Effect of sulfate availability on phytoplankton stoichiometry
Status In-Process Language English Country United States Media print-electronic
Document type Journal Article
Grant support
227799
FP7 Research infrastructures
42076206
National Natural Science Foundation of China
2020A1515011073
Basic and Applied Basic Research Foundation of Guangdong Province
PTA2019-017311-I
Ministerio de Ciencia, Innovación y Universidades
661063
H2020 Marie Skłodowska-Curie Actions
PubMed
40560119
PubMed Central
PMC12351367
DOI
10.1111/jpy.70053
Knihovny.cz E-resources
- Keywords
- cell quota, green lineage, phytoplankton, red lineage, stoichiometry, sulfate facilitation hypothesis, sulfur,
- Publication type
- Journal Article MeSH
Sulfur (S) is a key element in multiple metabolic pathways of phytoplankton cells. The effect of S availability on phytoplankton elemental quotas and stoichiometry has been addressed in few studies, using a limited number of species and with contradictory results. Using high-temperature combustion oxidation and X-ray fluorescence methods, we measured the concentrations of micro- and trace elements in monocultures of 20 marine phytoplankton species, grown with different sulfate concentrations representing those of early and modern oceans. We found that, independently from the sulfate concentration in the media, the red lineage species had higher S quotas than those of the green lineage, resulting in lower C:S (93) and higher S:P (1.06) than the green lineage species (226 and 0.76, respectively). This suggests a genetic constraint in the S quota and aligns with the sulfate facilitation hypothesis, shedding light on a metabolic basis for the expansion of the red lineage algae and their current dominance in ocean waters. We also have shown a physiological response of phytoplankton cells to different sulfate availability, by either decreasing phosphorus or increasing zinc quotas. The P response was more characteristic in the red lineage, with higher S requirements and metabolic S fluxes, while the Zn response was independent of genotypic constraints or plastid type.
Institute of Microbiology Academy of Sciences of the Czech Republic Algatech Třeboň Czech Republic
Mediterranean Institute for Advanced Studies IMEDEA Esporles Spain
National Research Council Institute of Marine Science ISMAR Venezia VE Italy
See more in PubMed
Bertrand, M. , & Poirier, I. (2005). Photosynthetic organisms and excess of metals. Photosynthetica, 43, 345–353.
Bi, R. , Arndt, C. , & Sommer, U. (2012). Stoichiometric responses of phytoplankton species to the interactive effect of nutrient. Journal of Phycology, 48, 539–549. PubMed
Bodył, A. (2017). Did some red alga‐derived plastids evolve via kleptoplastidy? A hypothesis. Biological Reviews, 93, 201–222. PubMed
Burkhardt, S. , Zondervan, I. , & Riebesell, U. (1999). Effect of CO2 concentration on C:N:P ratio in marine phytoplankton: A species comparison. Limnology and Oceanography, 44, 683–690.
Cataldo, D. A. , Garland, T. R. , & Wildung, R. E. (1978). Nickel in plants: I. Uptake kinetic using intact soybean seedlings. Plant Physiology, 62, 563–565. PubMed PMC
Diaz, J. , Steffen, R. , Sanders, J. G. , Tang, Y. , & Duhamel, S. (2019). Preferential utilization of inorganic polyphosphate over other bioavailable phosphorus sources by the model diatoms PubMed PMC
Docampo, R. , de Souza, W. , Miranda, K. , Rohloff, P. , & Moreno, S. N. J. (2005). Acidocalcisomes? Conserved from bacteria to man. Nature Reviews Microbiology, 3, 251–261. PubMed
Droop, M. R. (1974). The nutrient status of algal cells in continuous culture. Journal of the Marine Biological Association of the United Kingdom, 54, 825–855.
Eide, D. J. (2006). Zinc transporters and the cellular trafficking of zinc. Biochimica et Biophysica Acta, 1763, 711–722. PubMed
Elser, J. J. , Sterner, R. W. , Gorokova, E. , Fagan, W. F. , Markow, T. A. , Cotner, J. B. , Harrison, J. F. , Hobbie, S. E. , Odell, G. M. , & Weider, L. J. (2000). Biological stoichiometry from genes to ecosystems. Ecology Letters, 3, 540–550.
Falkowski, P. G. (2000). Rationalizing elemental ratios in unicellular algae. Journal of Phycology, 36, 3–6.
Fanesi, A. , Raven, J. A. , & Giordano, M. (2014). Growth rate affects the responses of the green alga PubMed
Finkel, Z. V. , Beardall, J. , Flynn, K. J. , Quigg, A. , Rees, T. A. V. , & Raven, J. A. (2010). Phytoplankton in a changing world: Cell size and elemental stoichiometry. Journal of Plankton Research, 32, 119–137.
Finkel, Z. V. , Quigg, A. , Raven, J. A. , Reinfelder, J. R. , Schofield, O. , & Falkowski, P. G. (2006). Irradiance and the elemental stoichiometry of marine phytoplankton. Limnology and Oceanography, 51, 2690–2701.
Gao, C. , De Schamphelaere, K. A. C. , & Smolders, E. (2016). Zinc toxicity to the alga PubMed
Garcia, N. S. , Bonachela, J. A. , & Martiny, A. C. (2016). Interactions between growth‐dependent changes in cell size, nutrient supply and cellular elemental stoichiometry of marine PubMed PMC
Gastwirth, J. , Gel, Y. , Hui, W. , Lyubchich, V. , Miao, W. , & Noguchi, K. (2023). _lawstat: Tools for biostatistics, public policy, and law_. R package v.3.6. https://CRAN.R‐project.org/package=lawstat
Geider, R. , & La Roche, J. (2002). Redfield revisited: Variability of C:N:P in marine microalgae and its biochemical basis. European Journal of Phycology, 37, 37–41.
Giordano, M. (2001). Interactions between C and N metabolism in
Giordano, M. (2013). Homeostasis: An underestimated focal point of ecology and evolution. Plant Science, 211, 92–101. PubMed
Giordano, M. , Norici, A. , & Hell, R. (2005). Sulfur and phytoplankton: Acquisition, metabolism and impact on the environment. New Phytologist, 166, 371–382. PubMed
Giordano, M. , Olivieri, C. , Ratti, S. , Norici, A. , Raven, J. A. , & Knoll, A. H. (2018). A tale of two eras: Phytoplankton composition influenced by oceanic paleochemistry. Geobiology, 16, 498–506. PubMed
Giordano, M. , Palmucci, M. , & Raven, J. A. (2015). Growth rate hypothesis and efficiency of protein synthesis under different sulphate concentrations in two green algae. Plant, Cell and Environment, 38, 2313–2317. PubMed
Giordano, M. , & Prioretti, L. (2016). Sulfur and algae: Metabolism, ecology and evolution. In Borowitzka M., Beardall J., & Raven J. (Eds.), The physiology of microalgae. Developments in applied phycology (Vol. 6, pp. 185–209). Springer.
Giordano, M. , & Raven, J. A. (2014). Nitrogen and sulfur assimilation in plants and algae. Aquatic Botany, 118, 45–61.
Goldman, J. C. , McCarthy, J. J. , & Dwight, G. P. (1979). Growth rate influence on the chemical composition of phytoplankton in oceanic waters. Nature, 279, 210–215.
Grzebyk, D. , Schofield, O. , Vetriani, C. , & Falkowski, P. G. (2003). The mesozoic radiation of eukaryotic algae: The portable plastid hypothesis. Journal of Phycology, 39, 259–267.
Heldal, M. , Norland, S. , Fagerbakke, K. M. , Thingstad, F. , & Bratbak, G. (1996). The elemental composition of bacteria: A signature of growth conditions? Marine Pollution Bulletin, 33, 3–9.
Heldal, M. , Scanlan, D. J. , Norland, S. , Thingstad, F. , & Mann, N. H. (2003). Elemental composition of single cells of various strains of marine
Ho, T.‐Y. , Quigg, A. , Finkel, Z. V. , Milligan, A. J. , Falkowski, P. G. , & Morel, M. M. (2003). The elemental composition of some marine phytoplankton. Journal of Phycology, 39, 1145–1159.
Hong‐Hermesdorf, A. , Miethke, M. , Gallaher, S. D. , Kropat, J. , Dodani, S. C. , Chan, J. , Barupala, D. , Domaille, D. W. , Shirasaki, D. I. , Loo, J. A. , Weber, P. K. , Pett‐Ridge, J. , Stemmler, T. L. , Chang, C. J. , & Merchant, S. S. (2014). Subcellular metal imaging identifies dynamic sites of Cu accumulation in PubMed PMC
Jensen, T. E. , Baxter, M. J. , Rachlin, J. W. , & Jani, V. (1982). Uptake of heavy metals by
John, E. H. , & Flynn, K. J. (2000). Growth dynamics and toxicity of
Kaffes, A. , Thoms, S. , Trimborn, S. , Rost, B. , Langer, G. , Richter, K.‐U. , Köhler, A. , Nocci, A. , & Giordano, M. (2010). Carbon and nitrogen fluxes in the marine coccolithophore
Klausmeier, C. , Litchman, E. , Daufresne, T. , & Levin, S. A. (2008). Phytoplankton stoichiometry. Ecological Research, 23, 479–485.
Klausmeier, C. A. , Litchman, E. , & Levin, S. A. (2004). Phytoplankton growth and stoichiometry under multiple nutrient limitation. Limnology and Oceanography, 49, 1463–1470.
Kustka, A. B. , Allen, A. E. , & Morel, F. M. M. (2007). Sequence analysis and transcriptional regulation of iron acquisition genes in two marine diatoms. Journal of Phycology, 43, 715–729.
Kuwabara, J. S. (1985). Phosphorus‐zinc interactive effects on growth by PubMed
La Roche, J. , Boyd, P. W. , Mckay, M. L. , & Geider, R. J. (1996). Flavodoxin as an
Lander, N. , Cordeiro, C. , Huang, G. , & Docampo, R. (2016). Polyphosphates and acidocalcisomes. Biochemical Society Transactions, 44, 1–6. PubMed PMC
Lewin, J. C. , Lewin, R. A. , & Philpott, D. E. (1958). Observations on PubMed
Loladze, I. , & Elser, J. J. (2011). The origins of the Redfield nitrogen‐to‐phosphorus ratio are in a homoeostatic protein‐to‐rRNA ratio. Ecology Letters, 14, 244–250. PubMed
Marchetti, A. , Parker, M. S. , Moccia, L. P. , Lin, E. O. , Arrieta, A. L. , Ribalet, F. , Murphy, M. E. P. , Maldonado, M. T. , & Armbrust, E. V. (2009). Ferritin is used for iron storage in bloom‐forming marine pennate diatoms. Nature, 457, 467–470. PubMed
Maret, W. (2012). New perspectives of zinc coordination environments in proteins. Journal of Inorganic Biochemistry, 111, 110–116. PubMed
Martiny, A. C. , Pham, C. T. A. , Primeau, F. W. , Vrugt, J. A. , Moore, J. K. , Levin, S. A. , & Lomas, M. W. (2013). Strong latitudinal patterns in the elemental ratios of marine plankton and organic matter. Nature Geoscience, 6, 279–283.
Montechiaro, F. , Hirschmugl, C. J. , Raven, J. A. , & Giordano, M. (2006). Homeostasis of cell composition during prolonged darkness. Plant, Cell & Environment, 29, 2198–2204. PubMed
Moorthi, S. D. , Schmitt, J. A. , Ryabov, A. , Tsakalakis, I. , Blasius, B. , Prelle, L. , Tiedemann, M. , & Hodapp, D. (2016). Unifying ecological stoichiometry and metabolic theory to predict production and trophic transfer in a marine planktonic food web. Philosophical Transactions of the Royal Society, B: Biological Sciences, 371, 20150270. PubMed PMC
Morel, F. M. M. , & Hering, J. G. (1993). Principles and applications of aquatic chemistry. Wiley.
Morel, F. M. M. , Milligan, A. J. , & Saito, M. A. (2014). 8.5 – Marine bioinorganic chemistry: The role of trace metals in the oceanic cycles of major nutrients. In Holland H. D. & Turekian K. K. (Eds.), Treatise on geochemistry (pp. 123–150). Elsevier.
Mulkidjanian, A. Y. , & Galperin, M. Y. (2009). On the origin of life in the zinc world. 2. Validation of the hypothesis on the photosynthesizing zinc sulfide edifices as cradles of life on earth. Biology Direct, 4, 1–37. PubMed PMC
Nishida, S. , Kato, A. , Tsuzuki, C. , Yoshida, J. , & Mizuno, T. (2015). Induction of nickel accumulation in response to zinc deficiency in PubMed PMC
Norici, A. , Bazzoni, A. M. , Pugnetti, A. , Raven, J. A. , & Giordano, M. (2011). Impact of irradiance on the allocation in the coastal marine diatom PubMed
Norici, A. , Hell, R. , & Giordano, M. (2005). Sulfur and primary production in aquatic environments: An ecological perspective. Photosynthesis Research, 86, 409–417. PubMed
Nuester, J. , Vogt, S. , & Twining, B. S. (2012). Localization of iron withing centric diatoms of the genus PubMed
Palmucci, M. , & Giordano, M. (2012). Is cell composition related to the phylogenesis of microalgae? An investigation using hierarchical cluster analysis of Fourier transform infrared spectra of whole cells. Environmental and Experimental Botany, 75, 220–224.
Palmucci, M. , Ratti, S. , & Giordano, M. (2011). Ecological and evolutionary implications of carbon allocation in marine phytoplankton as a function of nitrogen availability: A Fourier transform infrared spectroscopy approach. Journal of Phycology, 47, 313–323. PubMed
Paulsson, M. , Ma, V. , & Blanck, H. (2002). Effects of zinc on the phosphorus availability to periphyton communities from the river Göta Älv. Aquatic Toxicology, 56, 103–113. PubMed
Perales‐Vela, H. V. , Pena‐Castro, J. M. , & Canizares‐Villanueva, R. O. (2006). Heavy metal detoxification in eukaryotic microalgae. Chemosphere, 64, 1–10. PubMed
Price, N. M. , & Morel, F. M. M. (1990). Cadmium and cobalt substitution for zinc in a marine diatom. Nature, 344, 658–660.
Prioretti, L. , & Giordano, M. (2016). Direct and indirect influence of sulfur availability on phytoplankton evolutionary trajectories. Journal of Phycology, 52, 1094–1102. PubMed
Prioretti, L. , Gontero, B. , Hell, R. , & Giordano, M. (2014). Diversity and regulation of ATP sulfurylase in photosynthetic organisms. Frontiers in Plant Science, 5, 597. PubMed PMC
Quigg, A. , Finkel, Z. V. , Irwin, A. J. , Rosenthal, Y. , Ho, T.‐Y. , Reinfelder, J. R. , Schifield, O. , Morel, F. M. M. , & Falkowski, P. G. (2003). The evolutionary inheritance of elemental stoichiometry in marine phytoplankton. Letters to Nature, 425, 291–294. PubMed
Quigg, A. , Irwin, A. J. , & Finkel, Z. V. (2011). The evolutionary inheritance of elemental stoichiometry in phytoplankton. Proceedings of the Royal Society, 278, 526–534. PubMed PMC
R Core Team . (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R‐project.org/
Ratti, S. , Knoll, A. H. , & Giordano, M. (2011). Did sulfate availability facilitate the evolutionary expansion of chlorophyll PubMed
Ratti, S. , Knoll, A. H. , & Giordano, M. (2013). Grazers and phytoplankton growth in the oceans: An experimental and evolutionary perspective. PLoS ONE, 8, e77349. PubMed PMC
Raven, J. A. , Evans, M. C. W. , & Korb, R. (1999). The role of trace metals in photosynthetic electron transport in O
Redfield, A. C. (1960). The biological control of chemical factors in the environment. Science in Progress, 11, 150–170. PubMed
Redfield, A. C. , Ketchum, B. H. , & Richards, F. A. (1963). The influence of organisms on the composition of the sea water. In Hill M. N. (Ed.), The Sea (Vol. 2, pp. 26–77). Interscience Publishers.
Redfield, A. C. (1934). On the Proportions of Organic Derivatives in Sea Water and Their Relation to the Composition of Plankton.
Rhee, G.‐Y. (1978). Effects of N:P atomic ratios nitrate limitation on algal growth, cell composition, nitrate uptake. Limnology and Oceanography, 23, 10–25.
Rhee, G.‐Y. , & Gotham, I. J. (1980). Optimum N:P ratios and coexistence of planktonic algae. Journal of Phycology, 16, 486–489.
Ríos, A. F. , & Fraga, F. (1987). Composición química elemental del plancton marino. Investigaciones Pesqueras, 51, 619–632.
Roh, H. C. , Collier, S. , Guthrie, J. , Robertson, J. D. , & Kornfeld, K. (2012). Lysosome‐related organelles in intestinal cells are a zinc storage site in PubMed PMC
Ruan, Z. , & Giordano, M. (2017). The use of NH4 PubMed
Ruiz, F. A. , Marchesini, N. , Seufferheld, M. , Govindjee, G. , & Docampo, R. (2001). The polyphosphate bodies of PubMed
Sakshaug, E. , Andersen, K. , Myklestad, S. , & Olsen, Y. (1983). Nutrient status of phytoplankton communities in Norwegian waters (marine, brackish, and fresh) as revealed by their chemical composition. Journal of Plankton Research, 5, 176–196.
Sanz‐Luque, E. , Bhaya, D. , & Grossman, A. R. (2020). Polyphosphate: A multifunctional metabolite in cyanobacteria and algae. Frontiers in Plant Science, 11, 938. PubMed PMC
Segura‐Noguera, M. , Blasco, D. , & Fortuño, J.‐M. (2016). Taxonomic and environmental variability in the elemental composition and stoichiometry of individual dinoflagellate and diatom cells from the NW Mediterranean Sea. PLoS ONE, 11, e0154050. PubMed PMC
Sterner, R. W. , & Elser, J. J. (2002). Ecological stoichiometry: The biology of elements from molecules to the biosphere. Princeton University Press.
Sunda, W. G. , & Huntsman, S. A. (1995). Iron uptake and growth limitation in oceanic and coastal phytoplankton. Marine Chemistry, 50, 189–206.
Sunda, W. G. , & Huntsman, S. A. (1998). Control of Cd concentrations in a coastal diatom by interactions among free ionic Cd, Zn, and Mn in seawater. Environmental Science & Technology, 32(19), 2261–2968.
Takahashi, H. , Kopriva, S. , Giordano, M. , Saito, K. , & Hell, R. (2011). Sulfur assimilation in photosynthetic organisms: Molecular functions and regulations of transporters and assimilatory enzymes. Annual Review of Plant Biology, 62, 157–184. PubMed
Thrane, J.‐E. , Hessen, D. O. , & Andersen, T. (2016). The impact of irradiance on optimal and cellular nitrogen to phosphorus ratios in phytoplankton. Ecology Letters, 19, 880–888. PubMed
Tovar‐Sanchez, A. , Sañudo‐Wilhelmy, S. A. , Garcia‐Vargas, M. , Weaver, R. S. , Popels, L. C. , & Hutchins, D. A. (2003). A trace metal clean reagent to remove surface‐bound iron from marine phytoplankton. Marine Chemistry, 82, 91–99.
Twining, B. S. , & Baines, S. B. (2013). The trace metal composition of marine phytoplankton. Annual Review of Marine Science, 5, 191–215. PubMed
Van Mooy, B. A. S. , Fredricks, H. F. , Pedler, B. E. , Dyhrman, S. T. , Karl, D. M. , Koblížek, M. , Lomas, M. W. , Mincer, T. J. , Moore, L. R. , Moutin, T. , Rappé, M. S. , & Webb, E. A. (2009). Phytoplankton in the ocean use non‐phosphorus lipids in response to phosphorus scarcity. Nature, 458, 69–72. PubMed
Williams, R. J. P. (2012). Zinc in evolution. Journal of Inorganic Biochemistry, 111, 104–109. PubMed
Yamasaki, S. , Sakata‐Sogawa, K. , Hasegawa, A. , Suzuki, T. , Kabu, K. , Sato, E. , Kurosaki, T. , Yamashita, S. , Tokunaga, M. , Nishida, K. , & Hirano, T. (2007). Zinc is a novel intracellular second messenger. Journal of Cell Biology, 216, 637–645. PubMed PMC
Yu, R.‐Q. , & Wang, W.‐X. (2004). Biokinetics of cadmium, selenium, and zinc in freshwater alga PubMed