What fMRI studies say about the nature of the psychedelic effect: a scoping review
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, systematický přehled
PubMed
40666257
PubMed Central
PMC12259628
DOI
10.3389/fnins.2025.1606798
Knihovny.cz E-zdroje
- Klíčová slova
- DMT, LSD, ayahuasca, entropy, fMRI, functional connectivity, psilocybin, psychedelics,
- Publikační typ
- časopisecké články MeSH
- systematický přehled MeSH
Research on psychedelic drugs, such as psilocybin, LSD or DMT, is a burgeoning field, with an increasing number of studies showing their promise in treatment of mental disorders as well as examining their mechanism of action. Determining their effect on the brain is crucial from clinical standpoint, but also offers highly promising avenues of advancement in basic neuroscience-functional magnetic resonance imaging (fMRI) is one of the most useful techniques to do so, with a number of newly published studies increasing every year. Here we present a scoping review of existing fMRI studies of serotonergic psychedelics to date, with a focus on finding unifying themes among them, in order to comprehensively grasp current directions within this field. We cluster the existing studies by fMRI modality and find several lines of developing concepts complementing the established models of psychedelic actions on the brain: namely, we describe a general picture of de-differentiation with the default mode network at its core captured by a diverse array of different techniques, complex changes to the thalamus, amygdala and medial temporal lobe structures, and the importance of the phenomenon of ego dissolution. Finally, contrasts to phenomenologically similar states and the successful process of anchoring fMRI findings to other markers are discussed.
Zobrazit více v PubMed
Aaronson S. T., van der Vaart A., Miller T., LaPratt J., Swartz K., Shoultz A., et al. (2024). Single-dose synthetic psilocybin with psychotherapy for treatment-resistant bipolar type II major depressive episodes: a nonrandomized open-label trial. JAMA Psychiatry 81, 555–562. doi: 10.1001/jamapsychiatry.2023.4685, PMID: PubMed DOI PMC
Arruda Sanchez T., Ramos L. R., Araujo F., Schenberg E. E., Yonamine M., Lobo I., et al. (2024). Emotion regulation effects of Ayahuasca in experienced subjects during implicit aversive stimulation: An fMRI study. J. Ethnopharmacol. 320:117430. doi: 10.1016/j.jep.2023.117430, PMID: PubMed DOI
Atasoy S., Roseman L., Kaelen M., Kringelbach M. L., Deco G., Carhart-Harris R. L. (2017). Connectome-harmonic decomposition of human brain activity reveals dynamical repertoire re-organization under LSD. Sci. Rep. 7:17661. doi: 10.1038/s41598-017-17546-0, PMID: PubMed DOI PMC
Atasoy S., Vohryzek J., Deco G., Carhart-Harris R. L., Kringelbach M. L. (2018). Common neural signatures of psychedelics: Frequency-specific energy changes and repertoire expansion revealed using connectome-harmonic decomposition. Prog. Brain Res. 242, 97–120. doi: 10.1016/bs.pbr.2018.08.009, PMID: PubMed DOI
Avram M., Müller F., Preller K. H., Razi A., Rogg H., Korda A., et al. (2023). Effective connectivity of thalamocortical interactions following d-amphetamine, LSD, and MDMA administration. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 9, 522–532. doi: 10.1016/j.bpsc.2023.07.010 PubMed DOI
Avram M., Müller F., Rogg H., Korda A., Andreou C., Holze F., et al. (2022). Characterizing Thalamocortical (Dys)connectivity Following D-Amphetamine, LSD, and MDMA Administration. Biol. Psychiatry 7, 885–894. doi: 10.1016/j.bpsc.2022.04.003, PMID: PubMed DOI
Avram M., Rogg H., Korda A., Andreou C., Müller F., Borgwardt S. (2021). Bridging the Gap? Altered Thalamocortical Connectivity in Psychotic and Psychedelic States. Front. Psych. 12:706017. doi: 10.3389/fpsyt.2021.706017, PMID: PubMed DOI PMC
Bagdasarian F. A., Hansen H. D., Chen J., Yoo C.-H., Placzek M. S., Hooker J. M., et al. (2024). Acute Effects of Hallucinogens on Functional Connectivity: Psilocybin and Salvinorin-A. ACS Chem. Neurosci. 15, 2654–2661. doi: 10.1021/acschemneuro.4c00245, PMID: PubMed DOI
Barrett F. S., Doss M. K., Sepeda N. D., Pekar J. J., Griffiths R. R. (2020a). Emotions and brain function are altered up to one month after a single high dose of psilocybin. Sci. Rep. 10:2214. doi: 10.1038/s41598-020-59282-y, PMID: PubMed DOI PMC
Barrett F. S., Krimmel S. R., Griffiths R. R., Seminowicz D. A., Mathur B. N. (2020b). Psilocybin acutely alters the functional connectivity of the claustrum with brain networks that support perception, memory, and attention. NeuroImage 218:116980. doi: 10.1016/j.neuroimage.2020.116980, PMID: PubMed DOI PMC
Bedford P., Hauke D. J., Wang Z., Roth V., Nagy-Huber M., Holze F., et al. (2023). The effect of lysergic acid diethylamide (LSD) on whole-brain functional and effective connectivity. Neuropsychopharmacology 48, 1175–1183. doi: 10.1038/s41386-023-01574-8, PMID: PubMed DOI PMC
Boccia M., Piccardi L., Guariglia P. (2015). The Meditative Mind: A Comprehensive Meta-Analysis of MRI Studies. Biomed. Res. Int. 2015:419808, 1–11. doi: 10.1155/2015/419808, PMID: PubMed DOI PMC
Bouso J. C., Palhano-Fontes F., Rodríguez-Fornells A., Ribeiro S., Sanches R., Crippa J. A. S., et al. (2015). Long-term use of psychedelic drugs is associated with differences in brain structure and personality in humans. Eur. Neuropsychopharmacol. 25, 483–492. doi: 10.1016/j.euroneuro.2015.01.008, PMID: PubMed DOI
Carhart-Harris R. L., Chandaria S., Erritzoe D. E., Gazzaley A., Girn M., Kettner H., et al. (2023). Canalization and plasticity in psychopathology. Neuropharmacology 226:109398. doi: 10.1016/j.neuropharm.2022.109398, PMID: PubMed DOI
Carhart-Harris R. L., Erritzoe D., Williams T., Stone J. M., Reed L. J., Colasanti A., et al. (2012a). Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin. Proc. Natl. Acad. Sci. USA 109, 2138–2143. doi: 10.1073/pnas.1119598109, PMID: PubMed DOI PMC
Carhart-Harris R. L., Friston K. J. (2019). REBUS and the Anarchic Brain: Toward a Unified Model of the Brain Action of Psychedelics. Pharmacol. Rev. 71, 316–344. doi: 10.1124/pr.118.017160, PMID: PubMed DOI PMC
Carhart-Harris R., Giribaldi B., Watts R., Baker-Jones M., Murphy-Beiner A., Murphy R., et al. (2021). Trial of Psilocybin versus Escitalopram for Depression. N. Engl. J. Med. 384, 1402–1411. doi: 10.1056/NEJMoa2032994, PMID: PubMed DOI
Carhart-Harris R. L., Leech R., Erritzoe D., Williams T. M., Stone J. M., Evans J., et al. (2013). Functional Connectivity Measures After Psilocybin Inform a Novel Hypothesis of Early Psychosis. Schizophr. Bull. 39, 1343–1351. doi: 10.1093/schbul/sbs117, PMID: PubMed DOI PMC
Carhart-Harris R. L., Leech R., Hellyer P. J., Shanahan M., Feilding A., Tagliazucchi E., et al. (2014). The entropic brain: a theory of conscious states informed by neuroimaging research with psychedelic drugs. Front. Hum. Neurosci. 8:20. doi: 10.3389/fnhum.2014.00020 PubMed DOI PMC
Carhart-Harris R. L., Leech R., Williams T. M., Erritzoe D., Abbasi N., Bargiotas T., et al. (2012b). Implications for psychedelic-assisted psychotherapy: Functional magnetic resonance imaging study with psilocybin. Br. J. Psychiatry 200, 238–244. doi: 10.1192/bjp.bp.111.103309, PMID: PubMed DOI
Carhart-Harris R. L., Muthukumaraswamy S., Roseman L., Kaelen M., Droog W., Murphy K., et al. (2016). Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proc. Natl. Acad. Sci. USA 113, 4853–4858. doi: 10.1073/pnas.1518377113, PMID: PubMed DOI PMC
Carhart-Harris R. L., Roseman L., Bolstridge M., Demetriou L., Pannekoek J. N., Wall M. B., et al. (2017). Psilocybin for treatment-resistant depression: fMRI-measured brain mechanisms. Sci. Rep. 7:13187. doi: 10.1038/s41598-017-13282-7, PMID: PubMed DOI PMC
Castelhano J., Lima G., Teixeira M., Soares C., Pais M., Castelo-Branco M. (2021). The Effects of Tryptamine Psychedelics in the Brain: A meta-Analysis of Functional and Review of Molecular Imaging Studies. Front. Pharmacol. 12:739053. doi: 10.3389/fphar.2021.739053, PMID: PubMed DOI PMC
Chen J. E., Glover G. H. (2015). Functional Magnetic Resonance Imaging Methods. Neuropsychol. Rev. 25, 289–313. doi: 10.1007/s11065-015-9294-9, PMID: PubMed DOI PMC
Dai R., Larkin T. E., Huang Z., Tarnal V., Picton P., Vlisides P. E., et al. (2023). Classical and non-classical psychedelic drugs induce common network changes in human cortex. NeuroImage 273:120097. doi: 10.1016/j.neuroimage.2023.120097, PMID: PubMed DOI
Daws R. E., Timmermann C., Giribaldi B., Sexton J. D., Wall M. B., Erritzoe D., et al. (2022). Increased global integration in the brain after psilocybin therapy for depression. Nat. Med. 28, 844–851. doi: 10.1038/s41591-022-01744-z, PMID: PubMed DOI
de Araujo D. B., Ribeiro S., Cecchi G. A., Carvalho F. M., Sanchez T. A., Pinto J. P., et al. (2011). Seeing with the eyes shut: Neural basis of enhanced imagery following ayahuasca ingestion. Hum. Brain Mapp. 33, 2550–2560. doi: 10.1002/hbm.21381, PMID: PubMed DOI PMC
Doss M. K., Madden M. B., Gaddis A., Nebel M. B., Griffiths R. R., Mathur B. N., et al. (2022). Models of psychedelic drug action: Modulation of cortical-subcortical circuits. Brain 145, 441–456. doi: 10.1093/brain/awab406, PMID: PubMed DOI PMC
Duerler P., Brem S., Fraga-González G., Neef T., Allen M., Zeidman P., et al. (2021). Psilocybin induces aberrant prediction error processing of tactile mismatch responses-a simultaneous EEG-FMRI study. Cereb. Cortex 32, 186–196. doi: 10.1093/cercor/bhab202, PMID: PubMed DOI
Duerler P., Schilbach L., Stämpfli P., Vollenweider F. X., Preller K. H. (2020). LSD-induced increases in social adaptation to opinions similar to one’s own are associated with stimulation of serotonin receptors. Sci. Rep. 10:12181. doi: 10.1038/s41598-020-68899-y, PMID: PubMed DOI PMC
Frautschi P. C., Singh A. P., Stowe N. A., Yu J.-P. J. (2024). Multimodal Neuroimaging of the Effect of Serotonergic Psychedelics on the Brain. AJNR Am. J. Neuroradiol. 45, 833–840. doi: 10.3174/ajnr.A8118, PMID: PubMed DOI PMC
Gaddis A., Lidstone D. E., Nebel M. B., Griffiths R. R., Mostofsky S. H., Mejia A. F., et al. (2022). Psilocybin induces spatially constrained alterations in thalamic functional organizaton and connectivity. NeuroImage 260:119434. doi: 10.1016/j.neuroimage.2022.119434, PMID: PubMed DOI PMC
Gattuso J. J., Perkins D., Ruffell S., Lawrence A. J., Hoyer D., Jacobson L. H., et al. (2022). Default mode network modulation by psychedelics: a systematic review. Int. J. Neuropsychopharmacol. 26, 155–188. doi: 10.1093/ijnp/pyac074, PMID: PubMed DOI PMC
Gaynes B. N., Warden D., Trivedi M. H., Wisniewski S. R., Fava M., Rush A. J. (2009). What did STAR*D teach us? Results from a large-scale, practical, clinical trial for patients with depression. Psychiatr. Serv. 60, 1439–1445. doi: 10.1176/ps.2009.60.11.1439, PMID: PubMed DOI
Gill H., Puramat P., Patel P., Gill B., Marks C. A., Rodrigues N. B., et al. (2022). The Effects of Psilocybin in Adults with Major Depressive Disorder and the General Population: Findings from Neuroimaging Studies. Psychiatry Res. 313:114577. doi: 10.1016/j.psychres.2022.114577, PMID: PubMed DOI
Girn M., Roseman L., Bernhardt B., Smallwood J., Carhart-Harris R., Nathan Spreng R. (2022). Serotonergic psychedelic drugs LSD and psilocybin reduce the hierarchical differentiation of unimodal and transmodal cortex. NeuroImage 256:119220. doi: 10.1016/j.neuroimage.2022.119220, PMID: PubMed DOI
Griffiths R. R., Johnson M. W., Richards W. A., Richards B. D., Jesse R., MacLean K. A., et al. (2018). Psilocybin-occasioned mystical-type experience in combination with meditation and other spiritual practices produces enduring positive changes in psychological functioning and in trait measures of prosocial attitudes and behaviors. J. Psychopharmacol. 32, 49–69. doi: 10.1177/0269881117731279, PMID: PubMed DOI PMC
Holze F., Singh N., Liechti M. E., D’Souza D. C. (2024). Serotonergic Psychedelics: A Comparative Review of Efficacy, Safety, Pharmacokinetics, and Binding Profile. Biol. Psychiatry 9, 472–489. doi: 10.1016/j.bpsc.2024.01.007, PMID: PubMed DOI
Kaelen M., Roseman L., Kahan J., Santos-Ribeiro A., Orban C., Lorenz R., et al. (2016). LSD modulates music-induced imagery via changes in parahippocampal connectivity. Eur. Neuropsychopharmacol. 26, 1099–1109. doi: 10.1016/j.euroneuro.2016.03.018, PMID: PubMed DOI
Kočárová R., Horáček J., Carhart-Harris R. (2021). Does psychedelic therapy have a transdiagnostic action and prophylactic potential? Front. Psych. 12:661233. doi: 10.3389/fpsyt.2021.661233, PMID: PubMed DOI PMC
Kozáková E., Bakštein E., Havlíček O., Bečev O., Knytl P., Zaytseva Y., et al. (2020). Disrupted sense of agency as a state marker of first-episode schizophrenia: a large-scale follow-up study. Front. Psych. 11:570570. doi: 10.3389/fpsyt.2020.570570, PMID: PubMed DOI PMC
Kraehenmann R., Preller K. H., Scheidegger M., Pokorny T., Bosch O. G., Seifritz E., et al. (2015a). Psilocybin-Induced Decrease in Amygdala Reactivity Correlates with Enhanced Positive Mood in Healthy Volunteers. Biol. Psychiatry 78, 572–581. doi: 10.1016/j.biopsych.2014.04.010, PMID: PubMed DOI
Kraehenmann R., Schmidt A., Friston K., Preller K. H., Seifritz E., Vollenweider F. X. (2015b). The mixed serotonin receptor agonist psilocybin reduces threat-induced modulation of amygdala connectivity. Neuroimage Clin. 11, 53–60. doi: 10.1016/j.nicl.2015.08.009 PubMed DOI PMC
Kwan A. C., Olson D. E., Preller K. H., Roth B. L. (2022). The neural basis of psychedelic action. Nat. Neurosci. 25, 1407–1419. doi: 10.1038/s41593-022-01177-4, PMID: PubMed DOI PMC
Lawn T., Dipasquale O., Vamvakas A., Tsougos I., Mehta M. A., Howard M. A. (2022). Differential contributions of serotonergic and dopaminergic functional connectivity to the phenomenology of LSD. Psychopharmacology 239, 1797–1808. doi: 10.1007/s00213-022-06117-5, PMID: PubMed DOI PMC
Lebedev A. V., Kaelen M., Lövdén M., Nilsson J., Feilding A., Nutt D. J., et al. (2016). LSD-induced entropic brain activity predicts subsequent personality change. Hum. Brain Mapp. 37, 3203–3213. doi: 10.1002/hbm.23234, PMID: PubMed DOI PMC
Lebedev A. V., Lövdén M., Rosenthal G., Feilding A., Nutt D. J., Carhart-Harris R. L. (2015). Finding the self by losing the self: Neural correlates of ego-dissolution under psilocybin. Hum. Brain Mapp. 36, 3137–3153. doi: 10.1002/hbm.22833, PMID: PubMed DOI PMC
Leptourgos P., Fortier-Davy M., Carhart-Harris R., Corlett P. R., Dupuis D., Halberstadt A. L., et al. (2020). Hallucinations Under Psychedelics and in the Schizophrenia Spectrum: An Interdisciplinary and Multiscale Comparison. Schizophr. Bull. 46, 1396–1408. doi: 10.1093/schbul/sbaa117, PMID: PubMed DOI PMC
Linguiti S., Vogel J. W., Sydnor V. J., Pines A., Wellman N., Basbaum A., et al. (2023). Functional imaging studies of acute administration of classic psychedelics, ketamine, and MDMA: Methodological limitations and convergent results. Neurosci. Biobehav. Rev. 154:105421. doi: 10.1016/j.neubiorev.2023.105421, PMID: PubMed DOI
Lord L.-D., Expert P., Atasoy S., Roseman L., Rapuano K., Lambiotte R., et al. (2019). Dynamical exploration of the repertoire of brain networks at rest is modulated by psilocybin. NeuroImage 199, 127–142. doi: 10.1016/j.neuroimage.2019.05.060, PMID: PubMed DOI
Luppi A. I., Carhart-Harris R. L., Roseman L., Pappas I., Menon D. K., Stamatakis E. A. (2021). LSD alters dynamic integration and segregation in the human brain. NeuroImage 227:117653. doi: 10.1016/j.neuroimage.2020.117653, PMID: PubMed DOI PMC
Luppi A. I., Hansen J. Y., Adapa R., Carhart-Harris R. L., Roseman L., Timmermann C., et al. (2023). PubMed DOI PMC
Ma Y. (2015). Neuropsychological mechanism underlying antidepressant effect: A systematic meta-analysis. Mol. Psychiatry 20, 311–319. doi: 10.1038/mp.2014.24, PMID: PubMed DOI
Madsen M. K., Petersen A. S., Stenbæk D. S., Sørensen I. M., Schiønning H., Fjeld T., et al. (2024). Cch attack frequency reduction after psilocybin correlates with hypothalamic functional connectivity. Headache 64, 55–67. doi: 10.1111/head.14656, PMID: PubMed DOI
Madsen M. K., Stenbæk D. S., Arvidsson A., Armand S., Marstrand-Joergensen M. R., Johansen S. S., et al. (2021). Psilocybin-induced changes in brain network integrity and segregation correlate with plasma psilocin level and psychedelic experience. Eur. Neuropsychopharmacol. 50, 121–132. doi: 10.1016/j.euroneuro.2021.06.001, PMID: PubMed DOI
Mallaroni P., Mason N. L., Kloft L., Reckweg J. T., van Oorsouw K., Toennes S. W., et al. (2024). Shared functional connectome fingerprints following ritualistic ayahuasca intake. NeuroImage 285:120480. doi: 10.1016/j.neuroimage.2023.120480, PMID: PubMed DOI
McCulloch D. E.-W., Knudsen G. M., Barrett F. S., Doss M. K., Carhart-Harris R. L., Rosas F. E., et al. (2022a). Psychedelic resting-state neuroimaging: A review and perspective on balancing replication and novel analyses. Neurosci. Biobehav. Rev. 138:104689. doi: 10.1016/j.neubiorev.2022.104689, PMID: PubMed DOI
McCulloch D. E.-W., Madsen M. K., Stenbæk D. S., Kristiansen S., Ozenne B., Jensen P. S., et al. (2022b). Lasting effects of a single psilocybin dose on resting-state functional connectivity in healthy individuals. J. Psychopharmacol. (Oxford, England) 36, 74–84. doi: 10.1177/02698811211026454, PMID: PubMed DOI PMC
McCulloch D. E.-W., Olsen A. S., Ozenne B., Stenbæk D. S., Armand S., Madsen M. K., et al. (2024). Navigating the chaos of psychedelic fMRI brain-entropy via multi-metric evaluations of acute psilocybin effects. medRxiv. doi: 10.1101/2023.07.03.23292164 DOI
Mertens L. J., Wall M. B., Roseman L., Demetriou L., Nutt D. J., Carhart-Harris R. L. (2020). Therapeutic mechanisms of psilocybin: Changes in amygdala and prefrontal functional connectivity during emotional processing after psilocybin for treatment-resistant depression. J. Psychopharmacol. (Oxford, England) 34, 167–180. doi: 10.1177/0269881119895520, PMID: PubMed DOI
Mikoláš P., Vyhnánek J., Škoch A., Horáček J. (2012). Analysis of fMRI time-series by entropy measures. Neuro Endocrinol. Lett. 33, 471–476. Available at: https://www.nel.edu/userfiles/articlesnew/NEL330512R01.pdf PubMed
Mortaheb S., Fort L. D., Mason N. L., Mallaroni P., Ramaekers J. G., Demertzi A. (2024). Dynamic functional hyperconnectivity after psilocybin intake is primarily associated with oceanic boundlessness. Biol. Psychiatry 9, 681–692. doi: 10.1016/j.bpsc.2024.04.001, PMID: PubMed DOI
Moujaes F., Rieser N. M., Phillips C., de Matos N. M. P., Brügger M., Dürler P., et al. (2024). Comparing Neural Correlates of Consciousness: From Psychedelics to Hypnosis and Meditation. Biol. Psychiatry 9, 533–543. doi: 10.1016/j.bpsc.2023.07.003, PMID: PubMed DOI
Mueller F., Lenz C., Dolder P. C., Harder S., Schmid Y., Lang U. E., et al. (2017). Acute effects of LSD on amygdala activity during processing of fearful stimuli in healthy subjects. Transl. Psychiatry 7:e1084. doi: 10.1038/tp.2017.54, PMID: PubMed DOI PMC
Müller F., Borgwardt S. (2019). Acute effects of lysergic acid diethylamide (LSD) on resting brain function. Swiss Med. Wkly. 149:w20124. doi: 10.4414/smw.2019.20124 PubMed DOI
Müller F., Dolder P. C., Schmidt A., Liechti M. E., Borgwardt S. (2018). Altered network hub connectivity after acute LSD administration. NeuroImage 18, 694–701. doi: 10.1016/j.nicl.2018.03.005, PMID: PubMed DOI PMC
Müller F., Lenz C., Dolder P., Lang U., Schmidt A., Liechti M., et al. (2017). Increased thalamic resting-state connectivity as a core driver of LSD-induced hallucinations. Acta Psychiatr. Scand. 136, 648–657. doi: 10.1111/acps.12818, PMID: PubMed DOI PMC
Nekovarova T., Fajnerova I., Horacek J., Spaniel F. (2014). Bridging disparate symptoms of schizophrenia: A triple network dysfunction theory. Front. Behav. Neurosci. 8:171. doi: 10.3389/fnbeh.2014.00171, PMID: PubMed DOI PMC
Nichols D. E. (2016). Psychedelics. Pharmacol. Rev. 68, 264–355. doi: 10.1124/pr.115.011478, PMID: PubMed DOI PMC
Olsen A. S., Lykkebo-Valløe A., Ozenne B., Madsen M. K., Stenbæk D. S., Armand S., et al. (2022). Psilocybin modulation of time-varying functional connectivity is associated with plasma psilocin and subjective effects. NeuroImage 264:119716. doi: 10.1016/j.neuroimage.2022.119716, PMID: PubMed DOI
Page M. J., McKenzie J. E., Bossuyt P. M., Boutron I., Hoffmann T. C., Mulrow C. D., et al. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71. doi: 10.1136/bmj.n71 PubMed DOI PMC
Pagni B. A., Petridis P. D., Podrebarac S. K., Grinband J., Claus E. D., Bogenschutz M. P. (2024). Psilocybin-induced changes in neural reactivity to alcohol and emotional cues in patients with alcohol use disorder: An fMRI pilot study. Sci. Rep. 14:3159. doi: 10.1038/s41598-024-52967-8, PMID: PubMed DOI PMC
Palhano-Fontes F., Andrade K. C., Tofoli L. F., Santos A. C., Crippa J. A. S., Hallak J. E. C., et al. (2015). The psychedelic state induced by ayahuasca modulates the activity and connectivity of the default mode network. PLoS One 10:e0118143. doi: 10.1371/journal.pone.0118143 PubMed DOI PMC
Pasquini L., Palhano-Fontes F., Araujo D. B. (2020). Subacute effects of the psychedelic ayahuasca on the salience and default mode networks. J. Psychopharmacol. (Oxford, England) 34, 623–635. doi: 10.1177/0269881120909409, PMID: PubMed DOI
Pasquini L., Simon A. J., Gallen C. L., Kettner H., Roseman L., Gazzaley A., et al. (2024). Dynamic medial parietal and hippocampal deactivations under DMT relate to sympathetic output and altered sense of time, space, and the self. bioRxiv. doi: 10.1101/2024.02.14.580356, PMID: PubMed DOI PMC
Peck S. K., Shao S., Gruen T., Yang K., Babakanian A., Trim J., et al. (2023). Psilocybin therapy for females with anorexia nervosa: A phase 1, open-label feasibility study. Nat. Med. 29, 1947–1953. doi: 10.1038/s41591-023-02455-9, PMID: PubMed DOI PMC
Pizzi S. D., Chiacchiaretta P., Sestieri C., Ferretti A., Onofrj M., Della Penna S., et al. (2023b). Spatial correspondence of LSD-induced variations of brain functioning at rest with serotonin receptor expression. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 8, 768–776. doi: 10.1016/j.bpsc.2023.03.009 PubMed DOI
Pizzi S. D., Chiacchiaretta P., Sestieri C., Ferretti A., Tullo M. G., Della Penna S., et al. (2023a). LSD-induced changes in the functional connectivity of distinct thalamic nuclei. NeuroImage 283:120414. doi: 10.1016/j.neuroimage.2023.120414, PMID: PubMed DOI
Preller K. H., Burt J. B., Ji J. L., Schleifer C. H., Adkinson B. D., Stämpfli P., et al. (2018a). Changes in global and thalamic brain connectivity in LSD-induced altered states of consciousness are attributable to the 5-HT2A receptor. eLife 7:e35082. doi: 10.7554/eLife.35082, PMID: PubMed DOI PMC
Preller K. H., Duerler P., Burt J. B., Ji J. L., Adkinson B., Stämpfli P., et al. (2020). Psilocybin Induces Time-Dependent Changes in Global Functional Connectivity. Biol. Psychiatry 88, 197–207. doi: 10.1016/j.biopsych.2019.12.027, PMID: PubMed DOI
Preller K. H., Herdener M., Pokorny T., Planzer A., Kraehenmann R., Stämpfli P., et al. (2017). The Fabric of Meaning and Subjective Effects in LSD-Induced States Depend on Serotonin 2A Receptor Activation. Curr. Biol. 27, 451–457. doi: 10.1016/j.cub.2016.12.030, PMID: PubMed DOI
Preller K. H., Pokorny T., Hock A., Kraehenmann R., Stämpfli P., Seifritz E., et al. (2016). Effects of serotonin 2A/1A receptor stimulation on social exclusion processing. Proc. Natl. Acad. Sci. 113, 5119–5124. doi: 10.1073/pnas.1524187113, PMID: PubMed DOI PMC
Preller K. H., Razi A., Zeidman P., Stämpfli P., Friston K. J., Vollenweider F. X. (2019). Effective connectivity changes in LSD-induced altered states of consciousness in humans. Proc. Natl. Acad. Sci. USA 116, 2743–2748. doi: 10.1073/pnas.1815129116, PMID: PubMed DOI PMC
Preller K. H., Schilbach L., Pokorny T., Flemming J., Seifritz E., Vollenweider F. X. (2018b). Role of the 5-HT2A receptor in self- and other-initiated social interaction in lysergic acid diethylamide-induced states: a pharmacological fMRI study. J. Neurosci. 38, 3603–3611. doi: 10.1523/JNEUROSCI.1939-17.2018, PMID: PubMed DOI PMC
Rankaduwa S., Owen A. M. (2023). Psychedelics, entropic brain theory, and the taxonomy of conscious states: A summary of debates and perspectives. Neurosci. Conscious. 2023:niad001. doi: 10.1093/nc/niad001, PMID: PubMed DOI PMC
Roseman L., Demetriou L., Wall M. B., Nutt D. J., Carhart-Harris R. L. (2018). Increased amygdala responses to emotional faces after psilocybin for treatment-resistant depression. Neuropharmacology 142, 263–269. doi: 10.1016/j.neuropharm.2017.12.041, PMID: PubMed DOI
Roseman L., Leech R., Feilding A., Nutt D. J., Carhart-Harris R. L. (2014). The effects of psilocybin and MDMA on between-network resting state functional connectivity in healthy volunteers. Front. Hum. Neurosci. 8:204. doi: 10.3389/fnhum.2014.00204, PMID: PubMed DOI PMC
Sampedro F., de la Fuente Revenga M., Valle M., Roberto N., Domínguez-Clavé E., Elices M., et al. (2017). Assessing the Psychedelic “After-Glow” in Ayahuasca Users: Post-Acute Neurometabolic and Functional Connectivity Changes Are Associated with Enhanced Mindfulness Capacities. Int. J. Neuropsychopharmacol. 20, 698–711. doi: 10.1093/ijnp/pyx036, PMID: PubMed DOI PMC
Sapienza J., Bosia M., Spangaro M., Martini F., Agostoni G., Cuoco F., et al. (2023). Schizophrenia and psychedelic state: Dysconnection versus hyper-connection. A perspective on two different models of psychosis stemming from dysfunctional integration processes. Mol. Psychiatry 28, 59–67. doi: 10.1038/s41380-022-01721-5, PMID: PubMed DOI
Schartner M. M., Carhart-Harris R. L., Barrett A. B., Seth A. K., Muthukumaraswamy S. D. (2017). Increased spontaneous MEG signal diversity for psychoactive doses of ketamine, LSD and psilocybin. Sci. Rep. 7:46421. doi: 10.1038/srep46421, PMID: PubMed DOI PMC
Schindler E. A. D., Sewell R. A., Gottschalk C. H., Luddy C., Flynn L. T., Lindsey H., et al. (2021). Exploratory controlled study of the migraine-suppressing effects of psilocybin. Neurotherapeutics 18, 534–543. doi: 10.1007/s13311-020-00962-y PubMed DOI PMC
Schmidt A., Müller F., Lenz C., Dolder P. C., Schmid Y., Zanchi D., et al. (2018). Acute LSD effects on response inhibition neural networks. Psychol. Med. 48, 1464–1473. doi: 10.1017/S0033291717002914, PMID: PubMed DOI
Shukuroglou M., Roseman L., Wall M., Nutt D., Kaelen M., Carhart-Harris R. (2023). Changes in music-evoked emotion and ventral striatal functional connectivity after psilocybin therapy for depression. J. Psychopharmacol. (Oxford, England) 37, 70–79. doi: 10.1177/02698811221125354, PMID: PubMed DOI PMC
Siegel J. S., Subramanian S., Perry D., Kay B. P., Gordon E. M., Laumann T. O., et al. (2024). Psilocybin desynchronizes the human brain. Nature 632, 131–138. doi: 10.1038/s41586-024-07624-5, PMID: PubMed DOI PMC
Singleton S. P., Luppi A. I., Carhart-Harris R. L., Cruzat J., Roseman L., Nutt D. J., et al. (2022). Receptor-informed network control theory links LSD and psilocybin to a flattening of the brain’s control energy landscape. Nat. Commun. 13:5812. doi: 10.1038/s41467-022-33578-1, PMID: PubMed DOI PMC
Singleton S. P., Timmermann C., Luppi A. I., Eckernäs E., Roseman L., Carhart-Harris R. L., et al. (2023). Time-resolved network control analysis links reduced control energy under DMT with the serotonin 2a receptor, signal diversity, and subjective experience. bioRxiv. doi: 10.1101/2023.05.11.540409, PMID: PubMed DOI PMC
Smigielski L., Scheidegger M., Kometer M., Vollenweider F. X. (2019). Psilocybin-assisted mindfulness training modulates self-consciousness and brain default mode network connectivity with lasting effects. NeuroImage 196, 207–215. doi: 10.1016/j.neuroimage.2019.04.009, PMID: PubMed DOI
Soares C., Gonzalo G., Castelhano J., Castelo-Branco M. (2023). The relationship between the default mode network and the theory of mind network as revealed by psychedelics – A meta-analysis. Neurosci. Biobehav. Rev. 152:105325. doi: 10.1016/j.neubiorev.2023.105325, PMID: PubMed DOI
Speth J., Speth C., Kaelen M., Schloerscheidt A. M., Feilding A., Nutt D. J., et al. (2016). Decreased mental time travel to the past correlates with default-mode network disintegration under lysergic acid diethylamide. J. Psychopharmacol. (Oxford, England) 30, 344–353. doi: 10.1177/0269881116628430, PMID: PubMed DOI
Stoliker D., Egan G. F., Friston K. J., Razi A. (2022). Neural Mechanisms and Psychology of Psychedelic Ego Dissolution. Pharmacol. Rev. 74, 876–917. doi: 10.1124/pharmrev.121.000508, PMID: PubMed DOI
Stoliker D., Novelli L., Vollenweider F. X., Egan G. F., Preller K. H., Razi A. (2023). Effective Connectivity of Functionally Anticorrelated Networks Under Lysergic Acid Diethylamide. Biol. Psychiatry 93, 224–232. doi: 10.1016/j.biopsych.2022.07.013, PMID: PubMed DOI
Stoliker D., Novelli L., Vollenweider F. X., Egan G. F., Preller K. H., Razi A. (2024). Neural Mechanisms of Resting-State Networks and the Amygdala Underlying the Cognitive and Emotional Effects of Psilocybin. Biol. Psychiatry 96, 57–66. doi: 10.1016/j.biopsych.2024.01.002, PMID: PubMed DOI
Stuhrmann A., Suslow T., Dannlowski U. (2011). Facial emotion processing in major depression: A systematic review of neuroimaging findings. Biol. Mood Anxiety Disord. 1:10. doi: 10.1186/2045-5380-1-10, PMID: PubMed DOI PMC
Tagliazucchi E., Carhart-Harris R., Leech R., Nutt D., Chialvo D. R. (2014). Enhanced repertoire of brain dynamical states during the psychedelic experience. Hum. Brain Mapp. 35, 5442–5456. doi: 10.1002/hbm.22562, PMID: PubMed DOI PMC
Tagliazucchi E., Roseman L., Kaelen M., Orban C., Muthukumaraswamy S. D., Murphy K., et al. (2016). Increased Global Functional Connectivity Correlates with LSD-Induced Ego Dissolution. Curr. Biol. 26, 1043–1050. doi: 10.1016/j.cub.2016.02.010, PMID: PubMed DOI
Timmermann C., Roseman L., Haridas S., Rosas F. E., Luan L., Kettner H., et al. (2023). Human brain effects of DMT assessed via EEG-fMRI. Proc. Natl. Acad. Sci. 120:e2218949120. doi: 10.1073/pnas.2218949120, PMID: PubMed DOI PMC
Varley T. F., Carhart-Harris R., Roseman L., Menon D. K., Stamatakis E. A. (2020). Serotonergic psychedelics LSD & psilocybin increase the fractal dimension of cortical brain activity in spatial and temporal domains. NeuroImage 220:117049. doi: 10.1016/j.neuroimage.2020.117049, PMID: PubMed DOI
Viol A., Palhano-Fontes F., Onias H., de Araujo D. B., Viswanathan G. M. (2017). Shannon entropy of brain functional complex networks under the influence of the psychedelic Ayahuasca. Sci. Rep. 7:7388. doi: 10.1038/s41598-017-06854-0, PMID: PubMed DOI PMC
Vohryzek J., Luppi A. I., Atasoy S., Deco G., Carhart-Harris R. L., Timmermann C., et al. (2024). Time-resolved coupling between connectome harmonics and subjective experience under the psychedelic DMT. bioRxiv. doi: 10.1101/2024.05.30.596410, PMID: PubMed DOI PMC
Vollenweider F. X., Geyer M. A. (2001). A systems model of altered consciousness: integrating natural and drug-induced psychoses. Brain Res. Bull. 56, 495–507. doi: 10.1016/S0361-9230(01)00646-3, PMID: PubMed DOI
Vollenweider F. X., Preller K. H. (2020). Psychedelic drugs: Neurobiology and potential for treatment of psychiatric disorders. Nat. Rev. Neurosci. 21, 611–624. doi: 10.1038/s41583-020-0367-2, PMID: PubMed DOI
Xu J., Vik A., Groote I. R., Lagopoulos J., Holen A., Ellingsen Ø., et al. (2014). Nondirective meditation activates default mode network and areas associated with memory retrieval and emotional processing. Front. Hum. Neurosci. 8:86. doi: 10.3389/fnhum.2014.00086, PMID: PubMed DOI PMC
Zhang Z., Luh W.-M., Duan W., Zhou G. D., Weinschenk G., Anderson A. K., et al. (2021). Longitudinal effects of meditation on brain resting-state functional connectivity. Sci. Rep. 11:11361. doi: 10.1038/s41598-021-90729-y, PMID: PubMed DOI PMC