• This record comes from PubMed

Effect of sulfate availability on phytoplankton stoichiometry

. 2025 Aug ; 61 (4) : 895-910. [epub] 20250625

Status In-Process Language English Country United States Media print-electronic

Document type Journal Article

Grant support
227799 FP7 Research infrastructures
42076206 National Natural Science Foundation of China
2020A1515011073 Basic and Applied Basic Research Foundation of Guangdong Province
PTA2019-017311-I Ministerio de Ciencia, Innovación y Universidades
661063 H2020 Marie Skłodowska-Curie Actions

Sulfur (S) is a key element in multiple metabolic pathways of phytoplankton cells. The effect of S availability on phytoplankton elemental quotas and stoichiometry has been addressed in few studies, using a limited number of species and with contradictory results. Using high-temperature combustion oxidation and X-ray fluorescence methods, we measured the concentrations of micro- and trace elements in monocultures of 20 marine phytoplankton species, grown with different sulfate concentrations representing those of early and modern oceans. We found that, independently from the sulfate concentration in the media, the red lineage species had higher S quotas than those of the green lineage, resulting in lower C:S (93) and higher S:P (1.06) than the green lineage species (226 and 0.76, respectively). This suggests a genetic constraint in the S quota and aligns with the sulfate facilitation hypothesis, shedding light on a metabolic basis for the expansion of the red lineage algae and their current dominance in ocean waters. We also have shown a physiological response of phytoplankton cells to different sulfate availability, by either decreasing phosphorus or increasing zinc quotas. The P response was more characteristic in the red lineage, with higher S requirements and metabolic S fluxes, while the Zn response was independent of genotypic constraints or plastid type.

See more in PubMed

Bertrand, M. , & Poirier, I. (2005). Photosynthetic organisms and excess of metals. Photosynthetica, 43, 345–353.

Bi, R. , Arndt, C. , & Sommer, U. (2012). Stoichiometric responses of phytoplankton species to the interactive effect of nutrient. Journal of Phycology, 48, 539–549. PubMed

Bodył, A. (2017). Did some red alga‐derived plastids evolve via kleptoplastidy? A hypothesis. Biological Reviews, 93, 201–222. PubMed

Burkhardt, S. , Zondervan, I. , & Riebesell, U. (1999). Effect of CO2 concentration on C:N:P ratio in marine phytoplankton: A species comparison. Limnology and Oceanography, 44, 683–690.

Cataldo, D. A. , Garland, T. R. , & Wildung, R. E. (1978). Nickel in plants: I. Uptake kinetic using intact soybean seedlings. Plant Physiology, 62, 563–565. PubMed PMC

Diaz, J. , Steffen, R. , Sanders, J. G. , Tang, Y. , & Duhamel, S. (2019). Preferential utilization of inorganic polyphosphate over other bioavailable phosphorus sources by the model diatoms PubMed PMC

Docampo, R. , de Souza, W. , Miranda, K. , Rohloff, P. , & Moreno, S. N. J. (2005). Acidocalcisomes? Conserved from bacteria to man. Nature Reviews Microbiology, 3, 251–261. PubMed

Droop, M. R. (1974). The nutrient status of algal cells in continuous culture. Journal of the Marine Biological Association of the United Kingdom, 54, 825–855.

Eide, D. J. (2006). Zinc transporters and the cellular trafficking of zinc. Biochimica et Biophysica Acta, 1763, 711–722. PubMed

Elser, J. J. , Sterner, R. W. , Gorokova, E. , Fagan, W. F. , Markow, T. A. , Cotner, J. B. , Harrison, J. F. , Hobbie, S. E. , Odell, G. M. , & Weider, L. J. (2000). Biological stoichiometry from genes to ecosystems. Ecology Letters, 3, 540–550.

Falkowski, P. G. (2000). Rationalizing elemental ratios in unicellular algae. Journal of Phycology, 36, 3–6.

Fanesi, A. , Raven, J. A. , & Giordano, M. (2014). Growth rate affects the responses of the green alga PubMed

Finkel, Z. V. , Beardall, J. , Flynn, K. J. , Quigg, A. , Rees, T. A. V. , & Raven, J. A. (2010). Phytoplankton in a changing world: Cell size and elemental stoichiometry. Journal of Plankton Research, 32, 119–137.

Finkel, Z. V. , Quigg, A. , Raven, J. A. , Reinfelder, J. R. , Schofield, O. , & Falkowski, P. G. (2006). Irradiance and the elemental stoichiometry of marine phytoplankton. Limnology and Oceanography, 51, 2690–2701.

Gao, C. , De Schamphelaere, K. A. C. , & Smolders, E. (2016). Zinc toxicity to the alga PubMed

Garcia, N. S. , Bonachela, J. A. , & Martiny, A. C. (2016). Interactions between growth‐dependent changes in cell size, nutrient supply and cellular elemental stoichiometry of marine PubMed PMC

Gastwirth, J. , Gel, Y. , Hui, W. , Lyubchich, V. , Miao, W. , & Noguchi, K. (2023). _lawstat: Tools for biostatistics, public policy, and law_. R package v.3.6. https://CRAN.R‐project.org/package=lawstat

Geider, R. , & La Roche, J. (2002). Redfield revisited: Variability of C:N:P in marine microalgae and its biochemical basis. European Journal of Phycology, 37, 37–41.

Giordano, M. (2001). Interactions between C and N metabolism in

Giordano, M. (2013). Homeostasis: An underestimated focal point of ecology and evolution. Plant Science, 211, 92–101. PubMed

Giordano, M. , Norici, A. , & Hell, R. (2005). Sulfur and phytoplankton: Acquisition, metabolism and impact on the environment. New Phytologist, 166, 371–382. PubMed

Giordano, M. , Olivieri, C. , Ratti, S. , Norici, A. , Raven, J. A. , & Knoll, A. H. (2018). A tale of two eras: Phytoplankton composition influenced by oceanic paleochemistry. Geobiology, 16, 498–506. PubMed

Giordano, M. , Palmucci, M. , & Raven, J. A. (2015). Growth rate hypothesis and efficiency of protein synthesis under different sulphate concentrations in two green algae. Plant, Cell and Environment, 38, 2313–2317. PubMed

Giordano, M. , & Prioretti, L. (2016). Sulfur and algae: Metabolism, ecology and evolution. In Borowitzka M., Beardall J., & Raven J. (Eds.), The physiology of microalgae. Developments in applied phycology (Vol. 6, pp. 185–209). Springer.

Giordano, M. , & Raven, J. A. (2014). Nitrogen and sulfur assimilation in plants and algae. Aquatic Botany, 118, 45–61.

Goldman, J. C. , McCarthy, J. J. , & Dwight, G. P. (1979). Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature, 279, 210–215.

Grzebyk, D. , Schofield, O. , Vetriani, C. , & Falkowski, P. G. (2003). The mesozoic radiation of eukaryotic algae: The portable plastid hypothesis. Journal of Phycology, 39, 259–267.

Heldal, M. , Norland, S. , Fagerbakke, K. M. , Thingstad, F. , & Bratbak, G. (1996). The elemental composition of bacteria: A signature of growth conditions? Marine Pollution Bulletin, 33, 3–9.

Heldal, M. , Scanlan, D. J. , Norland, S. , Thingstad, F. , & Mann, N. H. (2003). Elemental composition of single cells of various strains of marine

Ho, T.‐Y. , Quigg, A. , Finkel, Z. V. , Milligan, A. J. , Falkowski, P. G. , & Morel, M. M. (2003). The elemental composition of some marine phytoplankton. Journal of Phycology, 39, 1145–1159.

Hong‐Hermesdorf, A. , Miethke, M. , Gallaher, S. D. , Kropat, J. , Dodani, S. C. , Chan, J. , Barupala, D. , Domaille, D. W. , Shirasaki, D. I. , Loo, J. A. , Weber, P. K. , Pett‐Ridge, J. , Stemmler, T. L. , Chang, C. J. , & Merchant, S. S. (2014). Subcellular metal imaging identifies dynamic sites of Cu accumulation in PubMed PMC

Jensen, T. E. , Baxter, M. J. , Rachlin, J. W. , & Jani, V. (1982). Uptake of heavy metals by

John, E. H. , & Flynn, K. J. (2000). Growth dynamics and toxicity of

Kaffes, A. , Thoms, S. , Trimborn, S. , Rost, B. , Langer, G. , Richter, K.‐U. , Köhler, A. , Nocci, A. , & Giordano, M. (2010). Carbon and nitrogen fluxes in the marine coccolithophore

Klausmeier, C. , Litchman, E. , Daufresne, T. , & Levin, S. A. (2008). Phytoplankton stoichiometry. Ecological Research, 23, 479–485.

Klausmeier, C. A. , Litchman, E. , & Levin, S. A. (2004). Phytoplankton growth and stoichiometry under multiple nutrient limitation. Limnology and Oceanography, 49, 1463–1470.

Kustka, A. B. , Allen, A. E. , & Morel, F. M. M. (2007). Sequence analysis and transcriptional regulation of iron acquisition genes in two marine diatoms. Journal of Phycology, 43, 715–729.

Kuwabara, J. S. (1985). Phosphorus‐zinc interactive effects on growth by PubMed

La Roche, J. , Boyd, P. W. , Mckay, M. L. , & Geider, R. J. (1996). Flavodoxin as an

Lander, N. , Cordeiro, C. , Huang, G. , & Docampo, R. (2016). Polyphosphates and acidocalcisomes. Biochemical Society Transactions, 44, 1–6. PubMed PMC

Lewin, J. C. , Lewin, R. A. , & Philpott, D. E. (1958). Observations on PubMed

Loladze, I. , & Elser, J. J. (2011). The origins of the Redfield nitrogen‐to‐phosphorus ratio are in a homoeostatic protein‐to‐rRNA ratio. Ecology Letters, 14, 244–250. PubMed

Marchetti, A. , Parker, M. S. , Moccia, L. P. , Lin, E. O. , Arrieta, A. L. , Ribalet, F. , Murphy, M. E. P. , Maldonado, M. T. , & Armbrust, E. V. (2009). Ferritin is used for iron storage in bloom‐forming marine pennate diatoms. Nature, 457, 467–470. PubMed

Maret, W. (2012). New perspectives of zinc coordination environments in proteins. Journal of Inorganic Biochemistry, 111, 110–116. PubMed

Martiny, A. C. , Pham, C. T. A. , Primeau, F. W. , Vrugt, J. A. , Moore, J. K. , Levin, S. A. , & Lomas, M. W. (2013). Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nature Geoscience, 6, 279–283.

Montechiaro, F. , Hirschmugl, C. J. , Raven, J. A. , & Giordano, M. (2006). Homeostasis of cell composition during prolonged darkness. Plant, Cell & Environment, 29, 2198–2204. PubMed

Moorthi, S. D. , Schmitt, J. A. , Ryabov, A. , Tsakalakis, I. , Blasius, B. , Prelle, L. , Tiedemann, M. , & Hodapp, D. (2016). Unifying ecological stoichiometry and metabolic theory to predict production and trophic transfer in a marine planktonic food web. Philosophical Transactions of the Royal Society, B: Biological Sciences, 371, 20150270. PubMed PMC

Morel, F. M. M. , & Hering, J. G. (1993). Principles and applications of aquatic chemistry. Wiley.

Morel, F. M. M. , Milligan, A. J. , & Saito, M. A. (2014). 8.5 – Marine bioinorganic chemistry: The role of trace metals in the oceanic cycles of major nutrients. In Holland H. D. & Turekian K. K. (Eds.), Treatise on geochemistry (pp. 123–150). Elsevier.

Mulkidjanian, A. Y. , & Galperin, M. Y. (2009). On the origin of life in the zinc world. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on earth. Biology Direct, 4, 1–37. PubMed PMC

Nishida, S. , Kato, A. , Tsuzuki, C. , Yoshida, J. , & Mizuno, T. (2015). Induction of nickel accumulation in response to zinc deficiency in PubMed PMC

Norici, A. , Bazzoni, A. M. , Pugnetti, A. , Raven, J. A. , & Giordano, M. (2011). Impact of irradiance on the allocation in the coastal marine diatom PubMed

Norici, A. , Hell, R. , & Giordano, M. (2005). Sulfur and primary production in aquatic environments: An ecological perspective. Photosynthesis Research, 86, 409–417. PubMed

Nuester, J. , Vogt, S. , & Twining, B. S. (2012). Localization of iron withing centric diatoms of the genus PubMed

Palmucci, M. , & Giordano, M. (2012). Is cell composition related to the phylogenesis of microalgae? An investigation using hierarchical cluster analysis of Fourier transform infrared spectra of whole cells. Environmental and Experimental Botany, 75, 220–224.

Palmucci, M. , Ratti, S. , & Giordano, M. (2011). Ecological and evolutionary implications of carbon allocation in marine phytoplankton as a function of nitrogen availability: A Fourier transform infrared spectroscopy approach. Journal of Phycology, 47, 313–323. PubMed

Paulsson, M. , Ma, V. , & Blanck, H. (2002). Effects of zinc on the phosphorus availability to periphyton communities from the river Göta Älv. Aquatic Toxicology, 56, 103–113. PubMed

Perales‐Vela, H. V. , Pena‐Castro, J. M. , & Canizares‐Villanueva, R. O. (2006). Heavy metal detoxification in eukaryotic microalgae. Chemosphere, 64, 1–10. PubMed

Price, N. M. , & Morel, F. M. M. (1990). Cadmium and cobalt substitution for zinc in a marine diatom. Nature, 344, 658–660.

Prioretti, L. , & Giordano, M. (2016). Direct and indirect influence of sulfur availability on phytoplankton evolutionary trajectories. Journal of Phycology, 52, 1094–1102. PubMed

Prioretti, L. , Gontero, B. , Hell, R. , & Giordano, M. (2014). Diversity and regulation of ATP sulfurylase in photosynthetic organisms. Frontiers in Plant Science, 5, 597. PubMed PMC

Quigg, A. , Finkel, Z. V. , Irwin, A. J. , Rosenthal, Y. , Ho, T.‐Y. , Reinfelder, J. R. , Schifield, O. , Morel, F. M. M. , & Falkowski, P. G. (2003). The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Letters to Nature, 425, 291–294. PubMed

Quigg, A. , Irwin, A. J. , & Finkel, Z. V. (2011). The evolutionary inheritance of elemental stoichiometry in phytoplankton. Proceedings of the Royal Society, 278, 526–534. PubMed PMC

R Core Team . (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R‐project.org/

Ratti, S. , Knoll, A. H. , & Giordano, M. (2011). Did sulfate availability facilitate the evolutionary expansion of chlorophyll PubMed

Ratti, S. , Knoll, A. H. , & Giordano, M. (2013). Grazers and phytoplankton growth in the oceans: An experimental and evolutionary perspective. PLoS ONE, 8, e77349. PubMed PMC

Raven, J. A. , Evans, M. C. W. , & Korb, R. (1999). The role of trace metals in photosynthetic electron transport in O

Redfield, A. C. (1960). The biological control of chemical factors in the environment. Science in Progress, 11, 150–170. PubMed

Redfield, A. C. , Ketchum, B. H. , & Richards, F. A. (1963). The influence of organisms on the composition of the sea water. In Hill M. N. (Ed.), The Sea (Vol. 2, pp. 26–77). Interscience Publishers.

Redfield, A. C. (1934). On the Proportions of Organic Derivatives in Sea Water and Their Relation to the Composition of Plankton.

Rhee, G.‐Y. (1978). Effects of N:P atomic ratios nitrate limitation on algal growth, cell composition, nitrate uptake. Limnology and Oceanography, 23, 10–25.

Rhee, G.‐Y. , & Gotham, I. J. (1980). Optimum N:P ratios and coexistence of planktonic algae. Journal of Phycology, 16, 486–489.

Ríos, A. F. , & Fraga, F. (1987). Composición química elemental del plancton marino. Investigaciones Pesqueras, 51, 619–632.

Roh, H. C. , Collier, S. , Guthrie, J. , Robertson, J. D. , & Kornfeld, K. (2012). Lysosome‐related organelles in intestinal cells are a zinc storage site in PubMed PMC

Ruan, Z. , & Giordano, M. (2017). The use of NH4 PubMed

Ruiz, F. A. , Marchesini, N. , Seufferheld, M. , Govindjee, G. , & Docampo, R. (2001). The polyphosphate bodies of PubMed

Sakshaug, E. , Andersen, K. , Myklestad, S. , & Olsen, Y. (1983). Nutrient status of phytoplankton communities in Norwegian waters (marine, brackish, and fresh) as revealed by their chemical composition. Journal of Plankton Research, 5, 176–196.

Sanz‐Luque, E. , Bhaya, D. , & Grossman, A. R. (2020). Polyphosphate: A multifunctional metabolite in cyanobacteria and algae. Frontiers in Plant Science, 11, 938. PubMed PMC

Segura‐Noguera, M. , Blasco, D. , & Fortuño, J.‐M. (2016). Taxonomic and environmental variability in the elemental composition and stoichiometry of individual dinoflagellate and diatom cells from the NW Mediterranean Sea. PLoS ONE, 11, e0154050. PubMed PMC

Sterner, R. W. , & Elser, J. J. (2002). Ecological stoichiometry: The biology of elements from molecules to the biosphere. Princeton University Press.

Sunda, W. G. , & Huntsman, S. A. (1995). Iron uptake and growth limitation in oceanic and coastal phytoplankton. Marine Chemistry, 50, 189–206.

Sunda, W. G. , & Huntsman, S. A. (1998). Control of Cd concentrations in a coastal diatom by interactions among free ionic Cd, Zn, and Mn in seawater. Environmental Science & Technology, 32(19), 2261–2968.

Takahashi, H. , Kopriva, S. , Giordano, M. , Saito, K. , & Hell, R. (2011). Sulfur assimilation in photosynthetic organisms: Molecular functions and regulations of transporters and assimilatory enzymes. Annual Review of Plant Biology, 62, 157–184. PubMed

Thrane, J.‐E. , Hessen, D. O. , & Andersen, T. (2016). The impact of irradiance on optimal and cellular nitrogen to phosphorus ratios in phytoplankton. Ecology Letters, 19, 880–888. PubMed

Tovar‐Sanchez, A. , Sañudo‐Wilhelmy, S. A. , Garcia‐Vargas, M. , Weaver, R. S. , Popels, L. C. , & Hutchins, D. A. (2003). A trace metal clean reagent to remove surface‐bound iron from marine phytoplankton. Marine Chemistry, 82, 91–99.

Twining, B. S. , & Baines, S. B. (2013). The trace metal composition of marine phytoplankton. Annual Review of Marine Science, 5, 191–215. PubMed

Van Mooy, B. A. S. , Fredricks, H. F. , Pedler, B. E. , Dyhrman, S. T. , Karl, D. M. , Koblížek, M. , Lomas, M. W. , Mincer, T. J. , Moore, L. R. , Moutin, T. , Rappé, M. S. , & Webb, E. A. (2009). Phytoplankton in the ocean use non‐phosphorus lipids in response to phosphorus scarcity. Nature, 458, 69–72. PubMed

Williams, R. J. P. (2012). Zinc in evolution. Journal of Inorganic Biochemistry, 111, 104–109. PubMed

Yamasaki, S. , Sakata‐Sogawa, K. , Hasegawa, A. , Suzuki, T. , Kabu, K. , Sato, E. , Kurosaki, T. , Yamashita, S. , Tokunaga, M. , Nishida, K. , & Hirano, T. (2007). Zinc is a novel intracellular second messenger. Journal of Cell Biology, 216, 637–645. PubMed PMC

Yu, R.‐Q. , & Wang, W.‐X. (2004). Biokinetics of cadmium, selenium, and zinc in freshwater alga PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...