Crystal Structures of XeF2·2PtF4 and XeF2·2PdF4 Determined by 3D Electron Diffraction and Structural Models of XePtF6
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40658974
PubMed Central
PMC12308788
DOI
10.1021/acs.inorgchem.5c01740
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Although the demonstration of noble-gas reactivity represents one of the most significant breakthroughs of 20th-century inorganic chemistry, the first noble-gas compound, XePtF6 (XeF2·PtF4), lacks comprehensive structural characterization, and its structure remains to be elucidated. In this study, the XeF2-PtF4 and XeF2-PdF4 systems were reexplored, resulting in the crystal structure determination of XeF2·2PtF4 and XeF2·2PdF4 by 3D electron diffraction, marking the first successful structural characterization of compounds from these systems. Both compounds are isostructural with the previously characterized XeF2·2MnF4, featuring corrugated zigzag double-chain motifs formed by interconnected octahedral fluoridometallate(IV) units. Periodic density functional theory calculations were employed to evaluate the structural models of XeF2·PtF4, which were derived from experimentally determined crystal structures of XeF2-MF4 (M = Cr, Mn) analogues. The results reveal a preference for cis-bridging between adjacent platinum(IV) centers and show that a tetrameric ring structure and cis-chain polymorph, modeled after the crystal structure of XeF2·MnF4 and XeF2-deficient 3XeF2·2MnF4, respectively, emerge as energetically favored. The results of this study thus provide a direct structural link between platinum, palladium, and manganese analogues in the XeF2-MF4 systems and highlight the tetrameric ring structure and cis-chain as likely structural models of XeF2·PtF4.
Jožef Stefan Institute Jamova cesta 39 1000 Ljubljana Slovenia
Jožef Stefan International Postgraduate School Jamova cesta 39 1000 Ljubljana Slovenia
Zobrazit více v PubMed
Bartlett N.. Xenon Hexafluoroplatinate(V) Xe+[PtF6]− . Proc. Chem. Soc. 1962;(6):197–236. doi: 10.1039/ps9620000197. DOI
Hargittai I.. Neil Bartlett and the First Noble-Gas Compound. Struct. Chem. 2009;20(6):953–959. doi: 10.1007/s11224-009-9526-9. DOI
Bartlett N., Lohmann D. H.. 1005. Fluorides of the noble metals. Part II. Dioxygenyl Hexafluoroplatinate(V) O2 +[PtF6]− . J. Chem. Soc. 1962:5253. doi: 10.1039/jr9620005253. DOI
Graham L., Graudejus O., Jha N. K., Bartlett N.. Concerning the Nature of XePtF6 . Coord. Chem. Rev. 2000;197(1):321–334. doi: 10.1016/S0010-8545(99)00190-3. DOI
Bartlett, N. ; Jha, N. K. . The Xenon–Platinum Hexafluoride Reaction and Related Reactions. In Noble-gas compounds; Hyman, H. H. , Ed.; The University of Chicago Press: Chicago, 1963; pp 23–30.
Sladky F. O., Bulliner P. A., Bartlett N.. Xenon Difluoride as a Fluoride Ion Donor. Evidence for the Salts [Xe2F3]+[MF6]−, [XeF]+[MF6]− and [XeF]+[M2F11]− . J. Chem. Soc. A. 1969:2179–2188. doi: 10.1039/J19690002179. DOI
Bartlett N., Žemva B., Graham L.. Redox Reactions in the XeF2/Platinum Fluoride and XeF2/Palladium Fluoride Systems and the Conversion of XeF2 to XeF4 and Xe. J. Fluorine Chem. 1976;7(1):301–320. doi: 10.1016/S0022-1139(00)84003-8. DOI
Sladkey F. O., Bulliner P. A., Bartlett N., DeBoer B. G., Zalkin A.. Xenon Difluoride as a Fluoride Ion Donor and the Crystal Structure of [Xe2F3]+[AsF6]− . Chem. Commun. (London) 1968;(17):1048–1049. doi: 10.1039/c19680001048. DOI
Fir B. A., Gerken M., Pointner B. E., Mercier H. P. A., Dixon D. A., Schrobilgen G. J.. An X-Ray Crystallographic Study of [Xe2F3][SbF6] and Dimorphism in [Xe2F3][AsF6]; and a Density Functional Theory Study of the Xe2F3 + Cation. J. Fluorine Chem. 2000;105(1):159–167. doi: 10.1016/S0022-1139(00)00306-7. DOI
Elliott H. St. A., Lehmann J. F., Mercier H. P. A., Jenkins H. D. B., Schrobilgen G. J.. X-Ray Crystal Structures of [XeF][MF6] (M = As, Sb, Bi), [XeF][M2F11] (M = Sb, Bi) and Estimated Thermochemical Data and Predicted Stabilities for Noble-Gas Fluorocation Salts Using Volume-Based Thermodynamics. Inorg. Chem. 2010;49(18):8504–8523. doi: 10.1021/ic101152x. PubMed DOI
Žemva B., Slivnik J.. On the Xenon–Fluorine Reactions. J. Inorg. Nucl. Chem. 1976;28(Suppl 1):173–178. doi: 10.1016/0022-1902(76)80622-7. DOI
Žemva B., Slivnik J., Bohinc M.. On the Syntheses of Xenon Fluorotitanates(IV) J. Inorg. Nucl. Chem. 1976;38(1):73–74. doi: 10.1016/0022-1902(76)80051-6. DOI
Radan K., Goreshnik E., Žemva B.. Xenon(II) Polyfluoridotitanates(IV): Synthesis and Structural Characterization of [Xe2F3]+ and [XeF]+ Salts. Angew. Chem. Int. Ed. 2014;53(50):13715–13719. doi: 10.1002/anie.201406404. PubMed DOI
Slivnik J., Žemva B.. Reaktionen von Chrom(V)–fluorid mit Xenon und Xenondifluorid. Z. Anorg. Allg. Chem. 1971;385(1–2):137–141. doi: 10.1002/zaac.19713850119. DOI
Lutar K., Leban I., Ogrin T., Žemva B.. XeF2·CrF4 and (XeF5 +CrF5 –)4·XeF4: Syntheses, Crystal Structures and Some Properties. Eur. J. Solid State Inorg. Chem. 1992;29:713–727.
Lutar K., Borrmann H., Žemva B.. XeF2·2CrF4 and XeF5 +CrF5 –: Syntheses, Crystal Structures, and Some Properties. Inorg. Chem. 1998;37(12):3002–3006. doi: 10.1021/ic971580c. DOI
Žemva B., Zupan J., Slivnik J.. On the XeMnF6 Synthesis. J. Inorg. Nucl. Chem. 1971;33(11):3953–3955. doi: 10.1016/0022-1902(71)80305-6. DOI
Bohinc M., Grannec J., Slivnik J., Žemva B.. On the Syntheses of Xenon Fluoromanganates(IV) J. Inorg. Nucl. Chem. 1976;38(1):75–76. doi: 10.1016/0022-1902(76)80052-8. DOI
Motaln K., Gurung K., Brázda P., Kokalj A., Radan K., Dragomir M., Žemva B., Palatinus L., Lozinšek M.. Reactive Noble-Gas Compounds Explored by 3D Electron Diffraction: XeF2–MnF4 Adducts and a Facile Sample Handling Procedure. ACS Cent. Sci. 2024;10(9):1733–1741. doi: 10.1021/acscentsci.4c00815. PubMed DOI PMC
Družina B., Žemva B.. On the Synthesis of Xenon(II) Fluorostannates(IV) J. Fluorine Chem. 1986;34(2):233–239. doi: 10.1016/S0022-1139(00)85073-3. DOI
Žemva B.. Binary Fluorides of Noble-Gases and Their Compounds. Croat. Chem. Acta. 1988;61(1):163–187.
Žemva B., Jesih A., Templeton D. H., Zalkin A., Cheetham A. K., Bartlett N.. Phases in the System XeF2/XeF5AsF6 and Structural and Vibrational Evidence for the Following Ionization Pathway: XeF2 → XeF+ + F– . J. Am. Chem. Soc. 1987;109(24):7420–7427. doi: 10.1021/ja00258a028. DOI
Drews T., Rusch D., Seidel S., Willemsen S., Seppelt K.. Systematic Reactions of [Pt(PF3)4] Chem. – Eur. J. 2008;14(14):4280–4286. doi: 10.1002/chem.200701786. PubMed DOI
Milićev S., Lutar K., Žemva B., Ogrin T.. Vibrational Spectra of Solid CrF4 and of Three New Fluorochromate(IV) Complexes with Xe Fluorides, XeF2·CrF4, (XeF5 +CrF5 –)4·XeF4 and XeF5 +CrF5 – . J. Mol. Struct. 1994;323:1–6. doi: 10.1016/0022-2860(94)07984-6. DOI
Jensen, W. B. Crystal Coordination Formulas: A Flexible Notation for the Interpretation of Solid-State Structures. In The Structures of Binary Compounds; de Boer, F. R. ; Pettifor, D. G. , Eds.; Cohesion and Structure; Elsevier: North-Holland, Amsterdam, 1989; Vol. 2, pp 105–146.
Mazej Z., Goreshnik E.. Poly[Perfluorotitanate(IV)] Salts of [H3O]+, Cs+, [Me4N]+, and [Ph4P]+ and about the Existence of an Isolated [Ti2F9]− Anion in the Solid State. Inorg. Chem. 2009;48(14):6918–6923. doi: 10.1021/ic9009338. PubMed DOI
Scheibe B., Karttunen A. J., Kraus F.. Reactions of ClF3 with Main Group and Transition Metal Oxides: Access to Dioxychloronium(V) Fluoridometallates and Oxidofluoridometallates. Eur. J. Inorg. Chem. 2021;2021(4):405–421. doi: 10.1002/ejic.202000908. DOI
Mazej Z.. Polyanion Condensation in Inorganic and Hybrid Fluoridometallates (IV) of Octahedrally Coordinated Ti, Zr, Hf, V, Cr, W, Mn, Ge, Sn, and Pb. Molecules. 2024;29(6):No. 1361. doi: 10.3390/molecules29061361. PubMed DOI PMC
Gurung K., Uran E., Motaln K., Brázda P., Radan K., Lozinšek M., Palatinus L.. A Simple Cryo-Transfer Method for 3D Electron Diffraction Measurements of Highly Sensitive Samples. J. Appl. Crystallogr. 2025;58(3):1079–1084. doi: 10.1107/S1600576725002456. PubMed DOI PMC
Burgess J., Fraser C. J. W., McRae V. M., Peacock R. D., Russell D. R.. The Adduct XeF2·2SbF5: Its Crystal Structure and Thermochemistry. J. Inorg. Nucl. Chem. 1976;28:183–188. doi: 10.1016/0022-1902(76)80624-0. DOI
Alvarez S.. A Cartography of the van Der Waals Territories. Dalton Trans. 2013;42(24):8617–8636. doi: 10.1039/c3dt50599e. PubMed DOI
Mazej Z., Darriet J., Grannec J., Lutar K., Tressaud A., Žemva B.. Magnetic Properties of CrF4 and Two Fluorochromate(IV) Complexes with Xenon Fluorides, XeF2·CrF4 and (XeF5 +CrF5 –)4·XeF4 . J. Fluorine Chem. 1999;99(1):25–28. doi: 10.1016/S0022-1139(99)00101-3. DOI
Peters D., Miethchen R.. Symptoms and Treatment of Hydrogen Fluoride Injuries. J. Fluorine Chem. 1996;79(2):161–165. doi: 10.1016/S0022-1139(96)03484-7. DOI
Segal E. B.. First Aid for a Unique Acid, HF: A Sequel. Chem. Health Saf. 2000;7(1):18–23. doi: 10.1016/S1074-9098(99)00077-5. DOI
Möbs M., Karttunen A. J., Christe K. O., Kraus F.. Further Insights into the Chemical Synthesis of F2 and on Drying Moist HF. Inorg. Chem. 2024;63(16):7105–7112. doi: 10.1021/acs.inorgchem.4c00971. PubMed DOI
Šmalc, A. ; Lutar, K. . Xenon Difluoride (Modification). In Inorganic Syntheses; Grimes, R. N. , Ed.; John Wiley & Sons: 1992; Vol. 29, pp 1–4.
Mazej Z., Žemva B.. Synthesis of Arsenic Pentafluoride by Static Fluorination of As2O3 in a Closed System. J. Fluorine Chem. 2005;126(9):1432–1434. doi: 10.1016/j.jfluchem.2005.07.010. DOI
Lucier G. M., Elder S. H., Chacon L., Bartlett N.. The Room Temperature Oxidation of Gold, Ruthenium, Osmium, Iridium, Platinum, or Palladium with Fluorine in Anhydrous Hydrogen Fluoride. Eur. J. Solid State Inorg. Chem. 1996;33:809–820.
Rigaku, O. D. CrysAlisPro; Rigaku Corporation: Wroclaw, Poland, 2024.
Belak Vivod M., Jagličić Z., King G., Hansen T. C., Lozinšek M., Dragomir M.. Mechanochemical Synthesis and Magnetic Properties of the Mixed-Valent Binary Silver(I,II) Fluorides, AgI 2AgIIF4 and AgIAgIIF3 . J. Am. Chem. Soc. 2024;146(44):30510–30517. doi: 10.1021/jacs.4c11772. PubMed DOI PMC
Toby B. H., Von Dreele R. B.. GSAS-II: The Genesis of a Modern Open-Source All Purpose Crystallography Software Package. J. Appl. Crystallogr. 2013;46(2):544–549. doi: 10.1107/S0021889813003531. DOI
Rietveld H. M.. A Profile Refinement Method for Nuclear and Magnetic Structures. J. Appl. Crystallogr. 1969;2(2):65–71. doi: 10.1107/S0021889869006558. DOI
Palatinus L., Brázda P., Jelínek M., Hrdá J., Steciuk G., Klementová M.. Specifics of the Data Processing of Precession Electron Diffraction Tomography Data and Their Implementation in the Program PETS2.0 . Acta Crystallogr. B. 2019;75(4):512–522. doi: 10.1107/S2052520619007534. PubMed DOI
Brázda P., Klementová M., Krysiak Y., Palatinus L.. Accurate Lattice Parameters from 3D Electron Diffraction Data. I. Optical Distortions. IUCrJ. 2022;9(6):735–755. doi: 10.1107/S2052252522007904. PubMed DOI PMC
Petříček V., Dušek M., Palatinus L.. Crystallographic Computing System JANA2006: General features. Z. Kristallogr. Cryst. Mater. 2014;229(5):345–352. doi: 10.1515/zkri-2014-1737. DOI
Burla M. C., Caliandro R., Carrozzini B., Cascarano G. L., Cuocci C., Giacovazzo C., Mallamo M., Mazzone A., Polidori G.. Crystal Structure Determination and Refinement via SIR2014 . J. Appl. Crystallogr. 2015;48(1):306–309. doi: 10.1107/S1600576715001132. DOI
Palatinus L., Petříček V., Corrêa C. A.. Structure Refinement Using Precession Electron Diffraction Tomography and Dynamical Diffraction: Theory and Implementation. Acta Crystallogr. A. 2015;71(2):235–244. doi: 10.1107/S2053273315001266. PubMed DOI
Palatinus L.. Including Mosaicity Effects in the Dynamical Refinement against 3D ED Data. Acta Crystallogr. A. 2024;80:e225. doi: 10.1107/S2053273324097742. DOI
Putz, H. ; Brandenburg, K. . Diamond – Crystal and Molecular Structure Visualization; Crystal Impact: Bonn, Germany, 2024.
Kresse G., Furthmüller J.. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B. 1996;54(16):11169–11186. doi: 10.1103/PhysRevB.54.11169. PubMed DOI
Kresse G., Joubert D.. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B. 1999;59(3):1758–1775. doi: 10.1103/PhysRevB.59.1758. DOI
Sun J., Ruzsinszky A., Perdew J. P.. Strongly Constrained and Appropriately Normed Semilocal Density Functional. Phys. Rev. Lett. 2015;115(3):036402. doi: 10.1103/PhysRevLett.115.036402. PubMed DOI
Furness J. W., Kaplan A. D., Ning J., Perdew J. P., Sun J.. Accurate and Numerically Efficient r2SCAN Meta-Generalized Gradient Approximation. J. Phys. Chem. Lett. 2020;11(19):8208–8215. doi: 10.1021/acs.jpclett.0c02405. PubMed DOI
Grimme S., Antony J., Ehrlich S., Krieg H.. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010;132(15):154104. doi: 10.1063/1.3382344. PubMed DOI
Ehlert S., Huniar U., Ning J., Furness J. W., Sun J., Kaplan A. D., Perdew J. P., Brandenburg J. G.. r2SCAN-D4: Dispersion Corrected Meta-Generalized Gradient Approximation for General Chemical Applications. J. Chem. Phys. 2021;154(6):061101. doi: 10.1063/5.0041008. PubMed DOI
Olszewska S., Pillai S. B., Upadhyay D., Zdun K., Drapała J., Motaln K., Dragomir M., Lozinšek M., Kurzydłowski D.. Pressure-Induced Comproportionation in Palladium Trifluoride. Inorg. Chem. 2025;64(18):9026–9034. doi: 10.1021/acs.inorgchem.5c00465. PubMed DOI PMC
Monkhorst H. J., Pack J. D.. Special Points for Brillouin-Zone Integrations. Phys. Rev. B. 1976;13(12):5188–5192. doi: 10.1103/PhysRevB.13.5188. DOI
Falls Z., Avery P., Wang X., Hilleke K. P., Zurek E.. The XtalOpt Evolutionary Algorithm for Crystal Structure Prediction. J. Phys. Chem. C. 2021;125(3):1601–1620. doi: 10.1021/acs.jpcc.0c09531. DOI