Capturing a glycosylase reaction intermediate in DNA repair by freeze-trapping of a pH-responsive hOGG1 mutant
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
22K05320
Scientific Research
19K05705
Scientific Research
19K06507
Scientific Research
16K07261
Scientific Research
Ministry of Education, Culture, Sports, Science and Technology
Ibaraki prefecture Sendo-Kenkyu
Tokushima Bunri University
PubMed
40754315
PubMed Central
PMC12318605
DOI
10.1093/nar/gkaf718
PII: 8220635
Knihovny.cz E-zdroje
- MeSH
- DNA-glykosylasy * chemie genetika metabolismus MeSH
- DNA chemie metabolismus MeSH
- guanin analogy a deriváty chemie metabolismus MeSH
- koncentrace vodíkových iontů MeSH
- krystalografie rentgenová MeSH
- lidé MeSH
- molekulární modely MeSH
- mutace MeSH
- oprava DNA * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 8-hydroxyguanine MeSH Prohlížeč
- DNA-glykosylasy * MeSH
- DNA MeSH
- guanin MeSH
- oxoguanine glycosylase 1, human MeSH Prohlížeč
The human 8-oxoguanine DNA glycosylase 1 (hOGG1) is a bifunctional DNA repair enzyme that possesses both glycosylase and AP-lyase activity. Its AP-lyase reaction mechanism had been revealed by crystallographic capturing of the intermediate adduct. However, no intermediate within the glycosylase reaction was reported to date and the relevant reaction mechanism thus remained unresolved. In this work, we studied the glycosylase reaction of hOGG1 by time-resolved crystallography and spectroscopic/enzymological analyses. To trigger the glycosylase reaction within a crystal, we created a pH-responsive mutant of hOGG1 in which lysine 249 (K249) has been replaced by histidine (H), and designated hOGG1(K249H). Using hOGG1(K249H), a reactive intermediate state of the hOGG1(K249H)-DNA complex was captured in crystal upon pH activation. An unprecedented, ribose-ring-opened hemiaminal structure at the 8-oxoguanine (oxoG) site was found. Based on the structure of the reaction intermediate and QM/MM (quantum mechanics/molecular mechanics) calculations, a glycosylase reaction pathway of hOGG1(K249H) was identified where the aspartic acid 268 (D268) acts as a proton donor to O4' of oxoG. Moreover, enzymologically derived pKa (4.5) of a catalytic residue indicated that the observed pKa can be attributed to the carboxy group of D268. Thus, a reaction mechanism of the glycosylase reaction by hOGG1(K249H) has been proposed.
Human 8-oxoguanine DNA glycosylase 1 (hOGG1) is a key DNA repair enzyme that excises 8-oxoguanine, a mutagenic base lesion, from double-stranded DNA. In this study, we crystallographically visualized an intermediate state of the enzymatic reaction. To achieve this, we employed a specifically designed pH-sensitive mutant of hOGG1 and applied a freeze-trapping technique to capture the reaction intermediate. The resulting crystal structure revealed a previously unknown reaction pathway involving a hemiaminal-type intermediate, captured here for the first time. These findings provide new insights into the catalytic mechanism of hOGG1.
Zobrazit více v PubMed
Wood RD, Mitchell M, Sgouros J et al. Human DNA repair genes. Science. 2001; 291:1284–9. 10.1126/science.1056154. PubMed DOI
Arai K, Morishita K, Shinmura K et al. Cloning of a human homolog of the yeast OGG1 gene that is involved in the repair of oxidative DNA damage. Oncogene. 1997; 14:2857–61. 10.1038/sj.onc.1201139. PubMed DOI
Kohno T, Shinmura K, Tosaka M et al. Genetic polymorphisms and alternative splicing of the hOGG1 gene, that is involved in the repair of 8-hydroxyguanine in damaged DNA. Oncogene. 1998; 16:3219–25. 10.1038/sj.onc.1201872. PubMed DOI
Sheng Z, Oka S, Tsuchimoto D et al. 8-Oxoguanine causes neurodegeneration during MUTYH-mediated DNA base excision repair. J Clin Invest. 2012; 122:4344–61. 10.1172/JCI65053. PubMed DOI PMC
Jacob KD, Noren Hooten N, Tadokoro T et al. Alzheimer’s disease-associated polymorphisms in human OGG1 alter catalytic activity and sensitize cells to DNA damage. Free Radic Biol Med. 2013; 63:115–25. 10.1016/j.freeradbiomed.2013.05.010. PubMed DOI PMC
Wang R, Li C, Qiao P et al. OGG1-initiated base excision repair exacerbates oxidative stress-induced parthanatos. Cell Death Dis. 2018; 9:628. 10.1038/s41419-018-0680-0. PubMed DOI PMC
Nash HM, Lu R, Lane WS et al. The critical active-site amine of the human 8-oxoguanine DNA glycosylase, hOgg1: direct identification, ablation and chemical reconstitution. Chem Biol. 1997; 4:693–702. 10.1016/S1074-5521(97)90225-8. PubMed DOI
Nash HM, Bruner SD, Scharer OD et al. Cloning of a yeast 8-oxoguanine DNA glycosylase reveals the existence of a base-excision DNA-repair protein superfamily. Curr Biol. 1996; 6:968–80. 10.1016/S0960-9822(02)00641-3. PubMed DOI
Norman DP, Chung SJ, Verdine GL Structural and biochemical exploration of a critical amino acid in human 8-oxoguanine glycosylase. Biochemistry. 2003; 42:1564–72. 10.1021/bi026823d. PubMed DOI
Labahn J, Schärer OD, Long A et al. Structural basis for the excision repair of alkylation-damaged DNA. Cell. 1996; 86:321–9. 10.1016/S0092-8674(00)80103-8. PubMed DOI
Thayer MM, Ahern H, Xing D et al. Novel DNA binding motifs in the DNA repair enzyme endonuclease III crystal structure. EMBO J. 1995; 14:4108–20. 10.1002/j.1460-2075.1995.tb00083.x. PubMed DOI PMC
Piersen CE, Prince MA, Augustine ML et al. Purification and cloning of PubMed DOI
Bruner SD, Norman DP, Verdine GL Structural basis for recognition and repair of the endogenous mutagen 8-oxoguanine in DNA. Nature. 2000; 403:859–66. 10.1038/35002510. PubMed DOI
Bjørås M, Seeberg E, Luna L et al. Reciprocal “flipping” underlies substrate recognition and catalytic activation by the human 8-oxo-guanine DNA glycosylase. J Mol Biol. 2002; 317:171–7. 10.1006/jmbi.2002.5400. PubMed DOI
Sebera J, Hattori Y, Sato D et al. The mechanism of the glycosylase reaction with hOGG1 base-excision repair enzyme: concerted effect of Lys249 and Asp268 during excision of 8-oxoguanine. Nucleic Acids Res. 2017; 45:5231–42. 10.1093/nar/gkx157. PubMed DOI PMC
Fromme JC, Bruner SD, Yang W et al. Product-assisted catalysis in base-excision DNA repair. Nat Struct Mol Biol. 2003; 10:204–11. 10.1038/nsb902. PubMed DOI
Matsui T, Unno M, Ikeda-Saito M Heme oxygenase reveals its strategy for catalyzing three successive oxygenation reactions. Acc Chem Res. 2010; 43:240–7. 10.1021/ar9001685. PubMed DOI
Lai W, Chen H, Matsui T et al. Enzymatic ring-opening mechanism of verdoheme by the heme oxygenase: a combined X-ray crystallography and QM/MM study. J Am Chem Soc. 2010; 132:12960–70. 10.1021/ja104674q. PubMed DOI
Unno M, Ardèvol A, Rovira C et al. Structures of the substrate-free and product-bound forms of HmuO, a heme oxygenase from PubMed DOI PMC
Unno M, Matsui T, Ikeda-Saito M Crystallographic studies of heme oxygenase complexed with an unstable reaction intermediate, verdoheme. J Inorg Biochem. 2012; 113:102–9. 10.1016/j.jinorgbio.2012.04.012. PubMed DOI
Dalhus B, Forsbring M, Helle IH et al. Separation-of-function mutants unravel the dual-reaction mode of human 8-oxoguanine DNA glycosylase. Structure. 2011; 19:117–27. 10.1016/j.str.2010.09.023. PubMed DOI
Kabsch W Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr D Biol Crystallogr. 2010; 66:133–44. 10.1107/S0907444909047374. PubMed DOI PMC
Evans PR, Murshudov GN How good are my data and what is the resolution?. Acta Crystallogr D Biol Crystallogr. 2013; 69:1204–14. 10.1107/S0907444913000061. PubMed DOI PMC
Vagin A, Teplyakov A MOLREP: an automated program for molecular replacement. J Appl Crystallogr. 1997; 30:1022–5. 10.1107/S0021889897006766. DOI
Potterton E, Briggs P, Turkenburg M et al. A graphical user interface to the CCP4 program suite. Acta Crystallogr D Biol Crystallogr. 2003; 59:1131–7. 10.1107/S0907444903008126. PubMed DOI
Emsley P, Cowtan K Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr. 2004; 60:2126–32. 10.1107/S0907444904019158. PubMed DOI
Murshudov GN, Skubak P, Lebedev AA et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr D Biol Crystallogr. 2011; 67:355–67. 10.1107/S0907444911001314. PubMed DOI PMC
Liebschner D, Afonine PV, Baker ML et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr D Struct Biol. 2019; 75:861–77. 10.1107/S2059798319011471. PubMed DOI PMC
Sadeghian K, Ochsenfeld C Unraveling the base excision repair mechanism of human DNA glycosylase. J Am Chem Soc. 2015; 137:9824–31. 10.1021/jacs.5b01449. PubMed DOI
Zhu C, Lu L, Zhang J et al. Tautomerization-dependent recognition and excision of oxidation damage in base-excision DNA repair. Proc Natl Acad Sci USA. 2016; 113:7792–7. 10.1073/pnas.1604591113. PubMed DOI PMC
Schyman P, Danielsson J, Pinak M et al. Theoretical study of the human DNA repair protein HOGG1 activity. J Phys Chem A. 2005; 109:1713–9. 10.1021/jp045686m. PubMed DOI
Calvaresi M, Bottoni A, Garavelli M Computational clues for a new mechanism in the glycosylase activity of the human DNA repair protein hOGG1. A generalized paradigm for purine-repairing systems?. J Phys Chem B. 2007; 111:6557–70. 10.1021/jp071581i. PubMed DOI
Shim EJ, Przybylski JL, Wetmore SD Effects of nucleophile, oxidative damage, and nucleobase orientation on the glycosidic bond cleavage in deoxyguanosine. J Phys Chem B. 2010; 114:2319–26. 10.1021/jp9113656. PubMed DOI
Šebera J, Trantírek L, Tanaka Y et al. Pyramidalization of the glycosidic nitrogen provides the way for efficient cleavage of the N-glycosidic bond of 8-OxoG with the hOGG1 DNA repair protein. J Phys Chem B. 2012; 116:12535–44. 10.1021/jp309098d. PubMed DOI
Kellie JL, Wilson KA, Wetmore SD Standard role for a conserved aspartate or more direct involvement in deglycosylation? An ONIOM and MD investigation of adenine-DNA glycosylase. Biochemistry. 2013; 52:8753–65. 10.1021/bi401310w. PubMed DOI
Šebera J, Trantírek L, Tanak Y et al. The activation of DOI
Dracinsky M, Šála M, Klepetářová B et al. Benchmark theoretical and experimental study on PubMed DOI
Liu L, Cottrell JW, Scott LG et al. Direct measurement of the ionization state of an essential guanine in the hairpin ribozyme. Nat Chem Biol. 2009; 5:351–7. 10.1038/nchembio.156. PubMed DOI PMC
Tanaka Y, Yamanaka D, Morioka S et al. Physicochemical characterization of the catalytic unit of hammerhead ribozyme and its relationship with the catalytic activity. Biophysica. 2022; 2:221–39. 10.3390/biophysica2030022. DOI
Tomar R, Minko IG, Sharma P et al. Base excision repair of the PubMed DOI PMC
Schanda P, Kupce E, Brutscher B SOFAST-HMQC experiments for recording two-dimensional heteronuclear correlation spectra of proteins within a few seconds. J Biomol NMR. 2005; 33:199–211. 10.1007/s10858-005-4425-x. PubMed DOI
Vollhardt KPC, Schore NE Organic Chemistry : Structure and Function. 2018; 8th ednNew York: W.H. Freeman & Co. Ltd.
Bruice PY Organic Chemistry. 2007; 5th ednLondon: Pearson Education, Inc.