Global analysis of the Hfq-mediated RNA interactome discovers a MicA homolog that affects the cytotoxicity, biofilm formation, and resistance to complement of Bordetella pertussis
Language English Country Great Britain, England Media print
Document type Journal Article
Grant support
CZ.02.01.01/00/22_008/0004575
JAC
CEP Register
23-05634S
European Union
RVO61388971
Czech Science Foundation
PubMed
40626561
PubMed Central
PMC12235514
DOI
10.1093/nar/gkaf614
PII: 8192818
Knihovny.cz E-resources
- MeSH
- 5' Untranslated Regions MeSH
- RNA, Bacterial * metabolism genetics MeSH
- Biofilms * growth & development MeSH
- Bordetella pertussis * genetics pathogenicity physiology MeSH
- Humans MeSH
- RNA, Small Untranslated * metabolism genetics MeSH
- RNA, Messenger metabolism MeSH
- Host Factor 1 Protein * metabolism genetics MeSH
- Bacterial Outer Membrane Proteins genetics metabolism MeSH
- Gene Expression Regulation, Bacterial MeSH
- Virulence genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- 5' Untranslated Regions MeSH
- RNA, Bacterial * MeSH
- RNA, Small Untranslated * MeSH
- RNA, Messenger MeSH
- OMPA outer membrane proteins MeSH Browser
- Host Factor 1 Protein * MeSH
- Bacterial Outer Membrane Proteins MeSH
Bordetella pertussis is a Gram-negative, strictly human re-emerging respiratory pathogen and the causative agent of whooping cough. The requirement of the RNA chaperone Hfq for the virulence of B. pertussis suggests that Hfq-dependent small regulatory RNAs (sRNAs) are involved in the virulence of this pathogen. To identify their potential mRNA targets, we applied a method combining experimental and computational approaches called RIL-seq. The majority of putative mRNA targets, including several virulence factors, interact with two sRNAs, CT_433 and CT_521, suggesting that these sRNAs may represent central riboregulatory nodes of B. pertussis. Furthermore, our data suggest that CT_532 sRNA can base pair with the 5'UTR region of ompA mRNA encoding outer membrane protein BP0943 (OmpA) and that CT_532, RNase III and Hfq are involved in the control of ompA expression. The CT_532 sRNA shares 60% identity with the E. coli sRNA MicA and its expression is also modulated by Hfq and stress conditions such as heat and cold shocks. Overall, these results suggest that CT_532 represents a MicA homolog. Importantly, the mutant lacking the first 22 nucleotides of CT_532 exhibits reduced cytotoxicity towards human macrophages and impaired biofilm production but increased resistance to complement compared to the wild type strain.
See more in PubMed
Mattoo S, Cherry JD Molecular pathogenesis, epidemiology, and clinical manifestations of respiratory infections due to PubMed DOI PMC
WHO Vaccine preventable deaths and the global immunization vision and strategy, 2006-2015. MMWR Morb Mortal Wkly Rep. 2006; 55:511–5. PubMed
Esposito S, Stefanelli P, Fry NK Pertussis prevention: reasons for resurgence, and differences in the current acellular Pertussis vaccines. Front Immunol. 2019; 10:1344. 10.3389/fimmu.2019.01344. PubMed DOI PMC
Smout E, Mellon D, Rae M Whooping cough rises sharply in UK and Europe. BMJ. 2024; 385:q736. 10.1136/bmj.q736. PubMed DOI
Gottesman S, McCullen CA, Guillier M et al. Small RNA regulators and the bacterial response to stress. Cold Spring Harbor Symp Quant Biol. 2006; 71:1–11. 10.1101/sqb.2006.71.016. PubMed DOI PMC
Wagner EGH, Romby P Small RNAs in bacteria and archaea: who they are, what they do, and how they do it. Adv Genet. 2015; 90:133–208. PubMed
Wagner EG, Altuvia S, Romby P Antisense RNAs in bacteria and their genetic elements. Adv Genet. 2002; 46:361–98. PubMed
Georg J, Hess WR cis-antisense RNA, another level of gene regulation in bacteria. Microbiol Mol Biol Rev. 2011; 75:286–300. 10.1128/MMBR.00032-10. PubMed DOI PMC
Vogel J, Luisi BF Hfq and its constellation of RNA. Nat Rev Micro. 2011; 9:578–89. 10.1038/nrmicro2615. PubMed DOI PMC
Brennan RG, Link TM Hfq structure, function and ligand binding. Curr Opin Microbiol. 2007; 10:125–33. 10.1016/j.mib.2007.03.015. PubMed DOI
Vecerek B, Rajkowitsch L, Sonnleitner E. et al. The C-terminal domain of PubMed DOI PMC
Updegrove TB, Zhang A, Storz G Hfq: the flexible RNA matchmaker. Curr Opin Microbiol. 2016; 30:133–8. 10.1016/j.mib.2016.02.003. PubMed DOI PMC
Guillier M, Gottesman S, Storz G Modulating the outer membrane with small RNAs. Genes Dev. 2006; 20:2338–48. 10.1101/gad.1457506. PubMed DOI
Papenfort K, Vogel J Regulatory RNA in bacterial pathogens. Cell Host Microbe. 2010; 8:116–27. 10.1016/j.chom.2010.06.008. PubMed DOI
Bobrovskyy M, Vanderpool CK, Richards GR Small RNAs regulate primary and secondary metabolism in gram-negative bacteria. Microbiol Spectr. 2015; 3:1–26. 10.1128/microbiolspec.MBP-0009-2014. PubMed DOI
Carrier MC, Bourassa JS, Masse E Cellular homeostasis: a small RNA at the crossroads of iron and photosynthesis. Curr Biol. 2017; 27:R380–3. 10.1016/j.cub.2017.04.003. PubMed DOI
Hot D, Slupek S, Wulbrecht B et al. Detection of small RNAs in PubMed DOI PMC
Bibova I, Skopova K, Masin J et al. The RNA chaperone Hfq is required for virulence of PubMed DOI PMC
Bibova I, Hot D, Keidel K et al. Transcriptional profiling of PubMed DOI PMC
Dienstbier A, Amman F, Stipl D et al. Comparative integrated Omics analysis of the Hfq regulon in PubMed DOI PMC
Amman F, D’Halluin A, Antoine R Primary transcriptome analysis reveals importance of IS elements for the shaping of the transcriptional landscape of PubMed DOI PMC
Keidel K, Amman F, Bibova I et al. Signal transduction-dependent small regulatory RNA is involved in glutamate metabolism of the human pathogen PubMed DOI PMC
Cotter PA, Jones AM Phosphorelay control of virulence gene expression in PubMed DOI
Lacey BW Antigenic modulation of PubMed DOI PMC
Melton AR, Weiss AA Characterization of environmental regulators of PubMed DOI PMC
Farman MR, Petrackova D, Kumar D Avirulent phenotype promotes PubMed DOI PMC
Coutte L, Antoine R, Slupek S et al. Combined RNAseq and ChIPseq analyses of the BvgA virulence regulator of PubMed DOI PMC
Moon K, Sim M, Tai CH Identification of BvgA-dependent and BvgA-independent small RNAs (sRNAs) in PubMed DOI PMC
Sim M, Nguyen J, Skopova K A highly conserved sRNA downregulates multiple genes, including a sigma(54) transcriptional activator, in the virulence mode of DOI
Sharma CM, Vogel J Experimental approaches for the discovery and characterization of regulatory small RNA. Curr Opin Microbiol. 2009; 12:536–46. 10.1016/j.mib.2009.07.006. PubMed DOI
Melamed S, Faigenbaum-Romm R, Peer A et al. Mapping the small RNA interactome in bacteria using RIL-seq. Nat Protoc. 2018; 13:1–33. 10.1038/nprot.2017.115. PubMed DOI
Melamed S, Peer A, Faigenbaum-Romm R et al. Global mapping of small RNA-target interactions in bacteria. Mol Cell. 2016; 63:884–97. 10.1016/j.molcel.2016.07.026. PubMed DOI PMC
Pearl Mizrahi S, Elbaz N, Argaman L et al. The impact of hfq-mediated sRNA-mRNA interactome on the virulence of enteropathogenic PubMed DOI PMC
Matera G, Altuvia Y, Gerovac M et al. Global RNA interactome of PubMed DOI
Huber M, Lippegaus A, Melamed S et al. An RNA sponge controls quorum sensing dynamics and biofilm formation in PubMed DOI PMC
Gebhardt MJ, Farland EA, Basu P et al. Hfq-licensed RNA-RNA interactome in PubMed DOI PMC
Liu F, Chen Z, Zhang S et al. In vivo RNA interactome profiling reveals 3'UTR-processed small RNA targeting a central regulatory hub. Nat Commun. 2023; 14:8106. 10.1038/s41467-023-43632-1. PubMed DOI PMC
Goh KJ, Altuvia Y, Argaman L et al. RIL-seq reveals extensive involvement of small RNAs in virulence and capsule regulation in hypervirulent PubMed DOI PMC
Inatsuka CS, Xu Q, Vujkovic-Cvijin I et al. Pertactin is required for PubMed DOI PMC
Kovach ME, Phillips RW, Elzer PH et al. pBBR1MCS: a broad-host-range cloning vector. BioTechniques. 1994; 16:800–2. PubMed
Martin M Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet j. 2011; 17:10–. 10.14806/ej.17.1.200. DOI
Karp PD, Billington R, Caspi R The BioCyc collection of microbial genomes and metabolic pathways. Brief Bioinform. 2019; 20:1085–93. 10.1093/bib/bbx085. PubMed DOI PMC
Li H Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv26 May 2013, preprint: not peer reviewed 10.48550/arXiv.1303.3997. DOI
Anders S, Pyl PT, Huber W HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015; 31:166–9. 10.1093/bioinformatics/btu638. PubMed DOI PMC
Risso D, Ngai J, Speed TP et al. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotechnol. 2014; 32:896–902. 10.1038/nbt.2931. PubMed DOI PMC
Love MI, Huber W, Anders S Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15:550. 10.1186/s13059-014-0550-8. PubMed DOI PMC
Bailey TL, Johnson J, Grant CE et al. The MEME suite. Nucleic Acids Res. 2015; 43:W39–49. 10.1093/nar/gkv416. PubMed DOI PMC
Bailey TL, Gribskov M Combining evidence using p-values: application to sequence homology searches. Bioinformatics. 1998; 14:48–54. 10.1093/bioinformatics/14.1.48. PubMed DOI
Rappsilber J, Mann M, Ishihama Y Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc. 2007; 2:1896–906. 10.1038/nprot.2007.261. PubMed DOI
Bruderer R, Bernhardt OM, Gandhi T Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol Cell Proteomics. 2015; 14:1400–10. 10.1074/mcp.M114.044305. PubMed DOI PMC
Tyanova S, Temu T, Sinitcyn P et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016; 13:731–40. 10.1038/nmeth.3901. PubMed DOI
Pfaffl MW A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001; 29:45e–45. 10.1093/nar/29.9.e45. PubMed DOI PMC
Drzmisek J, Petrackova D, Dienstbier A et al. T3SS chaperone of the CesT family is required for secretion of the anti-sigma factor BtrA in PubMed DOI PMC
Hamrock FJ, Ryan D, Shaibah A Global analysis of the RNA-RNA interactome in PubMed DOI PMC
Ruhland E, Siemers M, Gerst R et al. The global RNA-RNA interactome of PubMed DOI PMC
Chao Y, Vogel J A 3' UTR-derived small RNA provides the regulatory noncoding arm of the inner membrane stress response. Mol Cell. 2016; 61:352–63. 10.1016/j.molcel.2015.12.023. PubMed DOI
Ponath F, Hor J, Vogel J An overview of gene regulation in bacteria by small RNAs derived from mRNA 3' ends. FEMS Microbiol Rev. 2022; 46:fuac017. 10.1093/femsre/fuac017. PubMed DOI PMC
Johansen J, Rasmussen AA, Overgaard M et al. Conserved small non-coding RNAs that belong to the sigmaE regulon: role in down-regulation of outer membrane proteins. J Mol Biol. 2006; 364:1–8. 10.1016/j.jmb.2006.09.004. PubMed DOI
Papenfort K, Pfeiffer V, Mika F et al. SigmaE-dependent small RNAs of PubMed DOI PMC
Udekwu KI, Wagner EG Sigma E controls biogenesis of the antisense RNA MicA. Nucleic Acids Res. 2007; 35:1279–88. 10.1093/nar/gkl1154. PubMed DOI PMC
Hanawa T, Yonezawa H, Kawakami H et al. Role of PubMed PMC
Mann M, Wright PR, Backofen R IntaRNA 2.0: enhanced and customizable prediction of RNA-RNA interactions. Nucleic Acids Res. 2017; 45:W435–9. 10.1093/nar/gkx279. PubMed DOI PMC
Vogel J, Papenfort K Small non-coding RNAs and the bacterial outer membrane. Curr Opin Microbiol. 2006; 9:605–11. 10.1016/j.mib.2006.10.006. PubMed DOI
Benn G, Borrelli C, Prakaash D OmpA controls order in the outer membrane and shares the mechanical load. Proc. Natl. Acad. Sci. USA. 2024; 121:e2416426121. 10.1073/pnas.2416426121. PubMed DOI PMC
Weiser JN, Gotschlich EC Outer membrane protein A (OmpA) contributes to serum resistance and pathogenicity of PubMed DOI PMC
Kint G, De Coster D, Marchal K et al. The small regulatory RNA molecule MicA is involved in PubMed DOI PMC
D’Halluin A, Petrackova D, Curnova I An IS element-driven antisense RNA attenuates the expression of serotype 2 fimbriae and the cytotoxicity of PubMed DOI PMC
Lorenz C, Gesell T, Zimmermann B et al. Genomic SELEX for hfq-binding RNAs identifies genomic aptamers predominantly in antisense transcripts. Nucleic Acids Res. 2010; 38:3794–808. 10.1093/nar/gkq032. PubMed DOI PMC
Boudry P, Piattelli E, Drouineau E Identification of RNAs bound by Hfq reveals widespread RNA partners and a sporulation regulator in the human pathogen PubMed DOI PMC
Bar A, Argaman L, Altuvia Y et al. Prediction of novel bacterial small RNAs from RIL-seq RNA-RNA interaction data. Front Microbiol. 2021; 12:635070. 10.3389/fmicb.2021.635070. PubMed DOI PMC
Simons RW, Kleckner N Translational control of IS10 transposition. Cell. 1983; 34:683–91. 10.1016/0092-8674(83)90401-4. PubMed DOI
Ross JA, Ellis MJ, Hossain S et al. Hfq restructures RNA-IN and RNA-OUT and facilitates antisense pairing in the Tn10/IS10 system. RNA. 2013; 19:670–84. 10.1261/rna.037747.112. PubMed DOI PMC
Zhang A, Wassarman KM, Rosenow C et al. Global analysis of small RNA and mRNA targets of hfq. Mol Microbiol. 2003; 50:1111–24. 10.1046/j.1365-2958.2003.03734.x. PubMed DOI
Lee T, Feig AL The RNA binding protein hfq interacts specifically with tRNAs. RNA. 2008; 14:514–23. 10.1261/rna.531408. PubMed DOI PMC
Kuhle B, Chen Q, Schimmel P tRNA renovatio: rebirth through fragmentation. Mol Cell. 2023; 83:3953–71. 10.1016/j.molcel.2023.09.016. PubMed DOI PMC
Rasmussen AA, Eriksen M, Gilany K et al. Regulation of ompA mRNA stability: the role of a small regulatory RNA in growth phase-dependent control. Mol Microbiol. 2005; 58:1421–9. 10.1111/j.1365-2958.2005.04911.x. PubMed DOI
Udekwu KI, Darfeuille F, Vogel J et al. Hfq-dependent regulation of OmpA synthesis is mediated by an antisense RNA. Genes Dev. 2005; 19:2355–66. 10.1101/gad.354405. PubMed DOI PMC
Samsudin F, Ortiz-Suarez ML, Piggot TJ. et al. OmpA: a flexible clamp for bacterial cell wall attachment. Structure. 2016; 24:2227–35. 10.1016/j.str.2016.10.009. PubMed DOI
Choi U, Lee CR Distinct roles of outer membrane porins in antibiotic resistance and membrane integrity in PubMed DOI PMC
Skurnik D, Roux D, Cattoir V Enhanced in vivo fitness of carbapenem-resistant oprD mutants of PubMed DOI PMC
Pore D, Mahata N, Pal A et al. Outer membrane protein A (OmpA) of PubMed DOI PMC
Guan Q, Wang X, Wang X et al. Recombinant outer membrane protein A induces a protective immune response against PubMed DOI
Vytvytska O, Jakobsen JS, Balcunaite G et al. Host factor I, hfq, binds to PubMed DOI PMC
Vytvytska O, Moll I, Kaberdin VR et al. Hfq (HF1) stimulates ompA mRNA decay by interfering with ribosome binding. Genes Dev. 2000; 14:1109–18. 10.1101/gad.14.9.1109. PubMed DOI PMC
Van Puyvelde S, Vanderleyden J, De Keersmaecker SC Experimental approaches to identify small RNAs and their diverse roles in bacteria–what we have learnt in one decade of MicA research. Microbiologyopen. 2015; 4:699–711. 10.1002/mbo3.263. PubMed DOI PMC
Song T, Mika F, Lindmark B A new PubMed DOI PMC
Storz G, Vogel J, Wassarman KM Regulation by small RNAs in bacteria: expanding frontiers. Mol Cell. 2011; 43:880–91. 10.1016/j.molcel.2011.08.022. PubMed DOI PMC
De Lay N, Gottesman S A complex network of small non-coding RNAs regulate motility in PubMed DOI PMC
Perez-Riverol Y, Bandla C, Kundu DJ The PRIDE database at 20 years: 2025 update. Nucleic Acids Res. 2025; 53:D543–53. 10.1093/nar/gkae1011. PubMed DOI PMC
Zuker M Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003; 31:3406–15. 10.1093/nar/gkg595. PubMed DOI PMC