Analysis of fMRI time-series by entropy measures
Jazyk angličtina Země Švédsko Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
23090262
PII: NEL330512R01
Knihovny.cz E-zdroje
- MeSH
- algoritmy * MeSH
- entropie * MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- modely neurologické * MeSH
- mozek fyziologie MeSH
- poměr signál - šum MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Entropy is a measure of information content or complexity. Information-theoretic modeling has been successfully used in various biological data analyses including functional magnetic resonance (fMRI). Several studies have tested and evaluated entropy measures on simulated datasets and real fMRI data. The efficiency of entropy algorithms has been compared to classical methods based on the linear model. Here we explain and summarize entropy algorithms that have been used in fMRI analysis, their advantages over classical methods and their potential use in event-related and block design fMRI.
What fMRI studies say about the nature of the psychedelic effect: a scoping review