Identification of two metallothioneins in Agaricus crocodilinus reveals gene duplication and domain expansion, a pattern conserved across fungal species

. 2025 Jul 18 ; () : . [epub] 20250718

Status Publisher Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40679729

Grantová podpora
19-06759S Grantová Agentura České Republiky
RVO61389005 Akademie Věd České Republiky

Odkazy

PubMed 40679729
DOI 10.1007/s10534-025-00721-6
PII: 10.1007/s10534-025-00721-6
Knihovny.cz E-zdroje

Agaricus crocodilinus (Agaricaceae), an edible saprotrophic mushroom, accumulates high concentrations of cadmium (Cd) in unpolluted environments. This study investigates whether this species has evolved mechanisms to store Cd complexed with metallothioneins (MTs), proteins that bind heavy metal ions via cysteinyl (Cys)-thiolate bonds, how these MTs originated, and how similar mechanisms are present in other fungal species. Size exclusion chromatography revealed that a substantial fraction of Cd in A. crocodilinus sporocarps was sequestered in a 3.4 kDa complex containing Cys-rich peptides. Screening a sporocarp cDNA expression library in a Cd-sensitive Saccharomyces cerevisiae strain identified two MT transcripts, AcMT1 and AcMT2, encoding 49-amino acid (AA) AcMT1 with 10 Cys and 32-AA AcMT2 with 7 Cys. The presence of AcMT2 in the 3.4 kDa Cd-peptide complex isolated from sporocarp was confirmed by mass spectrometry. In mycelial isolates exposed to heavy metals, AcMT1 was more strongly upregulated, while AcMT2 was more expressed under normal conditions. Sequence comparisons revealed that AcMT2 is closer to the ancestral gene, whereas AcMT1 is a more recent duplicate. Combined bioinformatic and functional evidence supports AcMT2 as a constitutively expressed MT involved in Cd binding in the sporocarp, while AcMT1, though more inducible in mycelia and more protective in yeast, appears to serve a transient detoxification role. Moreover, the gene duplication and domain rearrangement mechanism underlying this MT diversification was also identified in other Agaricales and Boletales species.

Zobrazit více v PubMed

Anton A, Weltrowski A, Haney CJ, Franke S, Grass G, Rensing C, Nies DH (2004) Characteristics of zinc transport by two bacterial cation diffusion facilitators from Ralstonia metallidurans CH34 and Escherichia coli. J Bacteriol 186(22):7499–7507. https://doi.org/10.1128/jb.186.22.7499-7507.2004 PubMed DOI PMC

Bargelloni L, Scudiero R, Parisi E, Carginale V, Capasso C, Patarnello T (1999) Metallothioneins in antarctic fish: evidence for independent duplication and gene conversion. Mol Biol Evol 16(7):885–897. https://doi.org/10.1093/oxfordjournals.molbev.a026178 PubMed DOI

Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254:173–181. https://doi.org/10.1111/j.1574-6968.2005.00044.x PubMed DOI

Bellion M, Courbot M, Jacob C, Guinet F, Blaudez D, Chalot M (2007) Metal induction of a Paxillus involutus metallothionein and its heterologous expression in Hebeloma cylindrosporum. New Phytol 174(1):151–158. https://doi.org/10.1111/j.1469-8137.2007.01973.x PubMed DOI

Borovička J, Braeuer S, Sácký J, Kameník J, Goessler W, Trubač J, Strnad L, Rohovec J, Leonhardt T, Kotrba P (2019) Speciation analysis of elements accumulated in Cystoderma carcharias from clean and smelter-polluted sites. Sci Total Environ 648:1570–1581. https://doi.org/10.1016/j.scitotenv.2018.08.202 PubMed DOI

Borovička J, Braeuer S, Walenta M, Hršelová H, Leonhardt T, Sácký J, Kaňa A, Goessler W (2022) A new mushroom hyperaccumulator: Cadmium and arsenic in the ectomycorrhizal basidiomycete Thelephora penicillata. Sci Total Environ 826:154227. https://doi.org/10.1016/j.scitotenv.2022.154227 PubMed DOI

Borovička J, Sácký J, Kaňa A, Walenta M, Ackerman L, Braeuer S, Leonhardt T, Hršelová H, Goessler W, Kotrba P (2023) Cadmium in the hyperaccumulating mushroom Thelephora penicillata: Intracellular speciation and isotopic composition. Sci Total Environ 855:159002. https://doi.org/10.1016/j.scitotenv.2022.159002 PubMed DOI

Calatayud S, Garcia-Risco M, Pedrini-Martha V, Eernisse DJ, Dallinger R, Palacios Ò, Capdevila M, Albalat R (2021) Modularity in protein evolution: modular organization and de novo domain evolution in Mollusk metallothioneins. Mol Biol Evol 38:424–436. https://doi.org/10.1093/molbev/msaa230 PubMed DOI

Capdevila M, Atrian S (2011) Metallothionein protein evolution: a miniassay. J Biol Inorg Chem 16:977–989. https://doi.org/10.1007/s00775-011-0798-3 PubMed DOI

Cocchi L, Vescovi L (1997) Considerazioni sul contenuto di elementi chimici nei funghi. Argento, cadmio, mercurio e biombo nel genere Agaricus. Riv Micol 1:53–72

Cocchi L, Vescovi L, Petrini LE, Petrini O (2006) Heavy metals in edible mushrooms in Italy. Food Chem 98:277–284. https://doi.org/10.1016/j.foodchem.2005.05.068 DOI

Collin-Hansen C, Pedersen SA, Andersen RA, Steinnes E (2007) First report of phytochelatins in a mushroom: induction of phytochelatins by metal exposure in Boletus edulis. Mycologia 99:161–174. https://doi.org/10.3852/mycologia.99.2.161 PubMed DOI

Colpaert JV, Wevers JHL, Krznaric E, Adriaensen K (2011) How metal-tolerant ecotypes of ectomycorrhizal fungi protect plants from heavy metal pollution. Ann for Sci 68(1):17–24. https://doi.org/10.1007/s13595-010-0003-9 DOI

de Francisco P, Melgar LM, Díaz S, Martín-González A, Gutiérrez JC (2016) The Tetrahymena metallothionein gene family: twenty-one new cDNAs, molecular characterization, phylogenetic study and comparative analysis of the gene expression under different abiotic stressors. BMC Genomics 17(1):346. https://doi.org/10.1186/s12864-016-2658-6 PubMed DOI PMC

Ding C, Festa RA, Chen YL, Espart A, Palacios Ò, Espin J, Capdevila M, Atrian S, Heitman J, Thiele DJ (2013) Cryptococcus neoformans copper detoxification machinery is critical for fungal virulence. Cell Host Microbe 13:265–276. https://doi.org/10.1016/j.chom.2013.02.002 PubMed DOI PMC

Emri T, Antal K, Riley R, Karányi Z, Miskei M, Orosz E, Baker SE, Wiebenga A, de Vries RP, Pócsi I (2018) Duplications and losses of genes encoding known elements of the stress defence system of the Aspergilli contribute to the evolution of these filamentous fungi but do not directly influence their environmental stress tolerance. Stud Mycol 91:23–36. https://doi.org/10.1016/j.simyco.2018.10.003 PubMed DOI PMC

Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791. https://doi.org/10.2307/2408678 PubMed DOI

Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2(1):31–34. https://doi.org/10.1038/nprot.2007.13 PubMed DOI

Hložková K, Matěnová M, Žáčková P, Strnad H, Hršelová H, Hroudová M, Kotrba P (2016) Characterization of three distinct metallothionein genes of the Ag-hyperaccumulating ectomycorrhizal fungus Amanita strobiliformis. Fungal Biol 120(3):358–369. https://doi.org/10.1016/j.funbio.2015.11.007 PubMed DOI

Iturbe-Espinoza P, Gil-Moreno S, Lin W, Calatayud S, Palacios Ò, Capdevila M, Atrian S (2016) The fungus Tremella mesenterica encodes the longest metallothionein currently known: Gene, protein and metal binding characterization. PLoS ONE 11:e0148651. https://doi.org/10.1371/journal.pone.0148651 PubMed DOI PMC

Kalač P (2019) Mineral composition and radioactivity of edible mushrooms. Academic Press. https://doi.org/10.1016/B978-0-12-817565-1.00001-7 DOI

Kalsotra T, Khullar S, Agnihotri R, Reddy MS (2018) Metal induction of two metallothionein genes in the ectomycorrhizal fungus Suillus himalayensis and their role in metal tolerance. Microbiology 164:868–876. https://doi.org/10.1099/mic.0.000666 PubMed DOI

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096 PubMed DOI PMC

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. https://doi.org/10.1093/bioinformatics/btm404 PubMed DOI

Leonhardt T, Sácký J, Šimek P, Šantrůček J, Kotrba P (2014) Metallothionein-like peptides involved in sequestration of Zn in the Zn-accumulating ectomycorrhizal fungus Russula atropurpurea. Metallomics 6:1693–1701. https://doi.org/10.1039/C4MT00141A PubMed DOI

Leonhardt T, Borovička J, Sácký J, Šantrůček J, Kameník J, Kotrba P (2019) Zn overaccumulating Russula species clade together and use the same mechanism for the detoxification of excess Zn. Chemosphere 225:618–626. https://doi.org/10.1016/j.chemosphere.2019.03.062 PubMed DOI

Li W-H, Makova KD (2005) Domain duplication and gene elongation. Wiley, Chichester. https://doi.org/10.1074/jbc.271.11.6509 DOI

Li ZS, Szczypka M, Lu YP, Thiele DJ, Rea PA (1996) The yeast cadmium factor protein (YCF1) is a vacuolar glutathione S-conjugate pump. J Biol Chem 271(11):6509–6517. https://doi.org/10.1074/jbc.271.11.6509 PubMed DOI

Liu B, Dong P, Zhang X, Feng Z, Wen Z, Shi L, Xia Y, Chen C, Shen Z, Lian C, Chen Y (2022) Identification and characterization of eight metallothionein genes involved in heavy metal tolerance from the ectomycorrhizal fungus Laccaria bicolor. Environ Sci Pollut Res Int 29:14430–14442. https://doi.org/10.1007/s11356-021-16776-0 PubMed DOI

Liu K, Ye Y, Li S, Tang H (2023) Accurate de novo peptide sequencing using fully convolutional neural networks. Nat Commun 14(1):7974. https://doi.org/10.1038/s41467-023-43010-x PubMed DOI PMC

MacDiarmid CW, Gaither LA, Eide D (2000) Zinc transporters that regulate vacuolar zinc storage in Saccharomyces cerevisiae. EMBO J 19:2845–2855. https://doi.org/10.1093/emboj/19.12.2845 PubMed DOI PMC

Meisch H-U, Schmitt JA, Reinle W (1977) Heavy metals in higher fungi cadmium, zinc, and copper. Z Naturforsch C 32:172–181. https://doi.org/10.1515/znc-1977-3-405 DOI

Meisch H-U, Beckmann I, Schmitt JA (1983) A new cadmium-binding phosphoglycoprotein, cadmium-mycophosphatin, from the mushroom Agaricus macrosporus. Biochim Biophys Acta 745:259–266. https://doi.org/10.1016/0167-4838(83)90057-2 DOI

Melgar MJ, Alonso J, Pérez-Lopéz M, García MA (1998) Influence of some factors in toxicity and accumulation of cadmium from edible wild macrofungi in NW Spain. J Environ Sci Health B 33:439–455. https://doi.org/10.1080/03601239809373156 PubMed DOI

Merritt TJS, Bewick AJ (2017) Genetic diversity in insect metal tolerance [mini review]. Front Genet. https://doi.org/10.3389/fgene.2017.00172 PubMed DOI PMC

Micheli G, Camilloni G (2022) Can introns stabilize gene duplication? Biology 11:941. https://doi.org/10.3390/biology11060941 PubMed DOI PMC

Moleirinho A, Carneiro J, Matthiesen R, Silva RM, Amorim A, Azevedo L (2011) Gains, losses and changes of function after gene duplication: study of the metallothionein family. PLoS ONE 6(4):e18487. https://doi.org/10.1371/journal.pone.0018487 PubMed DOI PMC

Mumberg D, Müller R, Funk M (1995) Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119–122. https://doi.org/10.1016/0378-1119(95)00037-7 PubMed DOI

Osobová M, Urban V, Jedelský PL, Borovička J, Gryndler M, Ruml T, Kotrba P (2011) Three metallothionein isoforms and sequestration of intracellular silver in the hyperaccumulator Amanita strobiliformis. New Phytol 190:916–926. https://doi.org/10.1111/j.1469-8137.2010.03634.x PubMed DOI

Palacios Ò, Espart A, Espin J, Ding C, Thiele DJ, Atrian S, Capdevila M (2014a) Full characterization of the Cu-, Zn-, and Cd-binding properties of CnMT1 and CnMT2, two metallothioneins of the pathogenic fungus Cryptococcus neoformans acting as virulence factors. Metallomics 6:279–291. https://doi.org/10.1039/c3mt00266g PubMed DOI

Palacios Ò, Pérez-Rafael S, Pagani A, Dallinger R, Atrian S, Capdevila M (2014b) Cognate and noncognate metal ion coordination in metal-specific metallothioneins: the Helix pomatia system as a model. J Biol Inorg Chem 19:923–935. https://doi.org/10.1007/s00775-014-1127-4 PubMed DOI

Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45. https://doi.org/10.1093/nar/29.9.e45 PubMed DOI PMC

R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Ramesh G, Podila GK, Gay G, Marmeisse R, Reddy MS (2009) Different patterns of regulation for the copper and cadmium metallothioneins of the ectomycorrhizal fungus Hebeloma cylindrosporum. Appl Environ Microbiol 75:2266–2274. https://doi.org/10.1128/AEM.02142-08 PubMed DOI PMC

Reddy MS, Prasanna L, Marmeisse R, Fraissinet-Tachet L (2014) Differential expression of metallothioneins in response to heavy metals and their involvement in metal tolerance in the symbiotic basidiomycete Laccaria bicolor. Microbiology 160:2235–2242. https://doi.org/10.1099/mic.0.080218-0 PubMed DOI

Reddy MS, Kour M, Aggarwal S, Ahuja S, Marmeisse R, Fraissinet-Tachet L (2016) Metal induction of a Pisolithus albus metallothionein and its potential involvement in heavy metal tolerance during mycorrhizal symbiosis. Environ Microbiol 18(8):2446–2454. https://doi.org/10.1111/1462-2920.13149 PubMed DOI

Sácký J, Leonhardt T, Borovička J, Gryndler M, Briksí A, Kotrba P (2014) Intracellular sequestration of zinc, cadmium and silver in Hebeloma mesophaeum and characterization of its metallothionein genes. Fungal Genet Biol 67:3–14. https://doi.org/10.1016/j.fgb.2014.03.003 PubMed DOI

Sácký J, Černý J, Šantrůček J, Borovička J, Leonhardt T, Kotrba P (2021) Cadmium hyperaccumulating mushroom Cystoderma carcharias has two metallothionein isoforms usable for cadmium and copper storage. Fungal Genet Biol 153:103574. https://doi.org/10.1016/j.fgb.2021.103574 PubMed DOI

Sácký J, Chaloupecká A, Kaňa A, Šantrůček J, Borovička J, Leonhardt T, Kotrba P (2022) Intracellular sequestration of cadmium and zinc in ectomycorrhizal fungus Amanita muscaria (Agaricales, Amanitaceae) and characterization of its metallothionein gene. Fungal Genet Biol 162:103717. https://doi.org/10.1016/j.fgb.2022.103717 DOI

Sácký J, Liščáková V, Šnábl J, Zelenka J, Borovička J, Leonhardt T, Kotrba P (2025) Functional analysis of two genes coding for distinct cation diffusion facilitators of the cadmium-accumulating fungus Agaricus crocodilinus. Fungal Biol 129:101550. https://doi.org/10.1016/j.funbio.2025.101550 PubMed DOI

Saitou N, Nei M (1987) The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425 PubMed

Sutherland DE, Stillman MJ (2011) The “magic numbers” of metallothionein. Metallomics 3:444–463. https://doi.org/10.1039/c0mt00102c PubMed DOI

Tamai KT, Gralla EB, Ellerby LM, Valentine JS, Thiele DJ (1993) Yeast and mammalian metallothioneins functionally substitute for yeast copper-zinc superoxide dismutase. Proc Nat Acad Sci 90:8013–8017. https://doi.org/10.1073/pnas.90.17.8013 PubMed DOI PMC

Trinchella F, Riggio M, Filosa S, Parisi E, Scudiero R (2008) Molecular cloning and sequencing of metallothionein in squamates: New insights into the evolution of the metallothionein genes in vertebrates. Gene 423(1):48–56. https://doi.org/10.1016/j.gene.2008.06.027 PubMed DOI

Tucker SL, Thornton CR, Tasker K, Jacob C, Giles G, Egan M, Talbot NJ (2004) A fungal metallothionein is required for pathogenicity of Magnaporthe grisea. Plant Cell 16:1575–1588. https://doi.org/10.1105/tpc.021279 PubMed DOI PMC

Wapinski I, Pfeffer A, Friedman N, Regev A (2007) Natural history and evolutionary principles of gene duplication in fungi. Nature 449:54–61. https://doi.org/10.1038/nature06107 PubMed DOI

Ziller A, Fraissinet-Tachet L (2018) Metallothionein diversity and distribution in the tree of life: a multifunctional protein. Metallomics 10:1549–1559. https://doi.org/10.1039/c8mt00165k PubMed DOI

Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic Press, Cambridge, pp 97–166. https://doi.org/10.1016/B978-1-4832-2734-4.50017-6 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...