA: a novel mechanism involving phosphorylation of myosin phosphatase interacting protein (M-RIP) by PKG and stimulation of MLC phosphatase activity. Cell Biochem Biophys 68:1–8. 10.1007/s12013-013-9677-6 PubMed PMC

Manson ML, Säfholm J, Al-Ameri M, Bergman P, Orre AC, Swärd K, James A, Dahlén SE, Adner M (2014) Bitter taste receptor agonists mediate relaxation of human and rodent vascular smooth muscle. Eur J Pharmacol 740:302–311. 10.1016/j.ejphar.2014.07.005 PubMed

Mao Y, Tokudome T, Kishimoto I (2016) Ghrelin and blood pressure regulation. Curr Hypertens Rep 18:15. 10.1007/s11906-015-0622-5 PubMed

Matoba T, Shimokawa H, Kubota H, Morikawa K, Fujiki T, Kunihiro I, Mukai Y, Hirakawa Y, Takeshita A (2002) Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in human mesenteric arteries. Biochem Biophys Res Commun 290:909–913. 10.1006/bbrc.2001.6278 PubMed

Matoba T, Shimokawa H, Morikawa K, Kubota H, Kunihiro I, Urakami-Harasawa L, Mukai Y, Hirakawa Y, Akaike T, Takeshita A (2003) Electron spin resonance detection of hydrogen peroxide as an endothelium-derived hyperpolarizing factor in porcine coronary microvessels. Arterioscler Thromb Vasc Biol 23:1224–1230. 10.1161/01.Atv.0000078601.79536.6c PubMed

Matoba T, Shimokawa H, Nakashima M, Hirakawa Y, Mukai Y, Hirano K, Kanaide H, Takeshita A (2000) Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. J Clin Invest 106:1521–1530. 10.1172/jci10506 PubMed PMC

McCarty MF (1999) Endothelial membrane potential regulates production of both nitric oxide and superoxide – a fundamental determinant of vascular health. Med Hypotheses 53:277–289. 10.1054/mehy.1998.0758 PubMed

McNeish AJ, Sandow SL, Neylon CB, Chen MX, Dora KA, Garland CJ (2006) Evidence for involvement of both IKCa and SKCa channels in hyperpolarizing responses of the rat middle cerebral artery. Stroke 37:1277–1282. 10.1161/01.Str.0000217307.71231.43 PubMed

Mederos y Schnitzler M, Storch U, Meibers S, Nurwakagari P, Breit B, Essin K, Gollasch M, Gudermann T (2008) Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. Embo j 27:3092–3103. 10.1038/emboj.2008.233 PubMed PMC

Mendoza SA, Fang J, Gutterman DD, Wilcox DA, Bubolz AH, Li R, Suzuki M, Zhang DX (2010) TRPV4-mediated endothelial Ca2+ influx and vasodilation in response to shear stress. Am J Physiol Heart Circ Physiol 298:H466-476. 10.1152/ajpheart.00854.2009 PubMed PMC

Migkos T, Pourová J, Vopršalová M, Auger C, Schini-Kerth V, Mladěnka P (2020) Biochanin A, the most potent of 16 isoflavones, induces relaxation of the coronary artery through the calcium channel and cGMP-dependent pathway. Planta Med 86:708–716. 10.1055/a-1158-9422 PubMed

Michell BJ, Chen Z, Tiganis T, Stapleton D, Katsis F, Power DA, Sim AT, Kemp BE (2001) Coordinated control of endothelial nitric-oxide synthase phosphorylation by protein kinase C and the cAMP-dependent protein kinase. J Biol Chem 276:17625–17628. 10.1074/jbc.C100122200 PubMed

Mironova GY, Kowalewska PM, El-Lakany M, Tran CHT, Sancho M, Zechariah A, Jackson WF, Welsh DG (2023) The conducted vasomotor response and the principles of electrical communication in resistance arteries. Physiol Rev 104:33–84. 10.1152/physrev.00035.2022 PubMed PMC

Mistry DK, Garland CJ (1998) Nitric oxide (NO)-induced activation of large conductance Ca2+-dependent K+ channels (BK(Ca)) in smooth muscle cells isolated from the rat mesenteric artery. Br J Pharmacol 124:1131–1140. 10.1038/sj.bjp.0701940 PubMed PMC

Mitchell JA, Kirkby NS (2019) Eicosanoids, prostacyclin and cyclooxygenase in the cardiovascular system. Br J Pharmacol 176:1038–1050. 10.1111/bph.14167 PubMed PMC

Mladěnka P, Applová L, Patočka J, Costa VM, Remiao F, Pourová J, Mladěnka A, Karlíčková J, Jahodář L, Vopršalová M, Varner KJ, Štěrba M (2018) Comprehensive review of cardiovascular toxicity of drugs and related agents. Med Res Rev 38:1332–1403. 10.1002/med.21476 PubMed PMC

Montezano AC, Touyz RM (2012) Reactive oxygen species and endothelial function–role of nitric oxide synthase uncoupling and Nox family nicotinamide adenine dinucleotide phosphate oxidases. Basic Clin Pharmacol Toxicol 110:87–94. 10.1111/j.1742-7843.2011.00785.x PubMed

Montfort WR, Wales JA, Weichsel A (2017) Structure and activation of soluble guanylyl cyclase, the nitric oxide sensor. Antioxid Redox Signal 26:107–121. 10.1089/ars.2016.6693 PubMed PMC

Moshkforoush A, Ashenagar B, Harraz OF, Dabertrand F, Longden TA, Nelson MT, Tsoukias NM (2020) The capillary Kir channel as sensor and amplifier of neuronal signals: modeling insights on K(+)-mediated neurovascular communication. Proc Natl Acad Sci U S A 117:16626–16637. 10.1073/pnas.2000151117 PubMed PMC

Muniyappa R, Sowers JR (2013) Role of insulin resistance in endothelial dysfunction. Rev Endocr Metab Disord 14:5–12. 10.1007/s11154-012-9229-1 PubMed PMC

Murthy KS, Zhou H, Grider JR, Makhlouf GM (2003) Inhibition of sustained smooth muscle contraction by PKA and PKG preferentially mediated by phosphorylation of RhoA. Am J Physiol Gastrointest Liver Physiol 284:G1006-1016. 10.1152/ajpgi.00465.2002 PubMed

Najmanová I, Pourová J, Vopršalová M, Pilařová V, Semecký V, Nováková L, Mladěnka P (2016) Flavonoid metabolite 3-(3-hydroxyphenyl)propionic acid formed by human microflora decreases arterial blood pressure in rats. Mol Nutr Food Res 60:981–991. 10.1002/mnfr.201500761 PubMed

Nalli AD, Kumar DP, Al-Shboul O, Mahavadi S, Kuemmerle JF, Grider JR, Murthy KS (2014) Regulation of Gβγi-dependent PLC-β3 activity in smooth muscle: inhibitory phosphorylation of PLC-β3 by PKA and PKG and stimulatory phosphorylation of Gαi-GTPase-activating protein RGS2 by PKG. Cell Biochem Biophys 70:867–880. 10.1007/s12013-014-9992-6 PubMed PMC

Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ, Lederer WJ (1995) Relaxation of arterial smooth muscle by calcium sparks. Science 270:633–637. 10.1126/science.270.5236.633 PubMed

Nilius B, Prenen J, Janssens A, Owsianik G, Wang C, Zhu MX, Voets T (2005) The selectivity filter of the cation channel TRPM4. J Biol Chem 280:22899–22906. 10.1074/jbc.M501686200 PubMed

Nishikawa Y, Stepp DW, Chilian WM (2000) Nitric oxide exerts feedback inhibition on EDHF-induced coronary arteriolar dilation in vivo. Am J Physiol Heart Circ Physiol 279:H459-465. 10.1152/ajpheart.2000.279.2.H459 PubMed

Nystoriak MA, Bhatnagar A (2018) Cardiovascular effects and benefits of exercise. Front Cardiovasc Med 5:135. 10.3389/fcvm.2018.00135 PubMed PMC

Oak MH, Auger C, Belcastro E, Park SH, Lee HH, Schini-Kerth VB (2018) Potential mechanisms underlying cardiovascular protection by polyphenols: role of the endothelium. Free Radic Biol Med 122:161–170. 10.1016/j.freeradbiomed.2018.03.018 PubMed

Oelze M, Knorr M, Kröller-Schön S, Kossmann S, Gottschlich A, Rümmler R, Schuff A, Daub S, Doppler C, Kleinert H, Gori T, Daiber A, Münzel T (2013) Chronic therapy with isosorbide-5-mononitrate causes endothelial dysfunction, oxidative stress, and a marked increase in vascular endothelin-1 expression. Eur Heart J 34:3206–3216. 10.1093/eurheartj/ehs100 PubMed

Okahara K, Kambayashi J, Ohnishi T, Fujiwara Y, Kawasaki T, Monden M (1995) Shear stress induces expression of CNP gene in human endothelial cells. FEBS Lett 373:108–110. 10.1016/0014-5793(95)01027-c PubMed

Olesen SP, Clapham DE, Davies PF (1988) Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature 331:168–170. 10.1038/331168a0 PubMed

Omae T, Nagaoka T, Tanano I, Yoshida A (2013) Adiponectin-induced dilation of isolated porcine retinal arterioles via production of nitric oxide from endothelial cells. Invest Ophthalmol Vis Sci 54:4586–4594. 10.1167/iovs.13-11756 PubMed

Palao E, Slanina T, Muchová L, Šolomek T, Vítek L, Klán P (2016) Transition-metal-free CO-releasing BODIPY derivatives activatable by visible to NIR light as promising bioactive molecules. J Am Chem Soc 138:126–133. 10.1021/jacs.5b10800 PubMed

Parikh J, Kapela A, Tsoukias NM (2015) Stochastic model of endothelial TRPV4 calcium sparklets: effect of bursting and cooperativity on EDH. Biophys J 108:1566–1576. 10.1016/j.bpj.2015.01.034 PubMed PMC

Park S-K, Herrnreiter A, Pfister SL, Gauthier KM, Falck BA, Falck JR, Campbell WB (2018) GPR40 is a low-affinity epoxyeicosatrienoic acid receptor in vascular cells. J Biol Chem 293:10675–10691. 10.1074/jbc.RA117.001297 PubMed PMC

Park WS, Ko JH, Kim N, Son YK, Kang SH, Warda M, Jung ID, Park YM, Han J (2007) Increased inhibition of inward rectifier K+ channels by angiotensin II in small-diameter coronary artery of isoproterenol-induced hypertrophied model. Arterioscler Thromb Vasc Biol 27:1768–1775. 10.1161/atvbaha.107.143339 PubMed

Pearson JT, Shirai M, Sukumaran V, Du CK, Tsuchimochi H, Sonobe T, Waddingham MT, Katare R, Schwenke DO (2019) Ghrelin and vascular protection Vasc Biol 1:H97-h102. 10.1530/vb-19-0024 PubMed PMC

Pemberton CJ, Tokola H, Bagi Z, Koller A, Pöntinen J, Ola A, Vuolteenaho O, Szokodi I, Ruskoaho H (2004) Ghrelin induces vasoconstriction in the rat coronary vasculature without altering cardiac peptide secretion. Am J Physiol Heart Circ Physiol 287:H1522-1529. 10.1152/ajpheart.00193.2004 PubMed

Porta M, Striglia E (2020) Intravitreal anti-VEGF agents and cardiovascular risk. Intern Emerg Med 15:199–210. 10.1007/s11739-019-02253-7 PubMed

Pourová J, Najmanová I, Vopršalová M, Migkos T, Pilařová V, Applová L, Nováková L, Mladěnka P (2018) Two flavonoid metabolites, 3,4-dihydroxyphenylacetic acid and 4-methylcatechol, relax arteries ex vivo and decrease blood pressure in vivo. Vascul Pharmacol 111:36–43. 10.1016/j.vph.2018.08.008 PubMed

Presley T, Vedam K, Velayutham M, Zweier JL, Ilangovan G (2008) Activation of Hsp90-eNOS and increased NO generation attenuate respiration of hypoxia-treated endothelial cells. Am J Physiol Cell Physiol 295:C1281-1291. 10.1152/ajpcell.00550.2007 PubMed PMC

Pucovský V, Gordienko DV, Bolton TB (2002) Effect of nitric oxide donors and noradrenaline on Ca2+ release sites and global intracellular Ca2+ in myocytes from guinea-pig small mesenteric arteries. J Physiol 539:25–39. 10.1113/jphysiol.2001.012978 PubMed PMC

Qiao J, Huang F, Lum H (2003) PKA inhibits RhoA activation: a protection mechanism against endothelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 284:L972-980. 10.1152/ajplung.00429.2002 PubMed

Rafikov R, Fonseca FV, Kumar S, Pardo D, Darragh C, Elms S, Fulton D, Black SM (2011) eNOS activation and NO function: structural motifs responsible for the posttranslational control of endothelial nitric oxide synthase activity. J Endocrinol 210:271–284. 10.1530/joe-11-0083 PubMed PMC

Ray A, Ch. Maharana K, Meenakshi S, Singh S (2023) Endothelial dysfunction and its relation in different disorders: recent update. Health Sciences Review 7:100084. 10.1016/j.hsr.2023.100084

Ringvold HC, Khalil RA (2017) Protein kinase C as regulator of vascular smooth muscle function and potential target in vascular disorders. Adv Pharmacol 78:203–301. 10.1016/bs.apha.2016.06.002 PubMed PMC

Rodrigo GC, Standen NB (2005) ATP-sensitive potassium channels. Curr Pharm Des 11:1915–1940. 10.2174/1381612054021015 PubMed

Rodríguez I, González M (2014) Physiological mechanisms of vascular response induced by shear stress and effect of exercise in systemic and placental circulation. Front Pharmacol 5:209. 10.3389/fphar.2014.00209 PubMed PMC

Rovetti R, Cui X, Garfinkel A, Weiss JN, Qu Z (2010) Spark-induced sparks as a mechanism of intracellular calcium alternans in cardiac myocytes. Circ Res 106:1582–1591. 10.1161/circresaha.109.213975 PubMed PMC

Sacerdoti D, Bolognesi M, Di Pascoli M, Gatta A, McGiff JC, Schwartzman ML, Abraham NG (2006) Rat mesenteric arterial dilator response to 11,12-epoxyeicosatrienoic acid is mediated by activating heme oxygenase. Am J Physiol Heart Circ Physiol 291:H1999-2002. 10.1152/ajpheart.00082.2006 PubMed

Saida K, Van Breemen C (1984) Cyclic AMP modulation of adrenoreceptor-mediated arterial smooth muscle contraction. J Gen Physiol 84:307–318. 10.1085/jgp.84.2.307 PubMed PMC

Saito H, Godo S, Sato S, Ito A, Ikumi Y, Tanaka S, Ida T, Fujii S, Akaike T, Shimokawa H (2018) Important role of endothelial caveolin-1 in the protective role of endothelium-dependent hyperpolarization against nitric oxide-mediated nitrative stress in microcirculation in mice. J Cardiovasc Pharmacol 71:113–126. 10.1097/fjc.0000000000000552 PubMed

Samelson BK, Gore BB, Whiting JL, Nygren PJ, Purkey AM, Colledge M, Langeberg LK, Dell’Acqua ML, Zweifel LS, Scott JD (2015) A-kinase anchoring protein 79/150 recruits protein kinase C to phosphorylate roundabout receptors. J Biol Chem 290:14107–14119. 10.1074/jbc.M115.637470 PubMed PMC

Sandow SL, Haddock RE, Hill CE, Chadha PS, Kerr PM, Welsh DG, Plane F (2009) What’s where and why at a vascular myoendothelial microdomain signalling complex. Clin Exp Pharmacol Physiol 36:67–76. 10.1111/j.1440-1681.2008.05076.x PubMed

Sandow SL, Hill CE (2000) Incidence of myoendothelial gap junctions in the proximal and distal mesenteric arteries of the rat is suggestive of a role in endothelium-derived hyperpolarizing factor-mediated responses. Circ Res 86:341–346. 10.1161/01.res.86.3.341 PubMed

Sandow SL, Neylon CB, Chen MX, Garland CJ (2006) Spatial separation of endothelial small- and intermediate-conductance calcium-activated potassium channels (K(Ca)) and connexins: possible relationship to vasodilator function? J Anat 209:689–698. 10.1111/j.1469-7580.2006.00647.x PubMed PMC

Sancho M, Fletcher J, Welsh DG (2022) Inward rectifier potassium channels: membrane lipid-dependent mechanosensitive gates in brain vascular cells. Front Cardiovasc Med 9:869481. 10.3389/fcvm.2022.869481 PubMed PMC

Sauzeau V, Rolli-Derkinderen M, Marionneau C, Loirand G, Pacaud P (2003) RhoA expression is controlled by nitric oxide through cGMP-dependent protein kinase activation. J Biol Chem 278:9472–9480. 10.1074/jbc.M212776200 PubMed

Seki T, Goto K, Kiyohara K, Kansui Y, Murakami N, Haga Y, Ohtsubo T, Matsumura K, Kitazono T (2017) Downregulation of endothelial transient receptor potential vanilloid type 4 channel and small-conductance of Ca2+-activated K+ channels underpins impaired endothelium-dependent hyperpolarization in hypertension. Hypertension 69:143–153. 10.1161/hypertensionaha.116.07110 PubMed

Sellitti DF, Koles N, Mendonça MC (2011) Regulation of C-type natriuretic peptide expression. Peptides 32:1964–1971. 10.1016/j.peptides.2011.07.013 PubMed

Shimizu T, Janssens A, Voets T, Nilius B (2009) Regulation of the murine TRPP3 channel by voltage, pH, and changes in cell volume. Pflugers Arch 457:795–807. 10.1007/s00424-008-0558-6 PubMed

Shimokawa H (2010) Hydrogen peroxide as an endothelium-derived hyperpolarizing factor. Pflugers Arch 459:915–922. 10.1007/s00424-010-0790-8 PubMed

Shimokawa H, Godo S (2020) Nitric oxide and endothelium-dependent hyperpolarization mediated by hydrogen peroxide in health and disease. Basic Clin Pharmacol Toxicol 127:92–101. 10.1111/bcpt.13377 PubMed

Schleifenbaum J, Kassmann M, Szijártó IA, Hercule HC, Tano JY, Weinert S, Heidenreich M, Pathan AR, Anistan YM, Alenina N, Rusch NJ, Bader M, Jentsch TJ, Gollasch M (2014) Stretch-activation of angiotensin II type 1a receptors contributes to the myogenic response of mouse mesenteric and renal arteries. Circ Res 115:263–272. 10.1161/circresaha.115.302882 PubMed

Schlossmann J, Desch M (2011) IRAG and novel PKG targeting in the cardiovascular system. Am J Physiol Heart Circ Physiol 301:H672-682. 10.1152/ajpheart.00198.2011 PubMed

Schmidt K, de Wit C (2020) Endothelium-derived hyperpolarizing factor and myoendothelial coupling: the in vivo perspective. Front Physiol 11:602930. 10.3389/fphys.2020.602930 PubMed PMC

Siegl D, Koeppen M, Wölfle SE, Pohl U, de Wit C (2005) Myoendothelial coupling is not prominent in arterioles within the mouse cremaster microcirculation in vivo. Circ Res 97:781–788. 10.1161/01.RES.0000186193.22438.6c PubMed

Smith JB (1981) Prostaglandins and platelet aggregation. Acta Med Scand Suppl 651:91–99. 10.1111/j.0954-6820.1981.tb03638.x PubMed

Sobrino A, Oviedo PJ, Novella S, Laguna-Fernandez A, Bueno C, García-Pérez MA, Tarín JJ, Cano A, Hermenegildo C (2010) Estradiol selectively stimulates endothelial prostacyclin production through estrogen receptor-{alpha}. J Mol Endocrinol 44:237–246. 10.1677/jme-09-0112 PubMed

Sonkusare SK, Dalsgaard T, Bonev AD, Hill-Eubanks DC, Kotlikoff MI, Scott JD, Santana LF, Nelson MT (2014) AKAP150-dependent cooperative TRPV4 channel gating is central to endothelium-dependent vasodilation and is disrupted in hypertension. Sci Signal 7:ra66. 10.1126/scisignal.2005052 PubMed PMC

Sowa G, Pypaert M, Sessa WC (2001) Distinction between signaling mechanisms in lipid rafts vs. caveolae. Proc Natl Acad Sci U S A 98:14072–14077. 10.1073/pnas.241409998 PubMed PMC

Sun J, Xin C, Eu JP, Stamler JS, Meissner G (2001) Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO. Proc Natl Acad Sci U S A 98:11158–11162. 10.1073/pnas.201289098 PubMed PMC

Suzuki Y (2025) Ca2+ microdomains in vascular smooth muscle cells: roles in vascular tone regulation and hypertension. J Pharmacol Sci 158:59–67. 10.1016/j.jphs.2025.03.008 PubMed

Syed AU, Koide M, Brayden JE, Wellman GC (2019) Tonic regulation of middle meningeal artery diameter by ATP-sensitive potassium channels. J Cereb Blood Flow Metab 39:670–679. 10.1177/0271678x17749392 PubMed PMC

Takahashi S, Lin H, Geshi N, Mori Y, Kawarabayashi Y, Takami N, Mori MX, Honda A, Inoue R (2008) Nitric oxide-cGMP-protein kinase G pathway negatively regulates vascular transient receptor potential channel TRPC6. J Physiol 586:4209–4223. 10.1113/jphysiol.2008.156083 PubMed PMC

Takai J, Santu A, Zheng H, Koh SD, Ohta M, Filimban LM, Lemaître V, Teraoka R, Jo H, Miura H (2013) Laminar shear stress upregulates endothelial Ca PubMed PMC

Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B (2020) Mammalian transient receptor potential TRPA1 channels: from structure to disease. Physiol Rev 100:725–803. 10.1152/physrev.00005.2019 PubMed

Tang EH, Vanhoutte PM (2008) Gene expression changes of prostanoid synthases in endothelial cells and prostanoid receptors in vascular smooth muscle cells caused by aging and hypertension. Physiol Genomics 32:409–418. 10.1152/physiolgenomics.00136.2007 PubMed

Tang KM, Wang GR, Lu P, Karas RH, Aronovitz M, Heximer SP, Kaltenbronn KM, Blumer KJ, Siderovski DP, Zhu Y, Mendelsohn ME (2003) Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure. Nat Med 9:1506–1512. 10.1038/nm958 PubMed

Tao J, Yang Z, Wang JM, Tu C, Pan SR (2006) Effects of fluid shear stress on eNOS mRNA expression and NO production in human endothelial progenitor cells. Cardiology 106:82–88. 10.1159/000092636 PubMed

Thakore P, Earley S (2019) Transient receptor potential channels and endothelial cell calcium signaling. Compr Physiol 9:1249–1277. 10.1002/cphy.c180034 PubMed PMC

Thomas DD, Liu X, Kantrow SP, Lancaster JR Jr (2001) The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2. Proc Natl Acad Sci U S A 98:355–360. 10.1073/pnas.98.1.355 PubMed PMC

Thomas GR, DiFabio JM, Gori T, Parker JD (2007) Once daily therapy with isosorbide-5-mononitrate causes endothelial dysfunction in humans: evidence of a free-radical-mediated mechanism. J Am Coll Cardiol 49:1289–1295. 10.1016/j.jacc.2006.10.074 PubMed

Torregrosa G, Burguete MC, Pérez-Asensio FJ, Salom JB, Gil JV, Alborch E (2003) Pharmacological profile of phytoestrogens in cerebral vessels: in vitro study with rabbit basilar artery. Eur J Pharmacol 482:227–234. 10.1016/j.ejphar.2003.09.026 PubMed

Tran CH, Taylor MS, Plane F, Nagaraja S, Tsoukias NM, Solodushko V, Vigmond EJ, Furstenhaupt T, Brigdan M, Welsh DG (2012) Endothelial Ca2+ wavelets and the induction of myoendothelial feedback. Am J Physiol Cell Physiol 302:C1226-1242. 10.1152/ajpcell.00418.2011 PubMed PMC

Triggle CR, Samuel SM, Ravishankar S, Marei I, Arunachalam G, Ding H (2012) The endothelium: influencing vascular smooth muscle in many ways. Can J Physiol Pharmacol 90:713–738. 10.1139/y2012-073 PubMed

Tsutsui M, Tanimoto A, Tamura M, Mukae H, Yanagihara N, Shimokawa H, Otsuji Y (2015) Significance of nitric oxide synthases: lessons from triple nitric oxide synthases null mice. J Pharmacol Sci 127:42–52. 10.1016/j.jphs.2014.10.002 PubMed

Tykocki NR, Boerman EM, Jackson WF (2017) Smooth muscle ion channels and regulation of vascular tone in resistance arteries and arterioles. Compr Physiol 7:485–581. 10.1002/cphy.c160011 PubMed PMC

Vaandrager AB, Hogema BM, de Jonge HR (2005) Molecular properties and biological functions of cGMP-dependent protein kinase II. Front Biosci 10:2150–2164. 10.2741/1687 PubMed

van Splunder H, Villacampa P, Martínez-Romero A, Graupera M (2024) Pericytes in the disease spotlight. Trends Cell Biol 34:58–71. 10.1016/j.tcb.2023.06.001 PubMed PMC

Vanhoutte PM (1987) Serotonin and the vascular wall. Int J Cardiol 14:189–203. 10.1016/0167-5273(87)90008-8 PubMed

Vanhoutte PM (1991) Platelet-derived serotonin, the endothelium, and cardiovascular disease. J Cardiovasc Pharmacol 17(Suppl 5):S6-12 PubMed

Vanhoutte PM, Shimokawa H, Feletou M, Tang EH (2017) Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf) 219:22–96. 10.1111/apha.12646 PubMed

VanSchouwen B, Selvaratnam R, Giri R, Lorenz R, Herberg FW, Kim C, Melacini G (2015) Mechanism of cAMP partial agonism in protein kinase G (PKG). J Biol Chem 290:28631–28641. 10.1074/jbc.M115.685305 PubMed PMC

Vennekens R, Hoenderop JG, Prenen J, Stuiver M, Willems PH, Droogmans G, Nilius B, Bindels RJ (2000) Permeation and gating properties of the novel epithelial Ca(2+) channel. J Biol Chem 275:3963–3969. 10.1074/jbc.275.6.3963 PubMed

Wang H, Wang AX, Aylor K, Barrett EJ (2013) Nitric oxide directly promotes vascular endothelial insulin transport. Diabetes 62:4030–4042. 10.2337/db13-0627 PubMed PMC

Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B (2003) Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424:434–438. 10.1038/nature01807 PubMed

Westcott EB, Jackson WF (2011) Heterogeneous function of ryanodine receptors, but not IP3 receptors, in hamster cremaster muscle feed arteries and arterioles. Am J Physiol Heart Circ Physiol 300:H1616-1630. 10.1152/ajpheart.00728.2010 PubMed PMC

Weston AH, Porter EL, Harno E, Edwards G (2010) Impairment of endothelial SK(Ca) channels and of downstream hyperpolarizing pathways in mesenteric arteries from spontaneously hypertensive rats. Br J Pharmacol 160:836–843. 10.1111/j.1476-5381.2010.00657.x PubMed PMC

Widmann MD, Weintraub NL, Fudge JL, Brooks LA, Dellsperger KC (1998) Cytochrome P-450 pathway in acetylcholine-induced canine coronary microvascular vasodilation in vivo. Am J Physiol 274:H283-289. 10.1152/ajpheart.1998.274.1.H283 PubMed

Wilson C, Lee MD, McCarron JG (2016) Acetylcholine released by endothelial cells facilitates flow-mediated dilatation. J Physiol 594:7267–7307. 10.1113/jp272927 PubMed PMC

Wong CM, Yao X, Au CL, Tsang SY, Fung KP, Laher I, Vanhoutte PM, Huang Y (2006) Raloxifene prevents endothelial dysfunction in aging ovariectomized female rats. Vascul Pharmacol 44:290–298. 10.1016/j.vph.2005.12.005 PubMed

Woodman CR, Price EM (1985) Laughlin MH (2005) Shear stress induces eNOS mRNA expression and improves endothelium-dependent dilation in senescent soleus muscle feed arteries. J Appl Physiol 98:940–946. 10.1152/japplphysiol.00408.2004 PubMed

Wu D, Hu Q, Zhu D (2018) An update on hydrogen sulfide and nitric oxide interactions in the cardiovascular system. Oxid Med Cell Longev 2018:4579140. 10.1155/2018/4579140 PubMed PMC

Wu Q, Finley SD (2020) Mathematical model predicts effective strategies to inhibit VEGF-eNOS signaling. J Clin Med 9. 10.3390/jcm9051255 PubMed PMC

Wu Y, Fu J, Huang Y, Duan R, Zhang W, Wang C, Wang S, Hu X, Zhao H, Wang L, Liu J, Gao G, Yuan P (2023) Biology and function of pericytes in the vascular microcirculation. Animal Model Exp Med 6:337–345. 10.1002/ame2.12334 PubMed PMC

Yada T, Shimokawa H, Hiramatsu O, Haruna Y, Morita Y, Kashihara N, Shinozaki Y, Mori H, Goto M, Ogasawara Y, Kajiya F (2006) Cardioprotective role of endogenous hydrogen peroxide during ischemia-reperfusion injury in canine coronary microcirculation in vivo. Am J Physiol Heart Circ Physiol 291:H1138-1146. 10.1152/ajpheart.00187.2006 PubMed

Yang G, Wang R (2015) H2S and blood vessels: an overview. Handb Exp Pharmacol 230:85–110. 10.1007/978-3-319-18144-8_4 PubMed

Yang JX, Lin Y (2005) The action of PKA on smooth muscle myosin phosphorylation. Life Sci 77:2669–2675. 10.1016/j.lfs.2005.04.026 PubMed

Yang T, Du Y (2012) Distinct roles of central and peripheral prostaglandin E2 and EP subtypes in blood pressure regulation. Am J Hypertens 25:1042–1049. 10.1038/ajh.2012.67 PubMed PMC

Yao L, Romero MJ, Toque HA, Yang G, Caldwell RB, Caldwell RW (2010) The role of RhoA/Rho kinase pathway in endothelial dysfunction. J Cardiovasc Dis Res 1:165–170. 10.4103/0975-3583.74258 PubMed PMC

Ye D, Zhou W, Lee HC (2005) Activation of rat mesenteric arterial KATP channels by 11,12-epoxyeicosatrienoic acid. Am J Physiol Heart Circ Physiol 288:H358-364. 10.1152/ajpheart.00423.2004 PubMed

Ye D, Zhou W, Lu T, Jagadeesh SG, Falck JR, Lee HC (2006) Mechanism of rat mesenteric arterial KATP channel activation by 14,15-epoxyeicosatrienoic acid. Am J Physiol Heart Circ Physiol 290:H1326-1336. 10.1152/ajpheart.00318.2005 PubMed

Yu X, Li F, Klussmann E, Stallone JN, Han G (2014) G protein-coupled estrogen receptor 1 mediates relaxation of coronary arteries via cAMP/PKA-dependent activation of MLCP. Am J Physiol Endocrinol Metab 307:E398-407. 10.1152/ajpendo.00534.2013 PubMed

Zakeri R, Levine JA, Koepp GA, Borlaug BA, Chirinos JA, LeWinter M, VanBuren P, Dávila-Román VG, de Las FL, Khazanie P, Hernandez A, Anstrom K, Redfield MM (2015) Nitrate’s effect on activity tolerance in heart failure with preserved ejection fraction trial: rationale and design. Circ Heart Fail 8:221–228. 10.1161/circheartfailure.114.001598 PubMed PMC

Zhang DX, Borbouse L, Gebremedhin D, Mendoza SA, Zinkevich NS, Li R, Gutterman DD (2012) H2O2-induced dilation in human coronary arterioles: role of protein kinase G dimerization and large-conductance Ca2+-activated K+ channel activation. Circ Res 110:471–480. 10.1161/circresaha.111.258871 PubMed PMC

Zhao G, Neeb ZP, Leo MD, Pachuau J, Adebiyi A, Ouyang K, Chen J, Jaggar JH (2010) Type 1 IP3 receptors activate BKCa channels via local molecular coupling in arterial smooth muscle cells. J Gen Physiol 136:283–291. 10.1085/jgp.201010453 PubMed PMC

Zhao Y, Pacheco A, Xian M (2015) Medicinal chemistry: insights into the development of novel H2S donors. Handb Exp Pharmacol 230:365–388. 10.1007/978-3-319-18144-8_18 PubMed

Zheng YZ, Boscher C, Inder KL, Fairbank M, Loo D, Hill MM, Nabi IR, Foster LJ (2011) Differential impact of caveolae and caveolin-1 scaffolds on the membrane raft proteome. Mol Cell Proteomics 10(M110):007146. 10.1074/mcp.M110.007146 PubMed PMC

ZhuGe R, Sims SM, Tuft RA, Fogarty KE, Walsh JV Jr (1998) Ca2+ sparks activate K+ and Cl- channels, resulting in spontaneous transient currents in guinea-pig tracheal myocytes. J Physiol 513(Pt 3):711–718. 10.1111/j.1469-7793.1998.711ba.x PubMed PMC

Zoccali C, Curatola G, Panuccio V, Tripepi R, Pizzini P, Versace M, Bolignano D, Cutrupi S, Politi R, Tripepi G, Ghiadoni L, Thadhani R, Mallamaci F (2014) Paricalcitol and endothelial function in chronic kidney disease trial. Hypertension 64:1005–1011. 10.1161/hypertensionaha.114.03748 PubMed

Zou Q, Leung SW, Vanhoutte PM (2015) Transient receptor potential channel opening releases endogenous acetylcholine, which contributes to endothelium-dependent relaxation induced by mild hypothermia in spontaneously hypertensive rat but not Wistar-Kyoto rat arteries. J Pharmacol Exp Ther 354:121–130. 10.1124/jpet.115.223693 PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...