Cell Type-Specific Expression of Purinergic P2X Receptors in the Hypothalamus
Language English Country Switzerland Media electronic
Document type Journal Article, Review
PubMed
40507818
PubMed Central
PMC12154960
DOI
10.3390/ijms26115007
PII: ijms26115007
Knihovny.cz E-resources
- Keywords
- P2X, arcuate nucleus (ARC), extracellular ATP, hypothalamus, paraventricular nucleus (PVN), suprachiasmatic nucleus (SCN), supraoptic nucleus (SON),
- MeSH
- Adenosine Triphosphate metabolism MeSH
- Astrocytes metabolism MeSH
- Hypothalamus * metabolism cytology MeSH
- Humans MeSH
- Neurons metabolism MeSH
- Receptors, Purinergic P2X * metabolism genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Names of Substances
- Adenosine Triphosphate MeSH
- Receptors, Purinergic P2X * MeSH
Purinergic P2X receptors (P2X) are ATP-gated ion channels that are broadly expressed in the brain, particularly in the hypothalamus. As ionic channels with high permeability to calcium, P2X play an important and active role in neural functions. The hypothalamus contains a number of small nuclei with many molecularly defined types of peptidergic neurons that affect a wide range of physiological functions, including water balance, blood pressure, metabolism, food intake, circadian rhythm, childbirth and breastfeeding, growth, stress, body temperature, and multiple behaviors. P2X are expressed in hypothalamic neurons, astrocytes, tanycytes, and microvessels. This review focuses on cell-type specific expression of P2X in the most important hypothalamic nuclei, such as the supraoptic nucleus (SON), paraventricular nucleus (PVN), suprachiasmatic nucleus (SCN), anteroventral periventricular nucleus (AVPV), anterior hypothalamic nucleus (AHN), arcuate nucleus (ARC), ventromedial hypothalamic nucleus (VMH), dorsomedial hypothalamic nucleus (DMH), tuberomammillary nucleus (TMN), and lateral hypothalamic area (LHA).> The review also notes the possible role of P2X and extracellular ATP in specific hypothalamic functions. The literature summarized here shows that purinergic signaling is involved in the control of the hypothalamic-pituitary endocrine system, the hypothalamic-neurohypophysial system, the circadian systems and nonendocrine hypothalamic functions.
1st Faculty of Medicine Charles University CZ 121 08 Prague Czech Republic
Institute of Physiology Czech Academy of Sciences CZ 142 20 Prague Czech Republic
See more in PubMed
Russell J.A. Fifty Years of Advances in Neuroendocrinology. Brain Neurosci. Adv. 2018;2:2398212818812014. doi: 10.1177/2398212818812014. PubMed DOI PMC
Sanchez Jimenez J.G., De Jesus O. Hypothalamic Dysfunction. StatPearls; Treasure Island, FL, USA: 2024.
Steuernagel L., Lam B.Y.H., Klemm P., Dowsett G.K.C., Bauder C.A., Tadross J.A., Hitschfeld T.S., Del Rio Martin A., Chen W., de Solis A.J., et al. HypoMap-a unified single-cell gene expression atlas of the murine hypothalamus. Nat. Metab. 2022;4:1402–1419. doi: 10.1038/s42255-022-00657-y. PubMed DOI PMC
Collo G., North R.A., Kawashima E., Merlo-Pich E., Neidhart S., Surprenant A., Buell G. Cloning OF P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels. J. Neurosci. 1996;16:2495–2507. doi: 10.1523/JNEUROSCI.16-08-02495.1996. PubMed DOI PMC
Tasker J.G., Oliet S.H., Bains J.S., Brown C.H., Stern J.E. Glial regulation of neuronal function: From synapse to systems physiology. J. Neuroendocrinol. 2012;24:566–576. doi: 10.1111/j.1365-2826.2011.02259.x. PubMed DOI PMC
Svobodova I., Bhattaracharya A., Ivetic M., Bendova Z., Zemkova H. Circadian ATP Release in Organotypic Cultures of the Rat Suprachiasmatic Nucleus Is Dependent on P2X7 and P2Y Receptors. Front. Pharmacol. 2018;9:192. doi: 10.3389/fphar.2018.00192. PubMed DOI PMC
Collo G., Neidhart S., Kawashima E., Kosco-Vilbois M., North R.A., Buell G. Tissue distribution of the P2X7 receptor. Neuropharmacology. 1997;36:1277–1283. doi: 10.1016/S0028-3908(97)00140-8. PubMed DOI
Genzen J.R., Platel J.C., Rubio M.E., Bordey A. Ependymal cells along the lateral ventricle express functional P2X(7) receptors. Purinergic Signal. 2009;5:299–307. doi: 10.1007/s11302-009-9143-5. PubMed DOI PMC
Loesch A. On P2X receptors in the brain: Microvessels. Dedicated to the memory of the late Professor Geoffrey Burnstock (1929–2020) Cell Tissue Res. 2021;384:577–588. doi: 10.1007/s00441-021-03411-0. PubMed DOI
Caruso V., Zuccarini M., Di Iorio P., Muhammad I., Ronci M. Metabolic Changes Induced by Purinergic Signaling: Role in Food Intake. Front. Pharmacol. 2021;12:655989. doi: 10.3389/fphar.2021.655989. PubMed DOI PMC
Gao Z., Guan J., Yin S., Liu F. The role of ATP in sleep-wake regulation: In adenosine-dependent and -independent manner. Sleep. Med. 2024;119:147–154. doi: 10.1016/j.sleep.2024.04.031. PubMed DOI
Lemos J.R., Custer E.E., Ortiz-Miranda S. Purinergic receptor types in the hypothalamic-neurohypophysial system. J. Neuroendocrinol. 2018;30:e12588. doi: 10.1111/jne.12588. PubMed DOI PMC
Zemkova H., Balik A., Jindrichova M., Vavra V. Molecular structure of purinergic P2X receptors and their expression in the hypothalamus and pituitary. Physiol. Res. 2008;57((Suppl. 3)):S23–S38. doi: 10.33549/physiolres.931599. PubMed DOI
Stojilkovic S.S. Purinergic regulation of hypothalamopituitary functions. Trends Endocrinol. Metab. 2009;20:460–468. doi: 10.1016/j.tem.2009.05.005. PubMed DOI PMC
Bjelobaba I., Janjic M.M., Stojilkovic S.S. Purinergic signaling pathways in endocrine system. Auton. Neurosci. 2015;191:102–116. doi: 10.1016/j.autneu.2015.04.010. PubMed DOI PMC
Stojilkovic S.S., Zemkova H. P2X receptor channels in endocrine glands. Wiley Interdiscip. Rev. Membr. Transp. Signal. 2013;2:173–180. doi: 10.1002/wmts.89. PubMed DOI PMC
Burnstock G. Purinergic signalling in endocrine organs. Purinergic Signal. 2014;10:189–231. PubMed PMC
Ali A.A.H., Avakian G.A., Gall C.V. The Role of Purinergic Receptors in the Circadian System. Int. J. Mol. Sci. 2020;21:3423. doi: 10.3390/ijms21103423. PubMed DOI PMC
Wang X., Dong Y.T., Hu X.M., Zhang J.Z., Shi N.R., Zuo Y.Q., Wang X. The circadian regulation of extracellular ATP. Purinergic Signal. 2023;19:283–295. doi: 10.1007/s11302-022-09881-3. PubMed DOI PMC
Chen Y.H., Lin S., Jin S.Y., Gao T.M. Extracellular ATP Is a Homeostatic Messenger That Mediates Cell-Cell Communication in Physiological Processes and Psychiatric Diseases. Biol. Psychiatry. 2024;97:41–53. doi: 10.1016/j.biopsych.2024.04.013. PubMed DOI
Moller M., Busch J.R., Jacobsen C., Lundemose S.B., Lynnerup N., Rath M.F., Banner J. The accessory magnocellular neurosecretory system of the rostral human hypothalamus. Cell Tissue Res. 2018;373:487–498. doi: 10.1007/s00441-018-2818-x. PubMed DOI
Voisin D.L., Herbison A.E., Poulain D.A. Central inhibitory effects of muscimol and bicuculline on the milk ejection reflex in the anaesthetized rat. Pt 1J. Physiol. 1995;483:211–224. doi: 10.1113/jphysiol.1995.sp020579. PubMed DOI PMC
Moos F.C. GABA-induced facilitation of the periodic bursting activity of oxytocin neurones in suckled rats. Pt 1J. Physiol. 1995;488:103–114. doi: 10.1113/jphysiol.1995.sp020949. PubMed DOI PMC
Brussaard A.B., Devay P., Leyting-Vermeulen J.L., Kits K.S. Changes in properties and neurosteroid regulation of GABAergic synapses in the supraoptic nucleus during the mammalian female reproductive cycle. Pt 2J. Physiol. 1999;516:513–524. doi: 10.1111/j.1469-7793.1999.0513v.x. PubMed DOI PMC
Jourdain P., Israel J.M., Dupouy B., Oliet S.H., Allard M., Vitiello S., Theodosis D.T., Poulain D.A. Evidence for a hypothalamic oxytocin-sensitive pattern-generating network governing oxytocin neurons in vitro. J. Neurosci. 1998;18:6641–6649. doi: 10.1523/JNEUROSCI.18-17-06641.1998. PubMed DOI PMC
Oliet S.H., Bourque C.W. Mechanosensitive channels transduce osmosensitivity in supraoptic neurons. Nature. 1993;364:341–343. doi: 10.1038/364341a0. PubMed DOI
Israel J.M., Poulain D.A., Oliet S.H. Glutamatergic inputs contribute to phasic activity in vasopressin neurons. J. Neurosci. 2010;30:1221–1232. doi: 10.1523/JNEUROSCI.2948-09.2010. PubMed DOI PMC
Choe K.Y., Han S.Y., Gaub P., Shell B., Voisin D.L., Knapp B.A., Barker P.A., Brown C.H., Cunningham J.T., Bourque C.W. High salt intake increases blood pressure via BDNF-mediated downregulation of KCC2 and impaired baroreflex inhibition of vasopressin neurons. Neuron. 2015;85:549–560. doi: 10.1016/j.neuron.2014.12.048. PubMed DOI PMC
Pow D.V., Morris J.F. Dendrites of hypothalamic magnocellular neurons release neurohypophysial peptides by exocytosis. Neuroscience. 1989;32:435–439. doi: 10.1016/0306-4522(89)90091-2. PubMed DOI
Sabatier N., Caquineau C., Dayanithi G., Bull P., Douglas A.J., Guan X.M., Jiang M., Van der Ploeg L., Leng G. Alpha-melanocyte-stimulating hormone stimulates oxytocin release from the dendrites of hypothalamic neurons while inhibiting oxytocin release from their terminals in the neurohypophysis. J. Neurosci. 2003;23:10351–10358. doi: 10.1523/JNEUROSCI.23-32-10351.2003. PubMed DOI PMC
Taylor J.H., Intorre A.A., French J.A. Vasopressin and Oxytocin Reduce Food Sharing Behavior in Male, but Not Female Marmosets in Family Groups. Front. Endocrinol. 2017;8:181. doi: 10.3389/fendo.2017.00181. PubMed DOI PMC
Iovino M., Messana T., Tortora A., Giusti C., Lisco G., Giagulli V.A., Guastamacchia E., De Pergola G., Triggiani V. Oxytocin Signaling Pathway: From Cell Biology to Clinical Implications. Endocr. Metab. Immune Disord. Drug Targets. 2021;21:91–110. PubMed
Martucci L.L., Launay J.M., Kawakami N., Sicard C., Desvignes N., Dakouane-Giudicelli M., Spix B., Tetu M., Gilmaire F.O., Paulcan S., et al. Endolysosomal TPCs regulate social behavior by controlling oxytocin secretion. Proc. Natl. Acad. Sci. USA. 2023;120:e2213682120. doi: 10.1073/pnas.2213682120. PubMed DOI PMC
Hu H., Zarate C.A., Jr., Verbalis J. Arginine vasopressin in mood disorders: A potential biomarker of disease pathology and a target for pharmacologic intervention. Psychiatry Clin. Neurosci. 2024;78:495–506. doi: 10.1111/pcn.13703. PubMed DOI PMC
Ludwig M. Dendritic release of vasopressin and oxytocin. J. Neuroendocrinol. 1998;10:881–895. doi: 10.1046/j.1365-2826.1998.00279.x. PubMed DOI
Leng G., Ludwig M. Neurotransmitters and peptides: Whispered secrets and public announcements. J. Physiol. 2008;586:5625–5632. doi: 10.1113/jphysiol.2008.159103. PubMed DOI PMC
Kombian S.B., Hirasawa M., Mouginot D., Pittman Q.J. Modulation of synaptic transmission by oxytocin and vasopressin in the supraoptic nucleus. Prog. Brain Res. 2002;139:235–246. PubMed
Kombian S.B., Hirasawa M., Mouginot D., Chen X., Pittman Q.J. Short-term potentiation of miniature excitatory synaptic currents causes excitation of supraoptic neurons. J. Neurophysiol. 2000;83:2542–2553. doi: 10.1152/jn.2000.83.5.2542. PubMed DOI
Brussaard A.B., Kits K.S. Changes in GABAA receptor-mediated synaptic transmission in oxytocin neurons during female reproduction: Plasticity in a neuroendocrine context. Ann. N. Y. Acad. Sci. 1999;868:677–680. doi: 10.1111/j.1749-6632.1999.tb11344.x. PubMed DOI
Li C., Tripathi P.K., Armstrong W.E. Differences in spike train variability in rat vasopressin and oxytocin neurons and their relationship to synaptic activity. Pt 1J. Physiol. 2007;581:221–240. doi: 10.1113/jphysiol.2006.123810. PubMed DOI PMC
Sladek C.D., Kapoor J.R. Neurotransmitter/neuropeptide interactions in the regulation of neurohypophyseal hormone release. Exp. Neurol. 2001;171:200–209. doi: 10.1006/exnr.2001.7779. PubMed DOI
Armstrong W.E. The neurophysiology of neurosecretory cells. Pt 3J. Physiol. 2007;585:645–647. doi: 10.1113/jphysiol.2007.145755. PubMed DOI PMC
Leng G., Brown C.H., Russell J.A. Physiological pathways regulating the activity of magnocellular neurosecretory cells. Progress. Neurobiol. 1999;57:625–655. doi: 10.1016/S0301-0082(98)00072-0. PubMed DOI
Hu B., Bourque C.W. Functional N-Methyl-D-Aspartate and Non-N-Methyl-D-Aspartate Receptors are Expressed by Rat Supraoptic Neurosecretory Cells in vitro. J. Neuroendocrinol. 1991;3:509–514. doi: 10.1111/j.1365-2826.1991.tb00311.x. PubMed DOI
Shibuya I., Kabashima N., Ibrahim N., Setiadji S.V., Ueta Y., Yamashita H. Pre- and postsynaptic modulation of the electrical activity of rat supraoptic neurones. Exp. Physiol. 2000;85:145S–151S. doi: 10.1111/j.1469-445X.2000.tb00018.x. PubMed DOI
Wuarin J.P., Dudek F.E. Patch-clamp analysis of spontaneous synaptic currents in supraoptic neuroendocrine cells of the rat hypothalamus. J. Neurosci. 1993;13:2323–2331. doi: 10.1523/JNEUROSCI.13-06-02323.1993. PubMed DOI PMC
Decavel C., Curras M.C. Increased expression of the N-methyl-D-aspartate receptor subunit, NR1, in immunohistochemically identified magnocellular hypothalamic neurons during dehydration. Neuroscience. 1997;78:191–202. doi: 10.1016/S0306-4522(96)00544-1. PubMed DOI
Boudaba C., Di S., Tasker J.G. Presynaptic noradrenergic regulation of glutamate inputs to hypothalamic magnocellular neurones. J. Neuroendocrinol. 2003;15:803–810. doi: 10.1046/j.1365-2826.2003.01063.x. PubMed DOI
Iremonger K.J., Benediktsson A.M., Bains J.S. Glutamatergic synaptic transmission in neuroendocrine cells: Basic principles and mechanisms of plasticity. Front. Neuroendocrinol. 2010;31:296–306. doi: 10.1016/j.yfrne.2010.03.002. PubMed DOI
Vilhena-Franco T., Valentim-Lima E., Reis L.C., Elias L.L.K., Antunes-Rodrigues J., Mecawi A.S. Role of AMPA and NMDA receptors on vasopressin and oxytocin secretion induced by hypertonic extracellular volume expansion. J. Neuroendocrinol. 2018;30:e12633. doi: 10.1111/jne.12633. PubMed DOI
Brown C.H. Magnocellular Neurons and Posterior Pituitary Function. Compr. Physiol. 2016;6:1701–1741. doi: 10.1002/j.2040-4603.2016.tb00727.x. PubMed DOI
Ferguson A.V., Latchford K.J., Samson W.K. The paraventricular nucleus of the hypothalamus-a potential target for integrative treatment of autonomic dysfunction. Expert. Opin. Ther. Targets. 2008;12:717–727. doi: 10.1517/14728222.12.6.717. PubMed DOI PMC
Rasiah N.P., Loewen S.P., Bains J.S. Windows into stress: A glimpse at emerging roles for CRH(PVN) neurons. Physiol. Rev. 2023;103:1667–1691. doi: 10.1152/physrev.00056.2021. PubMed DOI
Sawchenko P.E., Brown E.R., Chan R.K., Ericsson A., Li H.Y., Roland B.L., Kovacs K.J. The paraventricular nucleus of the hypothalamus and the functional neuroanatomy of visceromotor responses to stress. Prog. Brain Res. 1996;107:201–222. PubMed
Simmons D.M., Swanson L.W. Comparison of the spatial distribution of seven types of neuroendocrine neurons in the rat paraventricular nucleus: Toward a global 3D model. J. Comp. Neurol. 2009;516:423–441. doi: 10.1002/cne.22126. PubMed DOI
Yang Z., Coote J.H. Influence of the hypothalamic paraventricular nucleus on cardiovascular neurones in the rostral ventrolateral medulla of the rat. J. Physiol. 1998;513:521–530. doi: 10.1111/j.1469-7793.1998.521bb.x. PubMed DOI PMC
Shafton A.D., Ryan A., Badoer E. Neurons in the hypothalamic paraventricular nucleus send collaterals to the spinal cord and to the rostral ventrolateral medulla in the rat. Brain Res. 1998;801:239–243. doi: 10.1016/S0006-8993(98)00587-3. PubMed DOI
Sanders J., Nemeroff C. The CRF System as a Therapeutic Target for Neuropsychiatric Disorders. Trends Pharmacol. Sci. 2016;37:1045–1054. doi: 10.1016/j.tips.2016.09.004. PubMed DOI PMC
Marsh N., Marsh A.A., Lee M.R., Hurlemann R. Oxytocin and the Neurobiology of Prosocial Behavior. Neuroscientist. 2021;27:604–619. doi: 10.1177/1073858420960111. PubMed DOI PMC
Borroto-Escuela D.O., Cuesta-Marti C., Lopez-Salas A., Chruscicka-Smaga B., Crespo-Ramirez M., Tesoro-Cruz E., Palacios-Lagunas D.A., Perez de la Mora M., Schellekens H., Fuxe K. The oxytocin receptor represents a key hub in the GPCR heteroreceptor network: Potential relevance for brain and behavior. Front. Mol. Neurosci. 2022;15:1055344. doi: 10.3389/fnmol.2022.1055344. PubMed DOI PMC
Santoso P., Nakata M., Ueta Y., Yada T. Suprachiasmatic vasopressin to paraventricular oxytocin neurocircuit in the hypothalamus relays light reception to inhibit feeding behavior. Am. J. Physiol. Endocrinol. Metab. 2018;315:E478–E488. doi: 10.1152/ajpendo.00338.2016. PubMed DOI
Vargas Y., Castro Tron A.E., Rodriguez Rodriguez A., Uribe R.M., Joseph-Bravo P., Charli J.L. Thyrotropin-Releasing Hormone and Food Intake in Mammals: An Update. Metabolites. 2024;14:302. doi: 10.3390/metabo14060302. PubMed DOI PMC
Nunn N., Womack M., Dart C., Barrett-Jolley R. Function and pharmacology of spinally-projecting sympathetic pre-autonomic neurones in the paraventricular nucleus of the hypothalamus. Curr. Neuropharmacol. 2011;9:262–277. doi: 10.2174/157021107012043159X. PubMed DOI PMC
Strecker G.J., Wuarin J.P., Dudek F.E. GABAA-mediated local synaptic pathways connect neurons in the rat suprachiasmatic nucleus. J. Neurophysiol. 1997;78:2217–2220. doi: 10.1152/jn.1997.78.4.2217. PubMed DOI
Moore R.Y., Eichler V.B. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 1972;42:201–206. doi: 10.1016/0006-8993(72)90054-6. PubMed DOI
Stephan F.K., Zucker I. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Natl. Acad. Sci. USA. 1972;69:1583–1586. doi: 10.1073/pnas.69.6.1583. PubMed DOI PMC
Sumova A., Travnickova Z., Peters R., Schwartz W.J., Illnerova H. The rat suprachiasmatic nucleus is a clock for all seasons. Proc. Natl. Acad. Sci. USA. 1995;92:7754–7758. doi: 10.1073/pnas.92.17.7754. PubMed DOI PMC
Reppert S.M. A clockwork explosion! Neuron. 1998;21:1–4. doi: 10.1016/S0896-6273(00)80234-2. PubMed DOI
Lee H.S., Billings H.J., Lehman M.N. The suprachiasmatic nucleus: A clock of multiple components. J. Biol. Rhythm. 2003;18:435–449. doi: 10.1177/0748730403259106. PubMed DOI
Moore R.Y., Card J.P. Visual pathways and the entrainment of circadian rhythms. Ann. N. Y. Acad. Sci. 1985;453:123–133. doi: 10.1111/j.1749-6632.1985.tb11805.x. PubMed DOI
Jacomy H., Burlet A., Bosler O. Vasoactive intestinal peptide neurons as synaptic targets for vasopressin neurons in the suprachiasmatic nucleus. Double-label immunocytochemical demonstration in the rat. Neuroscience. 1999;88:859–870. doi: 10.1016/S0306-4522(98)00259-0. PubMed DOI
Brancaccio M., Enoki R., Mazuski C.N., Jones J., Evans J.A., Azzi A. Network-mediated encoding of circadian time: The suprachiasmatic nucleus (SCN) from genes to neurons to circuits, and back. J. Neurosci. 2014;34:15192–15199. doi: 10.1523/JNEUROSCI.3233-14.2014. PubMed DOI PMC
Inouye S.T., Kawamura H. Persistence of circadian rhythmicity in a mammalian hypothalamic island containing the suprachiasmatic nucleus. Proc. Natl. Acad. Sci. USA. 1979;76:5962–5966. doi: 10.1073/pnas.76.11.5962. PubMed DOI PMC
Groos G., Hendriks J. Circadian rhythms in electrical discharge of rat suprachiasmatic neurones recorded in vitro. Neurosci. Lett. 1982;34:283–288. doi: 10.1016/0304-3940(82)90189-6. PubMed DOI
Pennartz C.M., de Jeu M.T., Bos N.P., Schaap J., Geurtsen A.M. Diurnal modulation of pacemaker potentials and calcium current in the mammalian circadian clock. Nature. 2002;416:286–290. doi: 10.1038/nature728. PubMed DOI
Stephens S.B.Z., Kauffman A.S. Estrogen Regulation of the Molecular Phenotype and Active Translatome of AVPV Kisspeptin Neurons. Endocrinology. 2021;162:bqab080. doi: 10.1210/endocr/bqab080. PubMed DOI PMC
Spergel D.J. Modulation of Gonadotropin-Releasing Hormone Neuron Activity and Secretion in Mice by Non-peptide Neurotransmitters, Gasotransmitters, and Gliotransmitters. Front. Endocrinol. 2019;10:329. doi: 10.3389/fendo.2019.00329. PubMed DOI PMC
Fu J., Yu Q., Guo W., He C., Burnstock G., Xiang Z. P2X receptors are expressed on neurons containing luteinizing hormone-releasing hormone in the mouse hypothalamus. Neurosci. Lett. 2009;458:32–36. doi: 10.1016/j.neulet.2009.04.017. PubMed DOI
Sarkar D.K., Chiappa S.A., Fink G., Sherwood N.M. Gonadotropin-releasing hormone surge in pro-oestrous rats. Nature. 1976;264:461–463. doi: 10.1038/264461a0. PubMed DOI
Baca-Alonso J.J.A., Quintanar J.L. The effect of gonadotropin-releasing hormone on the nervous system. Neuro Endocrinol. Lett. 2024;45:188–196. PubMed
Bakker J. Can kisspeptin be a new treatment for sexual dysfunction? Trends Endocrinol. Metab. 2025 doi: 10.1016/j.tem.2025.03.002. Online ahead of print . PubMed DOI
Messager S., Chatzidaki E.E., Ma D., Hendrick A.G., Zahn D., Dixon J., Thresher R.R., Malinge I., Lomet D., Carlton M.B., et al. Kisspeptin directly stimulates gonadotropin-releasing hormone release via G protein-coupled receptor 54. Proc. Natl. Acad. Sci. USA. 2005;102:1761–1766. doi: 10.1073/pnas.0409330102. PubMed DOI PMC
de Roux N., Genin E., Carel J.C., Matsuda F., Chaussain J.L., Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc. Natl. Acad. Sci. USA. 2003;100:10972–10976. doi: 10.1073/pnas.1834399100. PubMed DOI PMC
Sliwowska J.H., Woods N.E., Alzahrani A.R., Paspali E., Tate R.J., Ferro V.A. Kisspeptin a potential therapeutic target in treatment of both metabolic and reproductive dysfunction. J. Diabetes. 2024;16:e13541. doi: 10.1111/1753-0407.13541. PubMed DOI PMC
Boulant J.A., Hardy J.D. The effect of spinal and skin temperatures on the firing rate and thermosensitivity of preoptic neurones. J. Physiol. 1974;240:639–660. doi: 10.1113/jphysiol.1974.sp010627. PubMed DOI PMC
Bouret S.G., Draper S.J., Simerly R.B. Formation of projection pathways from the arcuate nucleus of the hypothalamus to hypothalamic regions implicated in the neural control of feeding behavior in mice. J. Neurosci. 2004;24:2797–2805. doi: 10.1523/JNEUROSCI.5369-03.2004. PubMed DOI PMC
Martins A.B., Brownlow M.L., Araujo B.B., Garnica-Siqueira M.C., Zaia D.A.M., Leite C.M., Zaia C., Uchoa E.T. Arcuate nucleus of the hypothalamus contributes to the hypophagic effect and plasma metabolic changes induced by vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide. Neurochem. Int. 2022;155:105300. doi: 10.1016/j.neuint.2022.105300. PubMed DOI
Fioramonti X., Lorsignol A., Taupignon A., Penicaud L. A new ATP-sensitive K+ channel-independent mechanism is involved in glucose-excited neurons of mouse arcuate nucleus. Diabetes. 2004;53:2767–2775. doi: 10.2337/diabetes.53.11.2767. PubMed DOI
Mehay D., Silberman Y., Arnold A.C. The Arcuate Nucleus of the Hypothalamus and Metabolic Regulation: An Emerging Role for Renin-Angiotensin Pathways. Int. J. Mol. Sci. 2021;22:7050. doi: 10.3390/ijms22137050. PubMed DOI PMC
Dos Santos K.M., Saunders S.E., Antunes V.R., Boychuk C.R. Insulin activates parasympathetic hepatic-related neurons of the paraventricular nucleus of the hypothalamus through mTOR signaling. J. Neurophysiol. 2025;133:320–332. doi: 10.1152/jn.00284.2024. PubMed DOI PMC
Clarkson J., Han S.Y., Piet R., McLennan T., Kane G.M., Ng J., Porteous R.W., Kim J.S., Colledge W.H., Iremonger K.J., et al. Definition of the hypothalamic GnRH pulse generator in mice. Proc. Natl. Acad. Sci. USA. 2017;114:E10216–E10223. doi: 10.1073/pnas.1713897114. PubMed DOI PMC
Goto T., Hagihara M., Miyamichi K. Dynamics of pulsatile activities of arcuate kisspeptin neurons in aging female mice. eLife. 2023;12:e82533. doi: 10.7554/eLife.82533. PubMed DOI PMC
Koysombat K., Tsoutsouki J., Patel A.H., Comninos A.N., Dhillo W.S., Abbara A. Kisspeptin and Neurokinin B: Roles in reproductive health. Physiol. Rev. 2025;105:707–764. doi: 10.1152/physrev.00015.2024. PubMed DOI
Sawchenko P.E., Swanson L.W. The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Res. 1982;257:275–325. doi: 10.1016/0165-0173(82)90010-8. PubMed DOI
Mezey E., Kiss J.Z., Mueller G.P., Eskay R., O’Donohue T.L., Palkovits M. Distribution of the pro-opiomelanocortin derived peptides, adrenocorticotrope hormone, alpha-melanocyte-stimulating hormone and beta-endorphin (ACTH, alpha-MSH, beta-END) in the rat hypothalamus. Brain Res. 1985;328:341–347. doi: 10.1016/0006-8993(85)91046-7. PubMed DOI
Morgane P.J. Electrophysiological studies of feeding and satiety centers in the rat. Am. J. Physiol. 1961;201:838–844. doi: 10.1152/ajplegacy.1961.201.5.838. PubMed DOI
King B.M. The rise, fall, and resurrection of the ventromedial hypothalamus in the regulation of feeding behavior and body weight. Physiol. Behav. 2006;87:221–244. doi: 10.1016/j.physbeh.2005.10.007. PubMed DOI
Jo Y.H., Donier E., Martinez A., Garret M., Toulme E., Boue-Grabot E. Crosstalk between P2X4 and GABA-A receptors determines synaptic efficacy at central synapses. J. Biol. Chem. 2011;256:19993–20004. doi: 10.1074/jbc.M111.231324. PubMed DOI PMC
Cheung C.C., Kurrasch D.M., Liang J.K., Ingraham H.A. Genetic labeling of steroidogenic factor-1 (SF-1) neurons in mice reveals ventromedial nucleus of the hypothalamus (VMH) circuitry beginning at neurogenesis and development of a separate non-SF-1 neuronal cluster in the ventrolateral VMH. J. Comp. Neurol. 2013;521:1268–1288. doi: 10.1002/cne.23226. PubMed DOI PMC
Sapkota S., Roy S.C., Briski K.P. Dorsomedial Ventromedial Hypothalamic Nucleus Growth Hormone-Releasing Hormone Neuron Steroidogenic Factor-1 Gene Targets in Female Rat. ASN Neuro. 2024;16:2403345. doi: 10.1080/17590914.2024.2403345. PubMed DOI PMC
Fosch A., Zagmutt S., Casals N., Rodriguez-Rodriguez R. New Insights of SF1 Neurons in Hypothalamic Regulation of Obesity and Diabetes. Int. J. Mol. Sci. 2021;22:6186. doi: 10.3390/ijms22126186. PubMed DOI PMC
Bellinger L.L., Bernardis L.L. The dorsomedial hypothalamic nucleus and its role in ingestive behavior and body weight regulation: Lessons learned from lesioning studies. Physiol. Behav. 2002;76:431–442. doi: 10.1016/S0031-9384(02)00756-4. PubMed DOI
Brasil T.F.S., Lopes-Azevedo S., Belem-Filho I.J.A., Fortaleza E.A.T., Antunes-Rodrigues J., Correa F.M.A. The Dorsomedial Hypothalamus Is Involved in the Mediation of Autonomic and Neuroendocrine Responses to Restraint Stress. Front. Pharmacol. 2019;10:1547. doi: 10.3389/fphar.2019.01547. PubMed DOI PMC
DiMicco J.A., Samuels B.C., Zaretskaia M.V., Zaretsky D.V. The dorsomedial hypothalamus and the response to stress: Part renaissance, part revolution. Pharmacol. Biochem. Behav. 2002;71:469–480. doi: 10.1016/S0091-3057(01)00689-X. PubMed DOI
Sakai K., Takahashi K., Anaclet C., Lin J.S. Sleep-waking discharge of ventral tuberomammillary neurons in wild-type and histidine decarboxylase knock-out mice. Front. Behav. Neurosci. 2010;4:53. doi: 10.3389/fnbeh.2010.00053. PubMed DOI PMC
Wada H., Inagaki N., Itowi N., Yamatodani A. Histaminergic neuron system in the brain: Distribution and possible functions. Brain Res. Bull. 1991;27:367–370. doi: 10.1016/0361-9230(91)90126-5. PubMed DOI
Mickelsen L.E., Bolisetty M., Chimileski B.R., Fujita A., Beltrami E.J., Costanzo J.T., Naparstek J.R., Robson P., Jackson A.C. Single-cell transcriptomic analysis of the lateral hypothalamic area reveals molecularly distinct populations of inhibitory and excitatory neurons. Nat. Neurosci. 2019;22:642–656. doi: 10.1038/s41593-019-0349-8. PubMed DOI PMC
Collden G., Mangano C., Meister B. P2X2 purinoreceptor protein in hypothalamic neurons associated with the regulation of food intake. Neuroscience. 2010;171:62–78. doi: 10.1016/j.neuroscience.2010.08.036. PubMed DOI
Sandoval-Caballero C., Jara J., Luarte L., Jimenez Y., Teske J.A., Perez-Leighton C. Control of motivation for sucrose in the paraventricular hypothalamic nucleus by dynorphin peptides and the kappa opioid receptor. Appetite. 2024;200:107504. doi: 10.1016/j.appet.2024.107504. PubMed DOI
Bernardis L.L., Bellinger L.L. The lateral hypothalamic area revisited: Neuroanatomy, body weight regulation, neuroendocrinology and metabolism. Neurosci. Biobehav. Rev. 1993;17:141–193. doi: 10.1016/S0149-7634(05)80149-6. PubMed DOI
Bonnavion P., Mickelsen L.E., Fujita A., de Lecea L., Jackson A.C. Hubs and spokes of the lateral hypothalamus: Cell types, circuits and behaviour. J. Physiol. 2016;594:6443–6462. doi: 10.1113/JP271946. PubMed DOI PMC
Samson W.K., Taylor M.M., Follwell M., Ferguson A.V. Orexin actions in hypothalamic paraventricular nucleus: Physiological consequences and cellular correlates. Regul. Pept. 2002;104:97–103. doi: 10.1016/S0167-0115(01)00353-6. PubMed DOI
Lopez R., Young S.L., Cox V.C. Analgesia for formalin-induced pain by lateral hypothalamic stimulation. Brain Res. 1991;563:1–6. doi: 10.1016/0006-8993(91)91506-V. PubMed DOI
Khan R., Lee B., Inyang K., Bemis H., Bugescu R., Laumet G., Leinninger G. Neurotensin-expressing lateral hypothalamic neurons alleviate neuropathic and inflammatory pain via neurotensin receptor signaling. Neurobiol. Pain. 2024;16:100172. doi: 10.1016/j.ynpai.2024.100172. PubMed DOI PMC
Beamer E., Conte G., Engel T. ATP release during seizures-A critical evaluation of the evidence. Brain Res. Bull. 2019;151:65–73. doi: 10.1016/j.brainresbull.2018.12.021. PubMed DOI
Juranyi Z., Sperlagh B., Vizi E.S. Involvement of P2 purinoceptors and the nitric oxide pathway in [3H]purine outflow evoked by short-term hypoxia and hypoglycemia in rat hippocampal slices. Brain Res. 1999;823:183–190. doi: 10.1016/S0006-8993(99)01169-5. PubMed DOI
Godoy P.A., Ramirez-Molina O., Fuentealba J. Exploring the Role of P2X Receptors in Alzheimer’s Disease. Front. Pharmacol. 2019;10:1330. doi: 10.3389/fphar.2019.01330. PubMed DOI PMC
Guthrie P.B., Knappenberger J., Segal M., Bennett M.V., Charles A.C., Kater S.B. ATP released from astrocytes mediates glial calcium waves. J. Neurosci. 1999;19:520–528. doi: 10.1523/JNEUROSCI.19-02-00520.1999. PubMed DOI PMC
Fields R.D., Stevens B. ATP: An extracellular signaling molecule between neurons and glia. Trends Neurosci. 2000;23:625–633. doi: 10.1016/S0166-2236(00)01674-X. PubMed DOI
Inoue K., Koizumi S., Tsuda M. The role of nucleotides in the neuron—Glia communication responsible for the brain functions. J. Neurochem. 2007;102:1447–1458. doi: 10.1111/j.1471-4159.2007.04824.x. PubMed DOI
Abbracchio M.P., Burnstock G., Verkhratsky A., Zimmermann H. Purinergic signalling in the nervous system: An overview. Trends Neurosci. 2009;32:19–29. doi: 10.1016/j.tins.2008.10.001. PubMed DOI
Lalo U., Palygin O., Verkhratsky A., Grant S.G., Pankratov Y. ATP from synaptic terminals and astrocytes regulates NMDA receptors and synaptic plasticity through PSD-95 multi-protein complex. Sci. Rep. 2016;6:33609. doi: 10.1038/srep33609. PubMed DOI PMC
Araque A., Parpura V., Sanzgiri R.P., Haydon P.G. Tripartite synapses: Glia, the unacknowledged partner. Trends Neurosci. 1999;22:208–215. doi: 10.1016/S0166-2236(98)01349-6. PubMed DOI
Crosby K.M., Murphy-Royal C., Wilson S.A., Gordon G.R., Bains J.S., Pittman Q.J. Cholecystokinin Switches the Plasticity of GABA Synapses in the Dorsomedial Hypothalamus via Astrocytic ATP Release. J. Neurosci. 2018;38:8515–8525. doi: 10.1523/JNEUROSCI.0569-18.2018. PubMed DOI PMC
Hong Y., Zhao T., Li X.J., Li S. Mutant Huntingtin Impairs BDNF Release from Astrocytes by Disrupting Conversion of Rab3a-GTP into Rab3a-GDP. J. Neurosci. 2016;36:8790–8801. doi: 10.1523/JNEUROSCI.0168-16.2016. PubMed DOI PMC
Lazarowski E.R., Sesma J.I., Seminario-Vidal L., Kreda S.M. Molecular mechanisms of purine and pyrimidine nucleotide release. Adv. Pharmacol. 2011;61:221–261. PubMed
Lazarowski E.R. Vesicular and conductive mechanisms of nucleotide release. Purinergic Signal. 2012;8:359–373. doi: 10.1007/s11302-012-9304-9. PubMed DOI PMC
Burnstock G., Fredholm B.B., Verkhratsky A. Adenosine and ATP receptors in the brain. Curr. Top. Med. Chem. 2011;11:973–1011. doi: 10.2174/156802611795347627. PubMed DOI
Jo Y.H., Schlichter R. Synaptic corelease of ATP and GABA in cultured spinal neurons. Nat. Neurosci. 1999;2:241–245. doi: 10.1038/6344. PubMed DOI
Norenberg W., Illes P. Neuronal P2X receptors: Localisation and functional properties. Naunyn. Schmiedebergs Arch. Pharmacol. 2000;362:324–339. doi: 10.1007/s002100000311. PubMed DOI
Jang I.S., Rhee J.S., Kubota H., Akaike N. Developmental changes in P2X purinoceptors on glycinergic presynaptic nerve terminals projecting to rat substantia gelatinosa neurones. Pt 2J. Physiol. 2001;536:505–519. doi: 10.1111/j.1469-7793.2001.0505c.xd. PubMed DOI PMC
Rodrigues R.J., Almeida T., Richardson P.J., Oliveira C.R., Cunha R.A. Dual presynaptic control by ATP of glutamate release via facilitatory P2X1, P2X2/3, and P2X3 and inhibitory P2Y1, P2Y2, and/or P2Y4 receptors in the rat hippocampus. J. Neurosci. 2005;25:6286–6295. doi: 10.1523/JNEUROSCI.0628-05.2005. PubMed DOI PMC
Burnstock G. Purinergic cotransmission. Exp. Physiol. 2009;94:20–24. doi: 10.1113/expphysiol.2008.043620. PubMed DOI
Vavra V., Bhattacharya A., Zemkova H. Facilitation of glutamate and GABA release by P2X receptor activation in supraoptic neurons from freshly isolated rat brain slices. Neuroscience. 2011;188:1–12. doi: 10.1016/j.neuroscience.2011.04.067. PubMed DOI
Gordon G.R., Baimoukhametova D.V., Hewitt S.A., Rajapaksha W.R., Fisher T.E., Bains J.S. Norepinephrine triggers release of glial ATP to increase postsynaptic efficacy. Nat. Neurosci. 2005;8:1078–1086. doi: 10.1038/nn1498. PubMed DOI
Fumagalli M., Brambilla R., D’Ambrosi N., Volonte C., Matteoli M., Verderio C., Abbracchio M.P. Nucleotide-mediated calcium signaling in rat cortical astrocytes: Role of P2X and P2Y receptors. Glia. 2003;43:218–230. doi: 10.1002/glia.10248. PubMed DOI
Pascual O., Casper K.B., Kubera C., Zhang J., Revilla-Sanchez R., Sul J.Y., Takano H., Moss S.J., McCarthy K., Haydon P.G. Astrocytic purinergic signaling coordinates synaptic networks. Science. 2005;310:113–116. doi: 10.1126/science.1116916. PubMed DOI
Pangrsic T., Potokar M., Stenovec M., Kreft M., Fabbretti E., Nistri A., Pryazhnikov E., Khiroug L., Giniatullin R., Zorec R. Exocytotic release of ATP from cultured astrocytes. J. Biol. Chem. 2007;282:28749–28758. doi: 10.1074/jbc.M700290200. PubMed DOI
Stout C.E., Costantin J.L., Naus C.C., Charles A.C. Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J. Biol. Chem. 2002;277:10482–10488. doi: 10.1074/jbc.M109902200. PubMed DOI
Schenk U., Westendorf A.M., Radaelli E., Casati A., Ferro M., Fumagalli M., Verderio C., Buer J., Scanziani E., Grassi F. Purinergic control of T cell activation by ATP released through pannexin-1 hemichannels. Sci. Signal. 2008;1:ra6. doi: 10.1126/scisignal.1160583. PubMed DOI
Iglesias R., Dahl G., Qiu F., Spray D.C., Scemes E. Pannexin 1: The molecular substrate of astrocyte “hemichannels”. J. Neurosci. 2009;29:7092–7097. doi: 10.1523/JNEUROSCI.6062-08.2009. PubMed DOI PMC
Li S., Bjelobaba I., Yan Z., Kucka M., Tomic M., Stojilkovic S.S. Expression and roles of pannexins in ATP release in the pituitary gland. Endocrinology. 2011;152:2342–2352. doi: 10.1210/en.2010-1216. PubMed DOI PMC
Khakh B.S., Sofroniew M.V. Diversity of astrocyte functions and phenotypes in neural circuits. Nat. Neurosci. 2015;18:942–952. doi: 10.1038/nn.4043. PubMed DOI PMC
Kinoshita M., Hirayama Y., Fujishita K., Shibata K., Shinozaki Y., Shigetomi E., Takeda A., Le H.P.N., Hayashi H., Hiasa M., et al. Anti-Depressant Fluoxetine Reveals its Therapeutic Effect Via Astrocytes. EBioMedicine. 2018;32:72–83. doi: 10.1016/j.ebiom.2018.05.036. PubMed DOI PMC
Kawate T., Michel J.C., Birdsong W.T., Gouaux E. Crystal structure of the ATP-gated P2X(4) ion channel in the closed state. Nature. 2009;460:592–598. doi: 10.1038/nature08198. PubMed DOI PMC
Hattori M., Gouaux E. Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature. 2012;485:207–212. doi: 10.1038/nature11010. PubMed DOI PMC
North R.A. Molecular physiology of P2X receptors. Physiol. Rev. 2002;82:1013–1067. doi: 10.1152/physrev.00015.2002. PubMed DOI
Nicke A., Baumert H.G., Rettinger J., Eichele A., Lambrecht G., Mutschler E., Schmalzing G. P2X1 and P2X3 receptors form stable trimers: A novel structural motif of ligand-gated ion channels. EMBO J. 1998;17:3016–3028. doi: 10.1093/emboj/17.11.3016. PubMed DOI PMC
Pelegrin P., Surprenant A. Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J. 2006;25:5071–5082. doi: 10.1038/sj.emboj.7601378. PubMed DOI PMC
Boue-Grabot E., Toulme E., Emerit M.B., Garret M. Subunit-specific coupling between gamma-aminobutyric acid type A and P2X2 receptor channels. J. Biol. Chem. 2004;279:52517–52525. doi: 10.1074/jbc.M410223200. PubMed DOI
Boue-Grabot E., Emerit M.B., Toulme E., Seguela P., Garret M. Cross-talk and co-trafficking between rho1/GABA receptors and ATP-gated channels. J. Biol. Chem. 2004;279:6967–6975. doi: 10.1074/jbc.M307772200. PubMed DOI
Xia R., Mei Z.-Z., Milligan C., Jiang L.H. Inhibitory interaction between P2X4 and GABA(C) rho1 receptors. Biochem. Biophys. Res. Commun. 2008;375:38–43. doi: 10.1016/j.bbrc.2008.07.096. PubMed DOI
Queme L.F., Weyler A.A., Cohen E.R., Hudgins R.C., Jankowski M.P. A dual role for peripheral GDNF signaling in nociception and cardiovascular reflexes in the mouse. Proc. Natl. Acad. Sci. USA. 2020;117:698–707. doi: 10.1073/pnas.1910905116. PubMed DOI PMC
Khakh B.S. Molecular physiology of P2X receptors and ATP signalling at synapses. Nat. Rev. Neurosci. 2001;2:165–174. doi: 10.1038/35058521. PubMed DOI
Stojilkovic S.S., Tomic M., He M.L., Yan Z., Koshimizu T.A., Zemkova H. Molecular dissection of purinergic P2X receptor channels. Ann. N. Y. Acad. Sci. 2005;1048:116–130. doi: 10.1196/annals.1342.011. PubMed DOI
Samways D.S., Li Z., Egan T.M. Principles and properties of ion flow in P2X receptors. Front. Cell Neurosci. 2014;8:6. doi: 10.3389/fncel.2014.00006. PubMed DOI PMC
Khakh B.S., Proctor W.R., Dunwiddie T.V., Labarca C., Lester H.A. Allosteric control of gating and kinetics at P2X(4) receptor channels. J. Neurosci. 1999;19:7289–7299. doi: 10.1523/JNEUROSCI.19-17-07289.1999. PubMed DOI PMC
Coddou C., Yan Z., Obsil T., Huidobro-Toro J.P., Stojilkovic S.S. Activation and regulation of purinergic P2X receptor channels. Pharmacol. Rev. 2011;63:641–683. doi: 10.1124/pr.110.003129. PubMed DOI PMC
Coddou C., Stojilkovic S.S., Huidobro-Toro J.P. Allosteric modulation of ATP-gated P2X receptor channels. Rev. Neurosci. 2011;22:335–354. doi: 10.1515/rns.2011.014. PubMed DOI PMC
Stokes L., Bidula S., Bibic L., Allum E. To Inhibit or Enhance? Is There a Benefit to Positive Allosteric Modulation of P2X Receptors? Front. Pharmacol. 2020;11:627. doi: 10.3389/fphar.2020.00627. PubMed DOI PMC
Illes P., Muller C.E., Jacobson K.A., Grutter T., Nicke A., Fountain S.J., Kennedy C., Schmalzing G., Jarvis M.F., Stojilkovic S.S., et al. Update of P2X receptor properties and their pharmacology: IUPHAR Review 30. Br. J. Pharmacol. 2021;178:489–514. doi: 10.1111/bph.15299. PubMed DOI PMC
Sivcev S., Kudova E., Zemkova H. Neurosteroids as positive and negative allosteric modulators of ligand-gated ion channels: P2X receptor perspective. Neuropharmacology. 2023;234:109542. doi: 10.1016/j.neuropharm.2023.109542. PubMed DOI
Norenberg W., Sobottka H., Hempel C., Plotz T., Fischer W., Schmalzing G., Schaefer M. Positive allosteric modulation by ivermectin of human but not murine P2X7 receptors. Br. J. Pharmacol. 2012;167:48–66. doi: 10.1111/j.1476-5381.2012.01987.x. PubMed DOI PMC
Bianchi B.R., Lynch K.J., Touma E., Niforatos W., Burgard E.C., Alexander K.M., Park H.S., Yu H., Metzger R., Kowaluk E., et al. Pharmacological characterization of recombinant human and rat P2X receptor subtypes. Eur. J. Pharmacol. 1999;376:127–138. doi: 10.1016/S0014-2999(99)00350-7. PubMed DOI
Oury C., Toth-Zsamboki E., Van Geet C., Thys C., Wei L., Nilius B., Vermylen J., Hoylaerts M.F. A natural dominant negative P2X1 receptor due to deletion of a single amino acid residue. J. Biol. Chem. 2000;275:22611–22614. doi: 10.1074/jbc.C000305200. PubMed DOI
Khakh B.S., Bao X.R., Labarca C., Lester H.A. Neuronal P2X transmitter-gated cation channels change their ion selectivity in seconds. Nat. Neurosci. 1999;2:322–330. doi: 10.1038/7233. PubMed DOI
Lynch K.J., Touma E., Niforatos W., Kage K.L., Burgard E.C., van Biesen T., Kowaluk E.A., Jarvis M.F. Molecular and functional characterization of human P2X(2) receptors. Mol. Pharmacol. 1999;56:1171–1181. PubMed
Clyne J.D., LaPointe L.D., Hume R.I. The role of histidine residues in modulation of the rat P2X(2) purinoceptor by zinc and pH. Pt 2J. Physiol. 2002;539:347–359. doi: 10.1113/jphysiol.2001.013244. PubMed DOI PMC
Zhong Y., Dunn P.M., Xiang Z., Bo X., Burnstock G. Pharmacological and molecular characterization of P2X receptors in rat pelvic ganglion neurons. Br. J. Pharmacol. 1998;125:771–781. doi: 10.1038/sj.bjp.0702118. PubMed DOI PMC
Haustein M.D., Kracun S., Lu X.H., Shih T., Jackson-Weaver O., Tong X., Xu J., Yang X.W., O’Dell T.J., Marvin J.S., et al. Conditions and constraints for astrocyte calcium signaling in the hippocampal mossy fiber pathway. Neuron. 2014;82:413–429. doi: 10.1016/j.neuron.2014.02.041. PubMed DOI PMC
Kim S.H., Bahia P.K., Patil M., Sutton S., Sowells I., Hadley S.H., Kollarik M., Taylor-Clark T.E. Development of a Mouse Reporter Strain for the Purinergic P2X(2) Receptor. eNeuro. 2020;7:1–15. doi: 10.1523/ENEURO.0203-20.2020. PubMed DOI PMC
Grohmann M., Schumacher M., Gunther J., Singheiser S.M., Nussbaum T., Wildner F., Gerevich Z., Jabs R., Hirnet D., Lohr C., et al. BAC transgenic mice to study the expression of P2X2 and P2Y(1) receptors. Purinergic Signal. 2021;17:449–465. doi: 10.1007/s11302-021-09792-9. PubMed DOI PMC
Kaczmarek-Hajek K., Lorinczi E., Hausmann R., Nicke A. Molecular and functional properties of P2X receptors—Recent progress and persisting challenges. Purinergic Signal. 2012;8:375–417. PubMed PMC
Hugel S., Schlichter R. Presynaptic P2X receptors facilitate inhibitory GABAergic transmission between cultured rat spinal cord dorsal horn neurons. J. Neurosci. 2000;20:2121–2130. doi: 10.1523/JNEUROSCI.20-06-02121.2000. PubMed DOI PMC
Khakh B.S., Gittermann D., Cockayne D.A., Jones A. ATP modulation of excitatory synapses onto interneurons. J. Neurosci. 2003;23:7426–7437. doi: 10.1523/JNEUROSCI.23-19-07426.2003. PubMed DOI PMC
Lewis C., Neidhart S., Holy C., North R.A., Buell G., Surprenant A. Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature. 1995;377:432–435. doi: 10.1038/377432a0. PubMed DOI
Finger T.E., Danilova V., Barrows J., Bartel D.L., Vigers A.J., Stone L., Hellekant G., Kinnamon S.C. ATP signaling is crucial for communication from taste buds to gustatory nerves. Science. 2005;310:1495–1499. doi: 10.1126/science.1118435. PubMed DOI
Cao X., Li L.P., Wang Q., Wu Q., Hu H.H., Zhang M., Fang Y.Y., Zhang J., Li S.J., Xiong W.C., et al. Astrocyte-derived ATP modulates depressive-like behaviors. Nat. Med. 2013;19:773–777. doi: 10.1038/nm.3162. PubMed DOI
Gerevich Z., Zadori Z.S., Koles L., Kopp L., Milius D., Wirkner K., Gyires K., Illes P. Dual effect of acid pH on purinergic P2X3 receptors depends on the histidine 206 residue. J. Biol. Chem. 2007;282:33949–33957. doi: 10.1074/jbc.M705840200. PubMed DOI
Mansoor S.E., Lu W., Oosterheert W., Shekhar M., Tajkhorshid E., Gouaux E. X-ray structures define human P2X(3) receptor gating cycle and antagonist action. Nature. 2016;538:66–71. doi: 10.1038/nature19367. PubMed DOI PMC
Chen C.C., Akopian A.N., Sivilotti L., Colquhoun D., Burnstock G., Wood J.N. A P2X purinoceptor expressed by a subset of sensory neurons. Nature. 1995;377:428–431. doi: 10.1038/377428a0. PubMed DOI
Cook S.P., McCleskey E.W. Desensitization, recovery and Ca(2+)-dependent modulation of ATP-gated P2X receptors in nociceptors. Neuropharmacology. 1997;36:1303–1308. doi: 10.1016/S0028-3908(97)00132-9. PubMed DOI
North R.A. P2X3 receptors and peripheral pain mechanisms. Pt 2J. Physiol. 2004;554:301–308. doi: 10.1113/jphysiol.2003.048587. PubMed DOI PMC
Ding S., Zhu L., Tian Y., Zhu T., Huang X., Zhang X. P2X3 receptor involvement in endometriosis pain via ERK signaling pathway. PLoS ONE. 2017;12:e0184647. doi: 10.1371/journal.pone.0184647. PubMed DOI PMC
Zheng X.B., Zhang Y.L., Li Q., Liu Y.G., Wang X.D., Yang B.L., Zhu G.C., Zhou C.F., Gao Y., Liu Z.X. Effects of 1,8-cineole on neuropathic pain mediated by P2X2 receptor in the spinal cord dorsal horn. Sci. Rep. 2019;9:7909. doi: 10.1038/s41598-019-44282-4. PubMed DOI PMC
North R.A. P2X receptors. Philos. Trans. R Soc. Lond. B Biol. Sci. 2016;371:20150427. doi: 10.1098/rstb.2015.0427. PubMed DOI PMC
Silva-Ramos M., Silva I., Faria M., Ferreirinha F., Correia-de-Sa P. Activation of Prejunctional P2x2/3 Heterotrimers by ATP Enhances the Cholinergic Tone in Obstructed Human Urinary Bladders. J. Pharmacol. Exp. Ther. 2020;372:63–72. doi: 10.1124/jpet.119.261610. PubMed DOI
Khakh B.S., North R.A. P2X receptors as cell-surface ATP sensors in health and disease. Nature. 2006;442:527–532. doi: 10.1038/nature04886. PubMed DOI
Qureshi O.S., Paramasivam A., Yu J.C., Murrell-Lagnado R.D. Regulation of P2X4 receptors by lysosomal targeting, glycan protection and exocytosis. Pt 21J. Cell Sci. 2007;120:3838–3849. doi: 10.1242/jcs.010348. PubMed DOI
Huang P., Zou Y., Zhong X.Z., Cao Q., Zhao K., Zhu M.X., Murrell-Lagnado R., Dong X.P. P2X4 forms functional ATP-activated cation channels on lysosomal membranes regulated by luminal pH. J. Biol. Chem. 2014;289:17658–17667. doi: 10.1074/jbc.M114.552158. PubMed DOI PMC
Stoop R., Surprenant A., North R.A. Different sensitivities to pH of ATP-induced currents at four cloned P2X receptors. J. Neurophysiol. 1997;78:1837–1840. doi: 10.1152/jn.1997.78.4.1837. PubMed DOI
Jelinkova I., Vavra V., Jindrichova M., Obsil T., Zemkova H.W., Zemkova H., Stojilkovic S.S. Identification of P2X(4) receptor transmembrane residues contributing to channel gating and interaction with ivermectin. Pflug. Arch. 2008;456:939–950. doi: 10.1007/s00424-008-0450-4. PubMed DOI
Buell G., Lewis C., Collo G., North R.A., Surprenant A. An antagonist-insensitive P2X receptor expressed in epithelia and brain. EMBO J. 1996;15:55–62. doi: 10.1002/j.1460-2075.1996.tb00333.x. PubMed DOI PMC
Jelinkova I., Yan Z., Liang Z., Moonat S., Teisinger J., Stojilkovic S.S., Zemkova H. Identification of P2X(4) receptor-specific residues contributing to the ivermectin effects on channel deactivation. Biochem. Biophys. Res. Commun. 2006;349:619–625. doi: 10.1016/j.bbrc.2006.08.084. PubMed DOI
Le K.T., Babinski K., Seguela P. Central P2X4 and P2X6 channel subunits coassemble into a novel heteromeric ATP receptor. J. Neurosci. 1998;18:7152–7159. doi: 10.1523/JNEUROSCI.18-18-07152.1998. PubMed DOI PMC
Seguela P., Haghighi A., Soghomonian J.J., Cooper E. A novel neuronal P2x ATP receptor ion channel with widespread distribution in the brain. J. Neurosci. 1996;16:448–455. doi: 10.1523/JNEUROSCI.16-02-00448.1996. PubMed DOI PMC
Srivastava P., Cronin C.G., Scranton V.L., Jacobson K.A., Liang B.T., Verma R. Neuroprotective and neuro-rehabilitative effects of acute purinergic receptor P2X4 (P2X4R) blockade after ischemic stroke. Exp. Neurol. 2020;329:113308. doi: 10.1016/j.expneurol.2020.113308. PubMed DOI PMC
Montilla A., Mata G.P., Matute C., Domercq M. Contribution of P2X4 Receptors to CNS Function and Pathophysiology. Int. J. Mol. Sci. 2020;21:5562. doi: 10.3390/ijms21155562. PubMed DOI PMC
Kotnis S., Bingham B., Vasilyev D.V., Miller S.W., Bai Y., Yeola S., Chanda P.K., Bowlby M.R., Kaftan E.J., Samad T.A., et al. Genetic and functional analysis of human P2X5 reveals a distinct pattern of exon 10 polymorphism with predominant expression of the nonfunctional receptor isoform. Mol. Pharmacol. 2010;77:953–960. doi: 10.1124/mol.110.063636. PubMed DOI
Guo W., Zhang Z., Liu X., Burnstock G., Xiang Z., He C. Developmental expression of P2X5 receptors in the mouse prenatal central and peripheral nervous systems. Purinergic Signal. 2013;9:239–248. doi: 10.1007/s11302-012-9346-z. PubMed DOI PMC
Guo W., Xu X., Gao X., Burnstock G., He C., Xiang Z. Expression of P2X5 receptors in the mouse CNS. Neuroscience. 2008;156:673–692. doi: 10.1016/j.neuroscience.2008.07.062. PubMed DOI
Ryten M., Dunn P.M., Neary J.T., Burnstock G. ATP regulates the differentiation of mammalian skeletal muscle by activation of a P2X5 receptor on satellite cells. J. Cell Biol. 2002;158:345–355. doi: 10.1083/jcb.200202025. PubMed DOI PMC
Kim H., Kajikawa T., Walsh M.C., Takegahara N., Jeong Y.H., Hajishengallis G., Choi Y. The purinergic receptor P2X5 contributes to bone loss in experimental periodontitis. BMB Rep. 2018;51:468–473. doi: 10.5483/BMBRep.2018.51.9.126. PubMed DOI PMC
Soto F., Garcia-Guzman M., Karschin C., Stuhmer W. Cloning and tissue distribution of a novel P2X receptor from rat brain. Biochem. Biophys. Res. Commun. 1996;223:456–460. doi: 10.1006/bbrc.1996.0915. PubMed DOI
North R. P2X receptors: A third major class of ligand-gated ion channels. Ciba Found. Symp. 1996;198:91–105. PubMed
King B.F., Townsend-Nicholson A., Wildman S.S., Thomas T., Spyer K.M., Burnstock G. Coexpression of rat P2X2 and P2X6 subunits in Xenopus oocytes. J. Neurosci. 2000;20:4871–4877. doi: 10.1523/JNEUROSCI.20-13-04871.2000. PubMed DOI PMC
Torres G.E., Egan T.M., Voigt M.M. Identification of a domain involved in ATP-gated ionotropic receptor subunit assembly. J. Biol. Chem. 1999;274:22359–22365. doi: 10.1074/jbc.274.32.22359. PubMed DOI
Surprenant A., Rassendren F., Kawashima E., North R.A., Buell G. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7) Science. 1996;272:735–738. doi: 10.1126/science.272.5262.735. PubMed DOI
Virginio C., MacKenzie A., Rassendren F.A., North R.A., Surprenant A. Pore dilation of neuronal P2X receptor channels. Nat. Neurosci. 1999;2:315–321. doi: 10.1038/7225. PubMed DOI
Cheewatrakoolpong B., Gilchrest H., Anthes J.C., Greenfeder S. Identification and characterization of splice variants of the human P2X7 ATP channel. Biochem. Biophys. Res. Commun. 2005;332:17–27. doi: 10.1016/j.bbrc.2005.04.087. PubMed DOI
Adinolfi E., Cirillo M., Woltersdorf R., Falzoni S., Chiozzi P., Pellegatti P., Callegari M.G., Sandona D., Markwardt F., Schmalzing G., et al. Trophic activity of a naturally occurring truncated isoform of the P2X7 receptor. FASEB J. 2010;24:3393–3404. doi: 10.1096/fj.09-153601. PubMed DOI
Di Virgilio F., Schmalzing G., Markwardt F. The Elusive P2X7 Macropore. Trends Cell Biol. 2018;28:392–404. doi: 10.1016/j.tcb.2018.01.005. PubMed DOI
Gelin C.F., Bhattacharya A., Letavic M.A. P2X7 receptor antagonists for the treatment of systemic inflammatory disorders. Prog. Med. Chem. 2020;59:63–99. PubMed
Miras-Portugal M.T., Sebastian-Serrano A., de Diego Garcia L., Diaz-Hernandez M. Neuronal P2X7 Receptor: Involvement in Neuronal Physiology and Pathology. J. Neurosci. 2017;37:7063–7072. doi: 10.1523/JNEUROSCI.3104-16.2017. PubMed DOI PMC
Kopp R., Krautloher A., Ramirez-Fernandez A., Nicke A. P2X7 Interactions and Signaling-Making Head or Tail of It. Front. Mol. Neurosci. 2019;12:183. doi: 10.3389/fnmol.2019.00183. PubMed DOI PMC
Bartlett R., Stokes L., Sluyter R. The P2X7 receptor channel: Recent developments and the use of P2X7 antagonists in models of disease. Pharmacol. Rev. 2014;66:638–675. doi: 10.1124/pr.113.008003. PubMed DOI
Bhattacharya A., Lord B., Grigoleit J.S., He Y., Fraser I., Campbell S.N., Taylor N., Aluisio L., O’Connor J.C., Papp M., et al. Neuropsychopharmacology of JNJ-55308942, evaluation of a clinical candidate targeting P2X7 ion channels in animal models of neuroinflammation and anhedonia. Neuropsychopharmacology. 2018;43:2586–2596. doi: 10.1038/s41386-018-0141-6. PubMed DOI PMC
Czamara D., Muller-Myhsok B., Lucae S. The P2RX7 polymorphism rs2230912 is associated with depression: A meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2018;82:272–277. doi: 10.1016/j.pnpbp.2017.11.003. PubMed DOI
Deussing J.M., Arzt E. P2X7 Receptor: A Potential Therapeutic Target for Depression? Trends Mol. Med. 2018;24:736–747. doi: 10.1016/j.molmed.2018.07.005. PubMed DOI
Bhattacharya A., Biber K. The microglial ATP-gated ion channel P2X7 as a CNS drug target. Glia. 2016;64:1772–1787. doi: 10.1002/glia.23001. PubMed DOI
Bhattacharya A., Ceusters M. Targeting neuroinflammation with brain penetrant P2X7 antagonists as novel therapeutics for neuropsychiatric disorders. Neuropsychopharmacology. 2020;45:234–235. doi: 10.1038/s41386-019-0502-9. PubMed DOI PMC
Illes P., Verkhratsky A., Tang Y. Pathological ATPergic Signaling in Major Depression and Bipolar Disorder. Front. Mol. Neurosci. 2019;12:331. doi: 10.3389/fnmol.2019.00331. PubMed DOI PMC
Liu J., Liu T.T., Mou L., Zhang Y., Chen X., Wang Q., Deng B.L., Liu J. P2X7 receptor: A potential target for treating comorbid anxiety and depression. Purinergic Signal. 2024:1–11. doi: 10.1007/s11302-024-10007-0. PubMed DOI
Vereczkei A., Abdul-Rahman O., Halmai Z., Nagy G., Szekely A., Somogyi A., Faludi G., Nemoda Z. Association of purinergic receptor P2RX7 gene polymorphisms with depression symptoms. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2019;92:207–216. doi: 10.1016/j.pnpbp.2019.01.006. PubMed DOI
Zorina-Lichtenwalter K., Ase A.R., Verma V., Parra A.I.M., Komarova S., Khadra A., Seguela P., Diatchenko L. Characterization of Common Genetic Variants in P2RX7 and Their Contribution to Chronic Pain Conditions. J. Pain. 2024;25:545–556. doi: 10.1016/j.jpain.2023.09.011. PubMed DOI
Jimenez-Pacheco A., Diaz-Hernandez M., Arribas-Blazquez M., Sanz-Rodriguez A., Olivos-Ore L.A., Artalejo A.R., Alves M., Letavic M., Miras-Portugal M.T., Conroy R.M., et al. Transient P2X7 Receptor Antagonism Produces Lasting Reductions in Spontaneous Seizures and Gliosis in Experimental Temporal Lobe Epilepsy. J. Neurosci. 2016;36:5920–5932. doi: 10.1523/JNEUROSCI.4009-15.2016. PubMed DOI PMC
Kaczmarek-Hajek K., Zhang J., Kopp R., Grosche A., Rissiek B., Saul A., Bruzzone S., Engel T., Jooss T., Krautloher A., et al. Re-evaluation of neuronal P2X7 expression using novel mouse models and a P2X7-specific nanobody. eLife. 2018;7:e36217. doi: 10.7554/eLife.36217. PubMed DOI PMC
Ortega F., Gomez-Villafuertes R., Benito-Leon M., Martinez de la Torre M., Olivos-Ore L.A., Arribas-Blazquez M., Gomez-Gaviro M.V., Azcorra A., Desco M., Artalejo A.R., et al. Salient brain entities labelled in P2rx7-EGFP reporter mouse embryos include the septum, roof plate glial specializations and circumventricular ependymal organs. Brain Struct. Funct. 2021;226:715–741. doi: 10.1007/s00429-020-02204-5. PubMed DOI PMC
Shibuya I., Tanaka K., Hattori Y., Uezono Y., Harayama N., Noguchi J., Ueta Y., Izumi F., Yamashita H. Evidence that multiple P2X purinoceptors are functionally expressed in rat supraoptic neurones. Pt 2J. Physiol. 1999;514:351–367. doi: 10.1111/j.1469-7793.1999.351ae.x. PubMed DOI PMC
Housley G.D., Kanjhan R., Raybould N.P., Greenwood D., Salih S.G., Jarlebark L., Burton L.D., Setz V.C., Cannell M.B., Soeller C., et al. Expression of the P2X(2) receptor subunit of the ATP-gated ion channel in the cochlea: Implications for sound transduction and auditory neurotransmission. J. Neurosci. 1999;19:8377–8388. doi: 10.1523/JNEUROSCI.19-19-08377.1999. PubMed DOI PMC
Vulchanova L., Arvidsson U., Riedl M., Wang J., Buell G., Surprenant A., North R.A., Elde R. Differential distribution of two ATP-gated channels (P2X receptors) determined by immunocytochemistry. Proc. Natl. Acad. Sci. USA. 1996;93:8063–8067. doi: 10.1073/pnas.93.15.8063. PubMed DOI PMC
Xiang Z., Bo X., Oglesby I., Ford A., Burnstock G. Localization of ATP-gated P2X2 receptor immunoreactivity in the rat hypothalamus. Brain Res. 1998;813:390–397. doi: 10.1016/S0006-8993(98)01073-7. PubMed DOI
Bhattacharya A., Vavra V., Svobodova I., Bendova Z., Vereb G., Zemkova H. Potentiation of inhibitory synaptic transmission by extracellular ATP in rat suprachiasmatic nuclei. J. Neurosci. 2013;33:8035–8044. doi: 10.1523/JNEUROSCI.4682-12.2013. PubMed DOI PMC
Lommen J., Stahr A., Ingenwerth M., Ali A.A.H., von Gall C. Time-of-day-dependent expression of purinergic receptors in mouse suprachiasmatic nucleus. Cell Tissue Res. 2017;369:579–590. doi: 10.1007/s00441-017-2634-8. PubMed DOI PMC
Loesch A., Miah S., Burnstock G. Ultrastructural localisation of ATP-gated P2X2 receptor immunoreactivity in the rat hypothalamo-neurohypophysial system. J. Neurocytol. 1999;28:495–504. doi: 10.1023/A:1007009222518. PubMed DOI
Knott T.K., Velazquez-Marrero C., Lemos J.R. ATP elicits inward currents in isolated vasopressinergic neurohypophysial terminals via P2X2 and P2X3 receptors. Pflug. Arch. 2005;450:381–389. doi: 10.1007/s00424-005-1471-x. PubMed DOI
Guo W., Sun J., Xu X., Bunstock G., He C., Xiang Z. P2X receptors are differentially expressed on vasopressin- and oxytocin-containing neurons in the supraoptic and paraventricular nuclei of rat hypothalamus. Histochem. Cell Biol. 2009;131:29–41. doi: 10.1007/s00418-008-0493-9. PubMed DOI
Knott T.K., Hussy N., Cuadra A.E., Lee R.H., Ortiz-Miranda S., Custer E.E., Lemos J.R. Adenosine trisphosphate appears to act via different receptors in terminals versus somata of the hypothalamic neurohypophysial system. J. Neuroendocrinol. 2012;24:681–689. doi: 10.1111/j.1365-2826.2012.02293.x. PubMed DOI PMC
Xiang Z., He C., Burnstock G. P2X5 receptors are expressed on neurons containing arginine vasopressin and nitric oxide synthase in the rat hypothalamus. Brain Res. 2006;1099:56–63. doi: 10.1016/j.brainres.2006.04.126. PubMed DOI
Loesch A., Burnstock G. Immunoreactivity to P2X(6) receptors in the rat hypothalamo- neurohypophysial system: An ultrastructural study with extravidin and colloidal gold-silver labelling. Neuroscience. 2001;106:621–631. doi: 10.1016/S0306-4522(01)00288-3. PubMed DOI
Gomes D.A., Song Z., Stevens W., Sladek C.D. Sustained stimulation of vasopressin and oxytocin release by ATP and phenylephrine requires recruitment of desensitization-resistant P2X purinergic receptors. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2009;297:R940–R949. doi: 10.1152/ajpregu.00358.2009. PubMed DOI PMC
Cuadra A.E., Custer E.E., Bosworth E.L., Lemos J.R. P2X7 receptors in neurohypophysial terminals: Evidence for their role in arginine-vasopressin secretion. J. Cell Physiol. 2014;229:333–342. doi: 10.1002/jcp.24453. PubMed DOI PMC
Chen Z.P., Levy A., Lightman S.L. Activation of specific ATP receptors induces a rapid increase in intracellular calcium ions in rat hypothalamic neurons. Brain Res. 1994;641:249–256. doi: 10.1016/0006-8993(94)90151-1. PubMed DOI
Troadec J.D., Thirion S., Nicaise G., Lemos J.R., Dayanithi G. ATP-evoked increases in [Ca2+]i and peptide release from rat isolated neurohypophysial terminals via a P2X2 purinoceptor. Pt 1J. Physiol. 1998;511:89–103. doi: 10.1111/j.1469-7793.1998.089bi.x. PubMed DOI PMC
Song Z., Vijayaraghavan S., Sladek C.D. ATP increases intracellular calcium in supraoptic neurons by activation of both P2X and P2Y purinergic receptors. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007;292:R423–R431. doi: 10.1152/ajpregu.00495.2006. PubMed DOI
Espallergues J., Solovieva O., Techer V., Bauer K., Alonso G., Vincent A., Hussy N. Synergistic activation of astrocytes by ATP and norepinephrine in the rat supraoptic nucleus. Neuroscience. 2007;148:712–723. doi: 10.1016/j.neuroscience.2007.03.043. PubMed DOI
Sladek C.D., Song Z. Diverse roles of G-protein coupled receptors in the regulation of neurohypophyseal hormone secretion. J. Neuroendocrinol. 2012;24:554–565. doi: 10.1111/j.1365-2826.2011.02268.x. PubMed DOI PMC
Day T.A., Sibbald J.R., Khanna S. ATP mediates an excitatory noradrenergic neuron input to supraoptic vasopressin cells. Brain Res. 1993;607:341–344. doi: 10.1016/0006-8993(93)91528-Z. PubMed DOI
Hiruma H., Bourque C.W. P2 purinoceptor-mediated depolarization of rat supraoptic neurosecretory cells in vitro. Pt 3J. Physiol. 1995;489:805–811. doi: 10.1113/jphysiol.1995.sp021093. PubMed DOI PMC
Ivetic M., Bhattacharyya A., Zemkova H. P2X2 Receptor Expression and Function Is Upregulated in the Rat Supraoptic Nucleus Stimulated Through Refeeding After Fasting. Front. Cell Neurosci. 2019;13:284. doi: 10.3389/fncel.2019.00284. PubMed DOI PMC
Mori M., Tsushima H., Matsuda T. Antidiuretic effects of ATP induced by microinjection into the hypothalamic supraoptic nucleus in water-loaded and ethanol-anesthetized rats. Jpn. J. Pharmacol. 1994;66:445–450. doi: 10.1254/jjp.66.445. PubMed DOI
Kapoor J.R., Sladek C.D. Purinergic and adrenergic agonists synergize in stimulating vasopressin and oxytocin release. J. Neurosci. 2000;20:8868–8875. doi: 10.1523/JNEUROSCI.20-23-08868.2000. PubMed DOI PMC
Buller K.M., Khanna S., Sibbald J.R., Day T.A. Central noradrenergic neurons signal via ATP to elicit vasopressin responses to haemorrhage. Neuroscience. 1996;73:637–642. doi: 10.1016/0306-4522(96)00156-X. PubMed DOI
Sperlagh B., Mergl Z., Juranyi Z., Vizi E.S., Makara G.B. Local regulation of vasopressin and oxytocin secretion by extracellular ATP in the isolated posterior lobe of the rat hypophysis. J. Endocrinol. 1999;160:343–350. doi: 10.1677/joe.0.1600343. PubMed DOI
Knott T.K., Marrero H.G., Custer E.E., Lemos J.R. Endogenous ATP potentiates only vasopressin secretion from neurohypophysial terminals. J. Cell Physiol. 2008;217:155–161. doi: 10.1002/jcp.21485. PubMed DOI
Custer E.E., Knott T.K., Cuadra A.E., Ortiz-Miranda S., Lemos J.R. P2X purinergic receptor knockout mice reveal endogenous ATP modulation of both vasopressin and oxytocin release from the intact neurohypophysis. J. Neuroendocrinol. 2012;24:674–680. doi: 10.1111/j.1365-2826.2012.02299.x. PubMed DOI PMC
Yoshimura M., Ohkubo J., Katoh A., Ohno M., Ishikura T., Kakuma T., Yoshimatsu H., Murphy D., Ueta Y. A c-fos-monomeric red fluorescent protein 1 fusion transgene is differentially expressed in rat forebrain and brainstem after chronic dehydration and rehydration. J. Neuroendocrinol. 2013;25:478–487. doi: 10.1111/jne.12022. PubMed DOI
Edgar R.S., Green E.W., Zhao Y., van Ooijen G., Olmedo M., Qin X., Xu Y., Pan M., Valekunja U.K., Feeney K.A., et al. Peroxiredoxins are conserved markers of circadian rhythms. Nature. 2012;485:459–464. doi: 10.1038/nature11088. PubMed DOI PMC
Gottlieb H.B., Ji L.L., Cunningham J.T. Role of superior laryngeal nerve and Fos staining following dehydration and rehydration in the rat. Physiol. Behav. 2011;104:1053–1058. doi: 10.1016/j.physbeh.2011.07.008. PubMed DOI PMC
Carreno F.R., Walch J.D., Dutta M., Nedungadi T.P., Cunningham J.T. Brain-derived neurotrophic factor-tyrosine kinase B pathway mediates NMDA receptor NR2B subunit phosphorylation in the supraoptic nuclei following progressive dehydration. J. Neuroendocrinol. 2011;23:894–905. doi: 10.1111/j.1365-2826.2011.02209.x. PubMed DOI PMC
Lucio-Oliveira F., Traslavina G.A., Borges B.D., Franci C.R. Modulation of the activity of vasopressinergic neurons by estrogen in rats refed with normal or sodium-free food after fasting. Neuroscience. 2015;284:325–336. doi: 10.1016/j.neuroscience.2014.09.076. PubMed DOI
Yao S.T., Gourine A.V., Spyer K.M., Barden J.A., Lawrence A.J. Localisation of P2X2 receptor subunit immunoreactivity on nitric oxide synthase expressing neurones in the brain stem and hypothalamus of the rat: A fluorescence immunohistochemical study. Neuroscience. 2003;121:411–419. doi: 10.1016/S0306-4522(03)00435-4. PubMed DOI
Cham J.L., Owens N.C., Barden J.A., Lawrence A.J., Badoer E. P2X purinoceptor subtypes on paraventricular nucleus neurones projecting to the rostral ventrolateral medulla in the rat. Exp. Physiol. 2006;91:403–411. doi: 10.1113/expphysiol.2005.032409. PubMed DOI
Ferreira-Neto H.C., Ribeiro I.M., Moreira T.S., Yao S.T., Antunes V.R. Purinergic P2 receptors in the paraventricular nucleus of the hypothalamus are involved in hyperosmotic-induced sympathoexcitation. Neuroscience. 2017;349:253–263. doi: 10.1016/j.neuroscience.2017.02.054. PubMed DOI
Du D., Jiang M., Liu M., Wang J., Xia C., Guan R., Shen L., Ji Y., Zhu D. Microglial P2X(7) receptor in the hypothalamic paraventricular nuclei contributes to sympathoexcitatory responses in acute myocardial infarction rat. Neurosci. Lett. 2015;587:22–28. doi: 10.1016/j.neulet.2014.12.026. PubMed DOI
Jacques-Silva M.C., Bernardi A., Rodnight R., Lenz G. ERK, PKC and PI3K/Akt pathways mediate extracellular ATP and adenosine-induced proliferation of U138-MG human glioma cell line. Oncology. 2004;67:450–459. doi: 10.1159/000082930. PubMed DOI
Bains J.S., Oliet S.H. Glia: They make your memories stick! Trends Neurosci. 2007;30:417–424. doi: 10.1016/j.tins.2007.06.007. PubMed DOI
Gordon G.R., Iremonger K.J., Kantevari S., Ellis-Davies G.C., MacVicar B.A., Bains J.S. Astrocyte-mediated distributed plasticity at hypothalamic glutamate synapses. Neuron. 2009;64:391–403. doi: 10.1016/j.neuron.2009.10.021. PubMed DOI PMC
Ferreira-Neto H.C., Antunes V.R., Stern J.E. Purinergic P2 and glutamate NMDA receptor coupling contributes to osmotically driven excitability in hypothalamic magnocellular neurosecretory neurons. J. Physiol. 2021;599:3531–3547. doi: 10.1113/JP281411. PubMed DOI PMC
Whitlock A., Burnstock G., Gibb A.J. The single-channel properties of purinergic P2X ATP receptors in outside-out patches from rat hypothalamic paraventricular parvocells. Pflug. Arch. 2001;443:115–122. doi: 10.1007/s004240100624. PubMed DOI
Ferreira-Neto H.C., Antunes V.R., Stern J.E. ATP stimulates rat hypothalamic sympathetic neurons by enhancing AMPA receptor-mediated currents. J. Neurophysiol. 2015;114:159–169. doi: 10.1152/jn.01011.2014. PubMed DOI PMC
Xu J., Bernstein A.M., Wong A., Lu X.H., Khoja S., Yang X.W., Davies D.L., Micevych P., Sofroniew M.V., Khakh B.S. P2X4 Receptor Reporter Mice: Sparse Brain Expression and Feeding-Related Presynaptic Facilitation in the Arcuate Nucleus. J. Neurosci. 2016;36:8902–8920. doi: 10.1523/JNEUROSCI.1496-16.2016. PubMed DOI PMC
Mori M., Tsushima H., Matsuda T. Antidiuretic effects of purinoceptor agonists injected into the hypothalamic paraventricular nucleus of water-loaded, ethanol-anesthetized rats. Neuropharmacology. 1992;31:585–592. doi: 10.1016/0028-3908(92)90191-Q. PubMed DOI
Cruz J.C., Bonagamba L.G., Machado B.H. Modulation of arterial pressure by P2 purinoceptors in the paraventricular nucleus of the hypothalamus of awake rats. Auton. Neurosci. Basic Clin. 2010;158:79–85. doi: 10.1016/j.autneu.2010.06.012. PubMed DOI
Minczuk K., Schlicker E., Krzyzewska A., Malinowska B. Angiotensin 1-7 injected into the rat paraventricular nucleus of hypothalamus increases blood pressure and heart rate via various receptors. Neuropharmacology. 2024;266:110279. doi: 10.1016/j.neuropharm.2024.110279. PubMed DOI
Busnardo C., Ferreira-Junior N.C., Cruz J.C., Machado B.H., Correa F.M., Resstel L.B. Cardiovascular responses to ATP microinjected into the paraventricular nucleus are mediated by nitric oxide and NMDA glutamate receptors in awake rats. Exp. Physiol. 2013;98:1411–1421. doi: 10.1113/expphysiol.2013.073619. PubMed DOI
Ferreira-Neto H.C., Yao S.T., Antunes V.R. Purinergic and glutamatergic interactions in the hypothalamic paraventricular nucleus modulate sympathetic outflow. Purinergic Signal. 2013;9:337–349. doi: 10.1007/s11302-013-9352-9. PubMed DOI PMC
Barad Z., Jacob-Tomas S., Sobrero A., Lean G., Hicks A.I., Yang J., Choe K.Y., Prager-Khoutorsky M. Unique Organization of Actin Cytoskeleton in Magnocellular Vasopressin Neurons in Normal Conditions and in Response to Salt-Loading. eNeuro. 2020;7 doi: 10.1523/ENEURO.0351-19.2020. PubMed DOI PMC
Balapattabi K., Little J.T., Farmer G.E., Cunningham J.T. High salt loading increases brain derived neurotrophic factor in supraoptic vasopressin neurones. J. Neuroendocrinol. 2018;30:e12639. doi: 10.1111/jne.12639. PubMed DOI PMC
Martins Sa R.W., Theparambil S.M., Dos Santos K.M., Christie I.N., Marina N., Cardoso B.V., Hosford P.S., Antunes V.R. Salt-loading promotes extracellular ATP release mediated by glial cells in the hypothalamic paraventricular nucleus of rats. Mol. Cell Neurosci. 2023;124:103806. doi: 10.1016/j.mcn.2022.103806. PubMed DOI
Haam J., Halmos K.C., Di S., Tasker J.G. Nutritional state-dependent ghrelin activation of vasopressin neurons via retrograde trans-neuronal-glial stimulation of excitatory GABA circuits. J. Neurosci. 2014;34:6201–6213. doi: 10.1523/JNEUROSCI.3178-13.2014. PubMed DOI PMC
Wei B., Cheng G., Bi Q., Lu C., Sun Q., Li L., Chen N., Hu M., Lu H., Xu X., et al. Microglia in the hypothalamic paraventricular nucleus sense hemodynamic disturbance and promote sympathetic excitation in hypertension. Immunity. 2024;57:2030–2042. doi: 10.1016/j.immuni.2024.07.011. PubMed DOI
Kanjhan R., Housley G.D., Burton L.D., Christie D.L., Kippenberger A., Thorne P.R., Luo L., Ryan A.F. Distribution of the P2X2 receptor subunit of the ATP-gated ion channels in the rat central nervous system. J. Comp. Neurol. 1999;407:11–32. doi: 10.1002/(SICI)1096-9861(19990428)407:1<11::AID-CNE2>3.0.CO;2-R. PubMed DOI
Lommen J., Detken J., Harr K., von Gall C., Ali A.A.H. Analysis of Spatial and Temporal Distribution of Purinergic P2 Receptors in the Mouse Hippocampus. Int. J. Mol. Sci. 2021;22:8078. doi: 10.3390/ijms22158078. PubMed DOI PMC
Cipolla-Neto J., Skorupa A.L., Ribeiro-Barbosa E.R., Bartol I., Mota S.R., Afeche S.C., Delagrange P., Guardiola-Lemaitre B., Canteras N.S. The role of the retrochiasmatic area in the control of pineal metabolism. Neuroendocrinology. 1999;69:97–104. doi: 10.1159/000054407. PubMed DOI
Yamazaki S., Ishida Y., Inouye S. Circadian rhythms of adenosine triphosphate contents in the suprachiasmatic nucleus, anterior hypothalamic area and caudate putamen of the rat—Negative correlation with electrical activity. Brain Res. 1994;664:237–240. doi: 10.1016/0006-8993(94)91978-X. PubMed DOI
Womac A.D., Burkeen J.F., Neuendorff N., Earnest D.J., Zoran M.J. Circadian rhythms of extracellular ATP accumulation in suprachiasmatic nucleus cells and cultured astrocytes. Eur. J. Neurosci. 2009;30:869–876. doi: 10.1111/j.1460-9568.2009.06874.x. PubMed DOI PMC
Hastings M.H., Maywood E.S., Brancaccio M. The Mammalian Circadian Timing System and the Suprachiasmatic Nucleus as Its Pacemaker. Biology. 2019;8:13. doi: 10.3390/biology8010013. PubMed DOI PMC
McArthur A.J., Hunt A.E., Gillette M.U. Melatonin action and signal transduction in the rat suprachiasmatic circadian clock: Activation of protein kinase C at dusk and dawn. Endocrinology. 1997;138:627–634. doi: 10.1210/endo.138.2.4925. PubMed DOI
Marpegan L., Swanstrom A.E., Chung K., Simon T., Haydon P.G., Khan S.K., Liu A.C., Herzog E.D., Beaule C. Circadian regulation of ATP release in astrocytes. J. Neurosci. 2011;31:8342–8350. doi: 10.1523/JNEUROSCI.6537-10.2011. PubMed DOI PMC
Burkeen J.F., Womac A.D., Earnest D.J., Zoran M.J. Mitochondrial calcium signaling mediates rhythmic extracellular ATP accumulation in suprachiasmatic nucleus astrocytes. J. Neurosci. 2011;31:8432–8440. doi: 10.1523/JNEUROSCI.6576-10.2011. PubMed DOI PMC
Dworak M., McCarley R.W., Kim T., Kalinchuk A.V., Basheer R. Sleep and brain energy levels: ATP changes during sleep. J. Neurosci. 2010;30:9007–9016. doi: 10.1523/JNEUROSCI.1423-10.2010. PubMed DOI PMC
Buell G., Collo G., Rassendren F. P2X receptors: An emerging channel family. Eur. J. Neurosci. 1996;8:2221–2228. doi: 10.1111/j.1460-9568.1996.tb00745.x. PubMed DOI
Terasawa E., Keen K.L., Grendell R.L., Golos T.G. Possible role of 5′-adenosine triphosphate in synchronization of Ca2+ oscillations in primate luteinizing hormone-releasing hormone neurons. Mol. Endocrinol. 2005;19:2736–2747. doi: 10.1210/me.2005-0034. PubMed DOI
Vastagh C., Rodolosse A., Solymosi N., Liposits Z. Altered Expression of Genes Encoding Neurotransmitter Receptors in GnRH Neurons of Proestrous Mice. Front. Cell Neurosci. 2016;10:230. doi: 10.3389/fncel.2016.00230. PubMed DOI PMC
Bjelobaba I., Nedeljkovic N., Subasic S., Lavrnja I., Pekovic S., Stojkov D., Rakic L., Stojiljkovic M. Immunolocalization of ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) in the rat forebrain. Brain Res. 2006;1120:54–63. doi: 10.1016/j.brainres.2006.08.114. PubMed DOI
Inoue N., Hazim S., Tsuchida H., Dohi Y., Ishigaki R., Takahashi A., Otsuka Y., Yamada K., Uenoyama Y., Tsukamura H. Hindbrain Adenosine 5-Triphosphate (ATP)-Purinergic Signaling Triggers LH Surge and Ovulation via Activation of AVPV Kisspeptin Neurons in Rats. J. Neurosci. 2023;43:2140–2152. doi: 10.1523/JNEUROSCI.1496-22.2023. PubMed DOI PMC
Constantin S., Klenke U., Wray S. The calcium oscillator of GnRH-1 neurons is developmentally regulated. Endocrinology. 2010;151:3863–3873. doi: 10.1210/en.2010-0118. PubMed DOI PMC
Bosma M.M. Ion channel properties and episodic activity in isolated immortalized gonadotropin-releasing hormone (GnRH) neurons. J. Membr. Biol. 1993;136:85–96. doi: 10.1007/BF00241492. PubMed DOI
Koshimizu T., Tomic M., Koshimizu M., Stojilkovic S.S. Identification of amino acid residues contributing to desensitization of the P2X2 receptor channel. J. Biol. Chem. 1998;273:12853–12857. doi: 10.1074/jbc.273.21.12853. PubMed DOI
Barnea A., Cho G., Katz B.M. A putative role for extracellular, A.T.P. facilitation of 67copper uptake and of copper stimulation of the release of luteinizing hormone-releasing hormone from median eminence explants. Brain Res. 1991;541:93–97. doi: 10.1016/0006-8993(91)91079-G. PubMed DOI
Zsarnovszky A., Bartha T., Frenyo L.V., Diano S. NTPDases in the neuroendocrine hypothalamus: Possible energy regulators of the positive gonadotrophin feedback. Reprod. Biol. Endocrinol. 2009;7:63. doi: 10.1186/1477-7827-7-63. PubMed DOI PMC
He M.L., Gonzalez-Iglesias A.E., Tomic M., Stojilkovic S.S. Release and extracellular metabolism of ATP by ecto-nucleotidase eNTPDase 1-3 in hypothalamic and pituitary cells. Purinergic Signal. 2005;1:135–144. doi: 10.1007/s11302-005-6208-y. PubMed DOI PMC
Allen-Worthington K., Xie J., Brown J.L., Edmunson A.M., Dowling A., Navratil A.M., Scavelli K., Yoon H., Kim D.G., Bynoe M.S., et al. The F0F1 ATP Synthase Complex Localizes to Membrane Rafts in Gonadotrope Cells. Mol. Endocrinol. 2016;30:996–1011. doi: 10.1210/me.2015-1324. PubMed DOI PMC
Chen Z.P., Kratzmeier M., Levy A., McArdle C.A., Poch A., Day A., Mukhopadhyay A.K., Lightman S.L. Evidence for a role of pituitary ATP receptors in the regulation of pituitary function. Proc. Natl. Acad. Sci. USA. 1995;92:5219–5223. doi: 10.1073/pnas.92.11.5219. PubMed DOI PMC
Tomic M., Jobin R.M., Vergara L.A., Stojilkovic S.S. Expression of purinergic receptor channels and their role in calcium signaling and hormone release in pituitary gonadotrophs. Integration of P2 channels in plasma membrane- and endoplasmic reticulum-derived calcium oscillations. J. Biol. Chem. 1996;271:21200–21208. doi: 10.1074/jbc.271.35.21200. PubMed DOI
Zemkova H., Balik A., Jiang Y., Kretschmannova K., Stojilkovic S.S. Roles of purinergic P2X receptors as pacemaking channels and modulators of calcium-mobilizing pathway in pituitary gonadotrophs. Mol. Endocrinol. 2006;20:1423–1436. doi: 10.1210/me.2005-0508. PubMed DOI
Gourine A.V., Melenchuk E.V., Poputnikov D.M., Gourine V.N., Spyer K.M. Involvement of purinergic signalling in central mechanisms of body temperature regulation in rats. Br. J. Pharmacol. 2002;135:2047–2055. doi: 10.1038/sj.bjp.0704679. PubMed DOI PMC
Klir J.J., McClellan J.L., Kluger M.J. Interleukin-1 beta causes the increase in anterior hypothalamic interleukin-6 during LPS-induced fever in rats. Pt 2Am. J. Physiol. 1994;266:R1845–R1848. doi: 10.1152/ajpregu.1994.266.6.R1845. PubMed DOI
Gourine A.V., Dale N., Gourine V.N., Spyer K.M. Fever in systemic inflammation: Roles of purines. Front. Biosci. 2004;9:1011–1022. doi: 10.2741/1301. PubMed DOI
Mehta V.B., Hart J., Wewers M.D. ATP-stimulated release of interleukin (IL)-1beta and IL-18 requires priming by lipopolysaccharide and is independent of caspase-1 cleavage. J. Biol. Chem. 2001;276:3820–3826. doi: 10.1074/jbc.M006814200. PubMed DOI
Hide I., Tanaka M., Inoue A., Nakajima K., Kohsaka S., Inoue K., Nakata Y. Extracellular ATP triggers tumor necrosis factor-alpha release from rat microglia. J. Neurochem. 2000;75:965–972. doi: 10.1046/j.1471-4159.2000.0750965.x. PubMed DOI
Gourine A.V., Poputnikov D.M., Zhernosek N., Melenchuk E.V., Gerstberger R., Spyer K.M., Gourine V.N. P2 receptor blockade attenuates fever and cytokine responses induced by lipopolysaccharide in rats. Br. J. Pharmacol. 2005;146:139–145. doi: 10.1038/sj.bjp.0706287. PubMed DOI PMC
Gourine A.V., Dale N., Llaudet E., Poputnikov D.M., Spyer K.M., Gourine V.N. Release of ATP in the central nervous system during systemic inflammation: Real-time measurement in the hypothalamus of conscious rabbits. Pt 1J. Physiol. 2007;585:305–316. doi: 10.1113/jphysiol.2007.143933. PubMed DOI PMC
Seidel B., Bigl M., Franke H., Kittner H., Kiess W., Illes P., Krugel U. Expression of purinergic receptors in the hypothalamus of the rat is modified by reduced food availability. Brain Res. 2006;1089:143–152. doi: 10.1016/j.brainres.2006.03.038. PubMed DOI
Steculorum S.M., Timper K., Engstrom Ruud L., Evers N., Paeger L., Bremser S., Kloppenburg P., Bruning J.C. Inhibition of P2Y6 Signaling in AgRP Neurons Reduces Food Intake and Improves Systemic Insulin Sensitivity in Obesity. Cell Rep. 2017;18:1587–1597. doi: 10.1016/j.celrep.2017.01.047. PubMed DOI
Pollatzek E., Hitzel N., Ott D., Raisl K., Reuter B., Gerstberger R. Functional expression of P2 purinoceptors in a primary neuroglial cell culture of the rat arcuate nucleus. Neuroscience. 2016;327:95–114. doi: 10.1016/j.neuroscience.2016.04.009. PubMed DOI
Wakamori M., Sorimachi M. Properties of native P2X receptors in large multipolar neurons dissociated from rat hypothalamic arcuate nucleus. Brain Res. 2004;1005:51–59. doi: 10.1016/j.brainres.2004.01.033. PubMed DOI
Steculorum S.M., Paeger L., Bremser S., Evers N., Hinze Y., Idzko M., Kloppenburg P., Bruning J.C. Hypothalamic UDP Increases in Obesity and Promotes Feeding via P2Y6-Dependent Activation of AgRP Neurons. Cell. 2015;162:1404–1417. doi: 10.1016/j.cell.2015.08.032. PubMed DOI
Sorimachi M., Ishibashi H., Moritoyo T., Akaike N. Excitatory effect of ATP on acutely dissociated ventromedial hypothalamic neurons of the rat. Neuroscience. 2001;105:393–401. doi: 10.1016/S0306-4522(01)00192-0. PubMed DOI
Kittner H., Franke H., Harsch J.I., El-Ashmawy I.M., Seidel B., Krugel U., Illes P. Enhanced food intake after stimulation of hypothalamic P2Y1 receptors in rats: Modulation of feeding behaviour by extracellular nucleotides. Eur. J. Neurosci. 2006;24:2049–2056. doi: 10.1111/j.1460-9568.2006.05071.x. PubMed DOI
Burnstock G., Gentile D. The involvement of purinergic signalling in obesity. Purinergic Signal. 2018;14:97–108. doi: 10.1007/s11302-018-9605-8. PubMed DOI PMC
Yu Y., He X., Zhang J., Tang C., Rong P. Transcutaneous auricular vagal nerve stimulation inhibits hypothalamic P2Y1R expression and attenuates weight gain without decreasing food intake in Zucker diabetic fatty rats. Sci. Prog. 2021;104:368504211009669. doi: 10.1177/00368504211009669. PubMed DOI PMC
Matsumoto N., Sorimachi M., Akaike N. Excitatory effects of ATP on rat dorsomedial hypothalamic neurons. Brain Res. 2004;1009:234–237. doi: 10.1016/j.brainres.2004.03.001. PubMed DOI
Kittner H., Franke H., Fischer W., Schultheis N., Krugel U., Illes P. Stimulation of P2Y1 receptors causes anxiolytic-like effects in the rat elevated plus-maze: Implications for the involvement of P2Y1 receptor-mediated nitric oxide production. Neuropsychopharmacology. 2003;28:435–444. doi: 10.1038/sj.npp.1300043. PubMed DOI
Vorobjev V.S., Sharonova I.N., Haas H.L., Sergeeva O.A. Expression and function of P2X purinoceptors in rat histaminergic neurons. Br. J. Pharmacol. 2003;138:1013–1019. doi: 10.1038/sj.bjp.0705144. PubMed DOI PMC
Vorobjev V.S., Sharonova I.N., Sergeeva O.A., Haas H.L. Modulation of ATP-induced currents by zinc in acutely isolated hypothalamic neurons of the rat. Br. J. Pharmacol. 2003;139:919–926. doi: 10.1038/sj.bjp.0705321. PubMed DOI PMC
Furukawa K., Ishibashi H., Akaike N. ATP-induced inward current in neurons freshly dissociated from the tuberomammillary nucleus. J. Neurophysiol. 1994;71:868–873. doi: 10.1152/jn.1994.71.3.868. PubMed DOI
Wollmann G., Acuna-Goycolea C., van den Pol A.N. Direct excitation of hypocretin/orexin cells by extracellular ATP at P2X receptors. J. Neurophysiol. 2005;94:2195–2206. doi: 10.1152/jn.00035.2005. PubMed DOI
Florenzano F., Viscomi M.T., Mercaldo V., Longone P., Bernardi G., Bagni C., Molinari M., Carrive P. P2X2R purinergic receptor subunit mRNA and protein are expressed by all hypothalamic hypocretin/orexin neurons. J. Comp. Neurol. 2006;498:58–67. doi: 10.1002/cne.21013. PubMed DOI
Jo Y.H., Role L.W. Coordinate release of ATP and GABA at in vitro synapses of lateral hypothalamic neurons. J. Neurosci. 2002;22:4794–4804. doi: 10.1523/JNEUROSCI.22-12-04794.2002. PubMed DOI PMC