Identification of two metallothioneins in Agaricus crocodilinus reveals gene duplication and domain expansion, a pattern conserved across fungal species

. 2025 Oct ; 38 (5) : 1569-1585. [epub] 20250718

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40679729

Grantová podpora
19-06759S Grantová Agentura České Republiky
RVO61389005 Akademie Věd České Republiky

Odkazy

PubMed 40679729
PubMed Central PMC12508003
DOI 10.1007/s10534-025-00721-6
PII: 10.1007/s10534-025-00721-6
Knihovny.cz E-zdroje

Agaricus crocodilinus (Agaricaceae), an edible saprotrophic mushroom, accumulates high concentrations of cadmium (Cd) in unpolluted environments. This study investigates whether this species has evolved mechanisms to store Cd complexed with metallothioneins (MTs), proteins that bind heavy metal ions via cysteinyl (Cys)-thiolate bonds, how these MTs originated, and how similar mechanisms are present in other fungal species. Size exclusion chromatography revealed that a substantial fraction of Cd in A. crocodilinus sporocarps was sequestered in a 3.4 kDa complex containing Cys-rich peptides. Screening a sporocarp cDNA expression library in a Cd-sensitive Saccharomyces cerevisiae strain identified two MT transcripts, AcMT1 and AcMT2, encoding 49-amino acid (AA) AcMT1 with 10 Cys and 32-AA AcMT2 with 7 Cys. The presence of AcMT2 in the 3.4 kDa Cd-peptide complex isolated from sporocarp was confirmed by mass spectrometry. In mycelial isolates exposed to heavy metals, AcMT1 was more strongly upregulated, while AcMT2 was more expressed under normal conditions. Sequence comparisons revealed that AcMT2 is closer to the ancestral gene, whereas AcMT1 is a more recent duplicate. Combined bioinformatic and functional evidence supports AcMT2 as a constitutively expressed MT involved in Cd binding in the sporocarp, while AcMT1, though more inducible in mycelia and more protective in yeast, appears to serve a transient detoxification role. Moreover, the gene duplication and domain rearrangement mechanism underlying this MT diversification was also identified in other Agaricales and Boletales species.

Zobrazit více v PubMed

Anton A, Weltrowski A, Haney CJ, Franke S, Grass G, Rensing C, Nies DH (2004) Characteristics of zinc transport by two bacterial cation diffusion facilitators from PubMed PMC

Bargelloni L, Scudiero R, Parisi E, Carginale V, Capasso C, Patarnello T (1999) Metallothioneins in antarctic fish: evidence for independent duplication and gene conversion. Mol Biol Evol 16(7):885–897. 10.1093/oxfordjournals.molbev.a026178 PubMed

Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254:173–181. 10.1111/j.1574-6968.2005.00044.x PubMed

Bellion M, Courbot M, Jacob C, Guinet F, Blaudez D, Chalot M (2007) Metal induction of a PubMed

Borovička J, Braeuer S, Sácký J, Kameník J, Goessler W, Trubač J, Strnad L, Rohovec J, Leonhardt T, Kotrba P (2019) Speciation analysis of elements accumulated in PubMed

Borovička J, Braeuer S, Walenta M, Hršelová H, Leonhardt T, Sácký J, Kaňa A, Goessler W (2022) A new mushroom hyperaccumulator: Cadmium and arsenic in the ectomycorrhizal basidiomycete PubMed

Borovička J, Sácký J, Kaňa A, Walenta M, Ackerman L, Braeuer S, Leonhardt T, Hršelová H, Goessler W, Kotrba P (2023) Cadmium in the hyperaccumulating mushroom PubMed

Calatayud S, Garcia-Risco M, Pedrini-Martha V, Eernisse DJ, Dallinger R, Palacios Ò, Capdevila M, Albalat R (2021) Modularity in protein evolution: modular organization and de novo domain evolution in Mollusk metallothioneins. Mol Biol Evol 38:424–436. 10.1093/molbev/msaa230 PubMed PMC

Capdevila M, Atrian S (2011) Metallothionein protein evolution: a miniassay. J Biol Inorg Chem 16:977–989. 10.1007/s00775-011-0798-3 PubMed

Cocchi L, Vescovi L (1997) Considerazioni sul contenuto di elementi chimici nei funghi. Argento, cadmio, mercurio e biombo nel genere

Cocchi L, Vescovi L, Petrini LE, Petrini O (2006) Heavy metals in edible mushrooms in Italy. Food Chem 98:277–284. 10.1016/j.foodchem.2005.05.068

Collin-Hansen C, Pedersen SA, Andersen RA, Steinnes E (2007) First report of phytochelatins in a mushroom: induction of phytochelatins by metal exposure in PubMed

Colpaert JV, Wevers JHL, Krznaric E, Adriaensen K (2011) How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Ann for Sci 68(1):17–24. 10.1007/s13595-010-0003-9

de Francisco P, Melgar LM, Díaz S, Martín-González A, Gutiérrez JC (2016) The PubMed PMC

Ding C, Festa RA, Chen YL, Espart A, Palacios Ò, Espin J, Capdevila M, Atrian S, Heitman J, Thiele DJ (2013) PubMed PMC

Emri T, Antal K, Riley R, Karányi Z, Miskei M, Orosz E, Baker SE, Wiebenga A, de Vries RP, Pócsi I (2018) Duplications and losses of genes encoding known elements of the stress defence system of the PubMed PMC

Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791. 10.2307/2408678 PubMed

Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):31–34. 10.1038/nprot.2007.13 PubMed

Hložková K, Matěnová M, Žáčková P, Strnad H, Hršelová H, Hroudová M, Kotrba P (2016) Characterization of three distinct metallothionein genes of the Ag-hyperaccumulating ectomycorrhizal fungus PubMed

Iturbe-Espinoza P, Gil-Moreno S, Lin W, Calatayud S, Palacios Ò, Capdevila M, Atrian S (2016) The fungus PubMed PMC

Kalač P (2019) Mineral composition and radioactivity of edible mushrooms. Academic Press. 10.1016/B978-0-12-817565-1.00001-7

Kalsotra T, Khullar S, Agnihotri R, Reddy MS (2018) Metal induction of two metallothionein genes in the ectomycorrhizal fungus PubMed

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. 10.1093/molbev/msy096 PubMed PMC

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. 10.1093/bioinformatics/btm404 PubMed

Leonhardt T, Sácký J, Šimek P, Šantrůček J, Kotrba P (2014) Metallothionein-like peptides involved in sequestration of Zn in the Zn-accumulating ectomycorrhizal fungus PubMed

Leonhardt T, Borovička J, Sácký J, Šantrůček J, Kameník J, Kotrba P (2019) Zn overaccumulating PubMed

Li W-H, Makova KD (2005) Domain duplication and gene elongation. Wiley, Chichester. 10.1074/jbc.271.11.6509

Li ZS, Szczypka M, Lu YP, Thiele DJ, Rea PA (1996) The yeast cadmium factor protein (YCF1) is a vacuolar glutathione S-conjugate pump. J Biol Chem 271(11):6509–6517. 10.1074/jbc.271.11.6509 PubMed

Liu B, Dong P, Zhang X, Feng Z, Wen Z, Shi L, Xia Y, Chen C, Shen Z, Lian C, Chen Y (2022) Identification and characterization of eight metallothionein genes involved in heavy metal tolerance from the ectomycorrhizal fungus PubMed

Liu K, Ye Y, Li S, Tang H (2023) Accurate de novo peptide sequencing using fully convolutional neural networks. Nat Commun 14(1):7974. 10.1038/s41467-023-43010-x PubMed PMC

MacDiarmid CW, Gaither LA, Eide D (2000) Zinc transporters that regulate vacuolar zinc storage in PubMed PMC

Meisch H-U, Schmitt JA, Reinle W (1977) Heavy metals in higher fungi cadmium, zinc, and copper. Z Naturforsch C 32:172–181. 10.1515/znc-1977-3-405

Meisch H-U, Beckmann I, Schmitt JA (1983) A new cadmium-binding phosphoglycoprotein, cadmium-mycophosphatin, from the mushroom

Melgar MJ, Alonso J, Pérez-Lopéz M, García MA (1998) Influence of some factors in toxicity and accumulation of cadmium from edible wild macrofungi in NW Spain. J Environ Sci Health B 33:439–455. 10.1080/03601239809373156 PubMed

Merritt TJS, Bewick AJ (2017) Genetic diversity in insect metal tolerance [mini review]. Front Genet. 10.3389/fgene.2017.00172 PubMed PMC

Micheli G, Camilloni G (2022) Can introns stabilize gene duplication? Biology 11:941. 10.3390/biology11060941 PubMed PMC

Moleirinho A, Carneiro J, Matthiesen R, Silva RM, Amorim A, Azevedo L (2011) Gains, losses and changes of function after gene duplication: study of the metallothionein family. PLoS ONE 6(4):e18487. 10.1371/journal.pone.0018487 PubMed PMC

Mumberg D, Müller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119–122. 10.1016/0378-1119(95)00037-7 PubMed

Osobová M, Urban V, Jedelský PL, Borovička J, Gryndler M, Ruml T, Kotrba P (2011) Three metallothionein isoforms and sequestration of intracellular silver in the hyperaccumulator PubMed

Palacios Ò, Espart A, Espin J, Ding C, Thiele DJ, Atrian S, Capdevila M (2014a) Full characterization of the Cu-, Zn-, and Cd-binding properties of CnMT1 and CnMT2, two metallothioneins of the pathogenic fungus PubMed PMC

Palacios Ò, Pérez-Rafael S, Pagani A, Dallinger R, Atrian S, Capdevila M (2014b) Cognate and noncognate metal ion coordination in metal-specific metallothioneins: the PubMed

Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45. 10.1093/nar/29.9.e45 PubMed PMC

R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Ramesh G, Podila GK, Gay G, Marmeisse R, Reddy MS (2009) Different patterns of regulation for the copper and cadmium metallothioneins of the ectomycorrhizal fungus PubMed PMC

Reddy MS, Prasanna L, Marmeisse R, Fraissinet-Tachet L (2014) Differential expression of metallothioneins in response to heavy metals and their involvement in metal tolerance in the symbiotic basidiomycete PubMed

Reddy MS, Kour M, Aggarwal S, Ahuja S, Marmeisse R, Fraissinet-Tachet L (2016) Metal induction of a PubMed

Sácký J, Leonhardt T, Borovička J, Gryndler M, Briksí A, Kotrba P (2014) Intracellular sequestration of zinc, cadmium and silver in PubMed

Sácký J, Černý J, Šantrůček J, Borovička J, Leonhardt T, Kotrba P (2021) Cadmium hyperaccumulating mushroom PubMed

Sácký J, Chaloupecká A, Kaňa A, Šantrůček J, Borovička J, Leonhardt T, Kotrba P (2022) Intracellular sequestration of cadmium and zinc in ectomycorrhizal fungus PubMed

Sácký J, Liščáková V, Šnábl J, Zelenka J, Borovička J, Leonhardt T, Kotrba P (2025) Functional analysis of two genes coding for distinct cation diffusion facilitators of the cadmium-accumulating fungus PubMed

Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425 PubMed

Sutherland DE, Stillman MJ (2011) The “magic numbers” of metallothionein. Metallomics 3:444–463. 10.1039/c0mt00102c PubMed

Tamai KT, Gralla EB, Ellerby LM, Valentine JS, Thiele DJ (1993) Yeast and mammalian metallothioneins functionally substitute for yeast copper-zinc superoxide dismutase. Proc Nat Acad Sci 90:8013–8017. 10.1073/pnas.90.17.8013 PubMed PMC

Trinchella F, Riggio M, Filosa S, Parisi E, Scudiero R (2008) Molecular cloning and sequencing of metallothionein in squamates: New insights into the evolution of the metallothionein genes in vertebrates. Gene 423(1):48–56. 10.1016/j.gene.2008.06.027 PubMed

Tucker SL, Thornton CR, Tasker K, Jacob C, Giles G, Egan M, Talbot NJ (2004) A fungal metallothionein is required for pathogenicity of PubMed PMC

Wapinski I, Pfeffer A, Friedman N, Regev A (2007) Natural history and evolutionary principles of gene duplication in fungi. Nature 449:54–61. 10.1038/nature06107 PubMed

Ziller A, Fraissinet-Tachet L (2018) Metallothionein diversity and distribution in the tree of life: a multifunctional protein. Metallomics 10:1549–1559. 10.1039/c8mt00165k PubMed

Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, Cambridge, pp 97–166. 10.1016/B978-1-4832-2734-4.50017-6

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...