SmartAlert: Machine learning-based patient-ventilator asynchrony detection system in intensive care units
Jazyk angličtina Země Irsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40582190
DOI
10.1016/j.cmpb.2025.108927
PII: S0169-2607(25)00344-X
Knihovny.cz E-zdroje
- Klíčová slova
- Deep neural networks, Mechanical ventilation, Patient-ventilator asynchrony, Real-time monitoring,
- MeSH
- asynchronie mezi pacientem a ventilátorem MeSH
- deep learning MeSH
- jednotky intenzivní péče * MeSH
- klinické alarmy MeSH
- lidé MeSH
- mechanické ventilátory * MeSH
- neuronové sítě MeSH
- reprodukovatelnost výsledků MeSH
- ROC křivka MeSH
- strojové učení * MeSH
- umělé dýchání * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND OBJECTIVE: Patient-ventilator asynchronies (PVA) are associated with ventilator-induced lung injury and increased mortality. Current detection methods rely on static thresholds, extensive preprocessing, or proprietary ventilator data. This study aimed to develop and validate a fully online, real-time system that detects and classifies PVAs directly from ventilator screen data while alerting clinicians based on severity. METHODS: The SmartAlert system was developed using ventilator screen recordings from ICU patients. It extracts pressure and flow waveforms from video recordings, converts them into time-series data, and employs deep neural networks to classify asynchronies and assign alarm levels from no urgency to most urgent. A dataset of 381,280 double-breath units was independently annotated by two expert intensivists. Two deep learning models were trained: one for alarm prediction and another for asynchrony classification (ineffective triggering, double cycling, high inspiratory effort, no asynchrony). Performance was evaluated using accuracy, sensitivity, specificity, and AUC-ROC, compared to expert consensus. RESULTS: SmartAlert demonstrated strong performance for alarm level prediction (overall accuracy: 83.8 %, weighted AUC-ROC: 0.943 [95 % CI: 0.941-0.945]) and PVA classification (weighted accuracy: 89.3 %, weighted AUC-ROC: 0.951 [95 % CI: 0.950-0.953]). It showed high specificity for urgent alarms (99.9 % for level 3) and PVA types (98.5 % for ineffective triggering, 96.9 % for double cycling, 94.8 % for high inspiratory effort). CONCLUSIONS: We developed and internally validated SmartAlert, an automated system that detects PVAs, classifies severity, and alerts clinicians in real time. Its potential to reduce alarm fatigue, optimize ventilator settings, and improve patient outcomes remains to be tested in clinical trials.
Citace poskytuje Crossref.org