Viral insulin/IGF-like peptides inhibit IGF-1 receptor signaling to enhance viral replication

. 2025 Aug 26 ; 44 (8) : 116149. [epub] 20250818

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40829596

Grantová podpora
R01 DK132674 NIDDK NIH HHS - United States
R35 GM138217 NIGMS NIH HHS - United States
R35 GM146467 NIGMS NIH HHS - United States

Odkazy

PubMed 40829596
PubMed Central PMC12512748
DOI 10.1016/j.celrep.2025.116149
PII: S2211-1247(25)00920-9
Knihovny.cz E-zdroje

The insulin/insulin growth factor (IGF) system plays a central role in regulating metabolism and growth. We identified viral insulin/IGF1-like peptides (VILPs) in Iridoviridae and investigated their role in host-virus interactions. Using grouper iridovirus (GIV) on grouper and zebrafish cells, we show that VILPs are early viral genes and are secreted during infection. VILPs activate insulin receptor (IR) and IGF-1 receptor (IGF1R) phosphorylation and stimulate the phosphatidylinositol 3-kinase (PI3K) pathway. GIV-VILP present in the supernatants of infected cells triggers dose- and time-dependent signaling through selective interaction with IGF1R. Functionally, IR inhibition suppresses GIV replication, whereas IGF1R inhibition enhances it, and IGF-1 stimulation reduces replication. During infection, GIV-VILP competes with IGF-1, attenuating IGF1R signaling and reducing proliferation. Transcriptome analysis confirms negative regulation of cell cycle pathways. Using a zebrafish infection model, we demonstrate VILP expression and IGF-1 signaling inhibition. Our findings reveal a viral mimicry mechanism that modulates host IGF-1 signaling to promote viral replication.

Zobrazit více v PubMed

Huang Q, Kahn CR, and Altindis E (2019). Viral Hormones: Expanding Dimensions in Endocrinology. Endocrinology 160, 2165–2179. 10.1210/en.2019-00271. PubMed DOI PMC

Girdhar K, Powis A, Raisingani A, Chrudinová M, Huang R, Tran T, Sevgi K, Dogus Dogru Y, and Altindis E (2021). Viruses and Metabolism: The Effects of Viral Infections and Viral Insulins on Host Metabolism. Annu. Rev. Virol. 8, 373–391. 10.1146/annurev-virology-091919-102416. PubMed DOI PMC

Alcami A (2003). Viral mimicry of cytokines, chemokines and their receptors. Nat. Rev. Immunol. 3, 36–50. 10.1038/nri980. PubMed DOI

Altindis E, Cai W, Sakaguchi M, Zhang F, GuoXiao W, Liu F, De Meyts P, Gelfanov V, Pan H, DiMarchi R, and Kahn CR (2018). Viral insulin-like peptides activate human insulin and IGF-1 receptor signaling: A paradigm shift for host-microbe interactions. Proc. Natl. Acad. Sci. USA 115, 2461–2466. 10.1073/pnas.1721117115. PubMed DOI PMC

Chrudinova M, Moreau F, Noh HL, Páníková T, Žáková L, Friedline RH, Valenzuela FA, Kim JK, Jiráček J, Kahn CR, and Altindis E (2021). Characterization of viral insulins reveals white adipose tissue-specific effects in mice. Mol. Metabol. 44, 101121. 10.1016/j.molmet.2020.101121. PubMed DOI PMC

Moreau F, Kirk NS, Zhang F, Gelfanov V, List EO, Chrudinová M, Venugopal H, Lawrence MC, Jimenez V, Bosch F, et al. (2022). Interaction of a viral insulin-like peptide with the IGF-1 receptor produces a natural antagonist. Nat. Commun. 13, 6700. 10.1038/s41467-022-34391-6. PubMed DOI PMC

Chrudinova M, Kirk NS, Chuard A, Venugopal H, Zhang F, Lubos M, Gelfanov V, Páníková T, Žáková L, Cutone J, et al. (2024). A viral insulin-like peptide inhibits IGF-1 receptor phosphorylation and regulates IGF1R gene expression. Mol. Metabol. 80, 101863. 10.1016/j.molmet.2023.101863. PubMed DOI PMC

Zhang F, Altindis E, Kahn CR, DiMarchi RD, and Gelfanov V (2021). A viral insulin-like peptide is a natural competitive antagonist of the human IGF-1 receptor. Mol. Metabol. 53, 101316. 10.1016/j.molmet.2021.101316. PubMed DOI PMC

Irwin DM (2021). Evolution of the mammalian insulin (Ins) gene; Changes in proteolytic processing. Peptides 135, 170435. 10.1016/j.peptides.2020.170435. PubMed DOI

De Meyts P (2004). Insulin and its receptor: structure, function and evolution. Bioessays 26, 1351–1362. PubMed

Boucher J, Kleinridders A, and Kahn CR (2014). Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harbor Perspect. Biol. 6, a009191. 10.1101/cshperspect.a009191. PubMed DOI PMC

Nagao H, Cai W, Wewer Albrechtsen NJ, Steger M, Batista TM, Pan H, Dreyfuss JM, Mann M, and Kahn CR (2021). Distinct signaling by insulin and IGF-1 receptors and their extra- and intracellular domains. Proc. Natl. Acad. Sci. USA 118, e2019474118. PubMed PMC

Hernandez-Sanchez C, Mansilla A, de Pablo F, and Zardoya R (2008). Evolution of the insulin receptor family and receptor isoform expression in vertebrates. Mol. Biol. Evol. 25, 1043–1053. PubMed

Sundby A, Eliassen K, Refstie T, and Plisetskaya EM (1991). Plasma levels of insulin, glucagon and glucagon-like peptide in salmonids of different weights. Fish Physiol. Biochem. 9, 223–230. 10.1007/bf02265143. PubMed DOI

Reindl KM, Kittilson JD, Bergan HE, and Sheridan MA (2011). Growth hormone-stimulated insulin-like growth factor-1 expression in rainbow trout (Oncorhynchus mykiss) hepatocytes is mediated by ERK, PI3K-AKT, and JAK-STAT. Am. J. Physiol. Regul. Integr. Comp. Physiol. 301, R236–R243. 10.1152/ajpregu.00414.2010. PubMed DOI

Wood AW, Duan C, and Bern HA (2005). Insulin-like growth factor signaling in fish. Int. Rev. Cytol. 243, 215–285. 10.1016/s0074-7696(05)43004-1. PubMed DOI

Planas JV, Méndez E, Baños N, Capilla E, Castillo J, Navarro I, and Gutiérrez J (2000). Fish insulin, IGF-I and IGF-II receptors: a phylogenetic approach. Am. Zool. 40, 223–233.

Gutiérrez J, Párrizas M, Maestro MA, Navarro I, and Plisetskaya EM (1995). Insulin and IGF-I binding and tyrosine kinase activity in fish heart. J. Endocrinol. 146, 35–44. PubMed

Maestro MA, Méndez E, Párrizas M, and Gutiérrez J (1997). Characterization of insulin and insulin-like growth factor-I ovarian receptors during the reproductive cycle of carp (Cyprinus carpio). Biol. Reprod. 56, 1126–1132. 10.1095/biolreprod56.5.1126. PubMed DOI

Leibush B, Párrizas M, Navarro I, Lappova Y, Maestro MA, Encinas M, Plisetskaya EM, and Gutiérrez J (1996). Insulin and insulin-like growth factor-I receptors in fish brain. Regul. Pept. 61, 155–161. 10.1016/0167-0115(95)00154-9. PubMed DOI

Liebert AM, and Schreck CB (2006). Effects of acute stress on osmoregulation, feed intake, IGF-1, and cortisol in yearling steelhead trout (Oncorhynchus mykiss) during seawater adaptation. Gen. Comp. Endocrinol. 148, 195–202. 10.1016/j.ygcen.2006.03.002. PubMed DOI

Franz AC, Faass O, Köllner B, Shved N, Link K, Casanova A, Wenger M, D’Cotta H, Baroiller JF, Ullrich O, et al. (2016). Endocrine and Local IGF-I in the Bony Fish Immune System. Biology 5, 9. 10.3390/biology5010009. PubMed DOI PMC

Tsai CT, Ting JW, Wu MH, Wu MF, Guo IC, and Chang CY (2005). Complete genome sequence of the grouper iridovirus and comparison of genomic organization with those of other iridoviruses. J. Virol. 79, 2010–2023. 10.1128/JVI.79.4.2010-2023.2005. PubMed DOI PMC

Lai YS, John JAC, Lin CH, Guo IC, Chen SC, Fang K, Lin CH, and Chang CY (2003). Establishment of cell lines from a tropical grouper, Epinephelus awoara (Temminck & Schlegel), and their susceptibility to grouper irido- and nodaviruses. J. Fish. Dis. 26, 31–42. 10.1046/j.1365-2761.2003.00434.x. PubMed DOI

Qin QW, Lam TJ, Sin YM, Shen H, Chang SF, Ngoh GH, and Chen CL (2001). Electron microscopic observations of a marine fish iridovirus isolated from brown-spotted grouper, Epinephelus tauvina. J. Virol. Methods 98, 17–24. 10.1016/s0166-0934(01)00350-0. PubMed DOI

Yu Q, Liu M, Xiao H, Wu S, Qin X, Lu Z, Shi D, Li S, Mi H, Wang Y, et al. (2019). The inhibitory activities and antiviral mechanism of Viola philippica aqueous extracts against grouper iridovirus infection in vitro and in vivo. J. Fish. Dis. 42, 859–868. 10.1111/jfd.12987. PubMed DOI

Huang X, Huang Y, Xu L, Wei S, Ouyang Z, Feng J, and Qin Q (2015). Identification and characterization of a novel lymphocystis disease virus isolate from cultured grouper in China. J. Fish. Dis. 38, 379–387. 10.1111/jfd.12244. PubMed DOI

Frasca F, Pandini G, Sciacca L, Pezzino V, Squatrito S, Belfiore A, and Vigneri R (2008). The role of insulin receptors and IGF-I receptors in cancer and other diseases. Arch. Physiol. Biochem. 114, 23–37. PubMed

Morcavallo A, Genua M, Palummo A, Kletvikova E, Jiracek J, Brzozowski AM, Iozzo RV, Belfiore A, and Morrione A (2012). Insulin and insulin-like growth factor II differentially regulate endocytic sorting and stability of insulin receptor isoform A. J. Biol. Chem. 287, 11422–11436. 10.1074/jbc.M111.252478. PubMed DOI PMC

Lasso G, Honig B, and Shapira SD (2021). A Sweep of Earth’s Virome Reveals Host-Guided Viral Protein Structural Mimicry and Points to Determinants of Human Disease. Cell Syst. 12, 82–91.e3. 10.1016/j.cels.2020.09.006. PubMed DOI PMC

Beerli C, Yakimovich A, Kilcher S, Reynoso GV, Fläschner G, Müller DJ, Hickman HD, and Mercer J (2019). Vaccinia virus hijacks EGFR signalling to enhance virus spread through rapid and directed infected cell motility. Nat. Microbiol. 4, 216–225. 10.1038/s41564-018-0288-2. PubMed DOI PMC

Buller RM, Chakrabarti S, Cooper JA, Twardzik DR, and Moss B (1988). Deletion of the vaccinia virus growth factor gene reduces virus virulence. J. Virol. 62, 866–874. 10.1128/jvi.62.3.866-874.1988. PubMed DOI PMC

Kotenko SV, Saccani S, Izotova LS, Mirochnitchenko OV, and Pestka S (2000). Human cytomegalovirus harbors its own unique IL-10 homolog (cmvIL-10). Proc. Natl. Acad. Sci. USA 97, 1695–1700. PubMed PMC

Spencer JV, Lockridge KM, Barry PA, Lin G, Tsang M, Penfold MET, and Schall TJ (2002). Potent immunosuppressive activities of cytomegalovirus-encoded interleukin-10. J. Virol. 76, 1285–1292. PubMed PMC

Aoki Y, Jaffe ES, Chang Y, Jones K, Teruya-Feldstein J, Moore PS, and Tosato G (1999). Angiogenesis and hematopoiesis induced by Kaposi’s sarcoma-associated herpesvirus-encoded interleukin-6. Blood 93, 4034–4043. PubMed

Yao Z, Fanslow WC, Seldin MF, Rousseau AM, Painter SL, Comeau MR, Cohen JI, and Spriggs MK (1995). Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3, 811–821. PubMed

Lanz TV, Brewer RC, Ho PP, Moon JS, Jude KM, Fernandez D, Fernandes RA, Gomez AM, Nadj GS, Bartley CM, et al. (2022). Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature 603, 321–327. PubMed PMC

Bjornevik K, Cortese M, Healy BC, Kuhle J, Mina MJ, Leng Y, Elledge SJ, Niebuhr DW, Scher AI, Munger KL, and Ascherio A (2022). Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 375, 296–301. PubMed

Soares JAP, Leite FGG, Andrade LG, Torres AA, De Sousa LP, Barcelos LS, Teixeira MM, Ferreira PCP, Kroon EG, Souto-Padrón T, and Bonjardim CA (2009). Activation of the PI3K/Akt Pathway Early during Vaccinia and Cowpox Virus Infections Is Required for both Host Survival and Viral Replication. J. Virol. 83, 6883–6899. 10.1128/jvi.00245-09. PubMed DOI PMC

Tiwari V, and Shukla D (2010). Phosphoinositide 3 kinase signalling may affect multiple steps during herpes simplex virus type-1 entry. J. Gen. Virol. 91, 3002–3009. 10.1099/vir.0.024166-0. PubMed DOI PMC

De Meyts P (2015). Insulin/receptor binding: the last piece of the puzzle? What recent progress on the structure of the insulin/receptor complex tells us (or not) about negative cooperativity and activation. Bioessays 37, 389–397. 10.1002/bies.201400190. PubMed DOI

Xu Y, Kong GKW, Menting JG, Margetts MB, Delaine CA, Jenkin LM, Kiselyov VV, De Meyts P, Forbes BE, and Lawrence MC (2018). How ligand binds to the type 1 insulin-like growth factor receptor. Nat. Commun. 9, 821. 10.1038/s41467-018-03219-7. PubMed DOI PMC

Riedemann J, and Macaulay VM (2006). IGF1R signalling and its inhibition. Endocr. Relat. Cancer 13, S33–S43. PubMed

Belavgeni A, Maremonti F, Tonnus W, Stadtmüller M, Gavali S, Mallais M, Flade K, Brucker A, Becker JN, Beer K, et al. (2023). vPIF-1 is an insulin-like antiferroptotic viral peptide. Proc. Natl. Acad. Sci. USA 120, e2300320120. 10.1073/pnas.2300320120. PubMed DOI PMC

Fan Y, Sanyal S, and Bruzzone R (2018). Breaking Bad: How Viruses Subvert the Cell Cycle. Front. Cell. Infect. Microbiol. 8, 396. 10.3389/fcimb.2018.00396. PubMed DOI PMC

He J, Choe S, Walker R, Di Marzio P, Morgan DO, and Landau NR (1995). Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J. Virol. 69, 6705–6711. 10.1128/jvi.69.11.6705-6711.1995. PubMed DOI PMC

Li H, Baskaran R, Krisky DM, Bein K, Grandi P, Cohen JB, and Glorioso JC (2008). Chk2 is required for HSV-1 ICP0-mediated G2/M arrest and enhancement of virus growth. Virology 375, 13–23. 10.1016/j.virol.2008.01.038. PubMed DOI PMC

Chinchar VG, Hick P, Ince IA, Jancovich JK, Marschang R, Qin Q, Subramaniam K, Waltzek TB, Whittington R, Williams T, et al. (2017). ICTV Virus Taxonomy Profile: Iridoviridae. J. Gen. Virol. 98, 890–891. 10.1099/jgv.0.000818. PubMed DOI PMC

Rauta PR, Nayak B, and Das S (2012). Immune system and immune responses in fish and their role in comparative immunity study: a model for higher organisms. Immunol. Lett. 148, 23–33. 10.1016/j.imlet.2012.08.003. PubMed DOI

van der Sar AM, Appelmelk BJ, Vandenbroucke-Grauls CMJE, and Bitter W (2004). A star with stripes: zebrafish as an infection model. Trends Microbiol. 12, 451–457. 10.1016/j.tim.2004.08.001. PubMed DOI

Crim MJ, and Riley LK (2012). Viral diseases in zebrafish: what is known and unknown. ILAR J. 53, 135–143. 10.1093/ilar.53.2.135. PubMed DOI PMC

Palha N, Guivel-Benhassine F, Briolat V, Lutfalla G, Sourisseau M, Ellett F, Wang CH, Lieschke GJ, Herbomel P, Schwartz O, and Levraud JP (2013). Real-time whole-body visualization of Chikungunya Virus infection and host interferon response in zebrafish. PLoS Pathog. 9, e1003619. 10.1371/journal.ppat.1003619. PubMed DOI PMC

Martín V, Mavian C, López Bueno A, de Molina A, Díaz E, Andrés G, Alcami A, and Alejo A (2015). Establishment of a Zebrafish Infection Model for the Study of Wild-Type and Recombinant European Sheatfish Virus. J. Virol. 89, 10702–10706. 10.1128/jvi.01580-15. PubMed DOI PMC

Xu X, Zhang L, Weng S, Huang Z, Lu J, Lan D, Zhong X, Yu X, Xu A, and He J (2008). A zebrafish (Danio rerio) model of infectious spleen and kidney necrosis virus (ISKNV) infection. Virology 376, 1–12. 10.1016/j.virol.2007.12.026. PubMed DOI

Song WJ, Qin QW, Qiu J, Huang CH, Wang F, and Hew CL (2004). Functional Genomics Analysis of Singapore Grouper Iridovirus: Complete Sequence Determination and Proteomic Analysis. J. Virol. 78, 12576–12590. 10.1128/jvi.78.22.12576-12590.2004. PubMed DOI PMC

Krueger F (2024). TrimGalore. https://github.com/FelixKrueger/TrimGalore.

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, et al. (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 29, 644–652. PubMed PMC

Haas B (2024). TransDecoder. https://github.com/TransDecoder/TransDecoder.

(2024). Blast2GO. https://www.blast2go.com/.

Love MI, Huber W, and Anders S (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550. PubMed PMC

Ge SX, Jung D, and Yao R (2020). ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics 36, 2628–2629. PubMed PMC

Oliveros JC (2007). VENNY. An interactive tool for comparing lists with Venn Diagrams. http://bioinfogp.cnb.csic.es/tools/venny/index.html.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...