Experimental analysis of bone marrow adipose tissue and bone marrow adipocytes: An update from the bone marrow adiposity society (BMAS)

. 2025 Sep ; 26 () : 101861. [epub] 20250728

Status In-Process Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40837072
Odkazy

PubMed 40837072
PubMed Central PMC12363472
DOI 10.1016/j.bonr.2025.101861
PII: S2352-1872(25)00038-5
Knihovny.cz E-zdroje

Bone marrow adipose tissue (BMAT) is physiologically linked to bone and energy metabolism, endocrine regulation, hematopoiesis and cancer-related processes. A key challenge in the field is that methods for isolating BMAT or bone marrow adipocytes (BMAds) are variable because there are no widely adopted standardized protocols. To generate awareness of this challenge and to establish uniformity in experimental approaches requiring isolation, storage and characterization of BMAT and BMAds, the Biobanking Working Group of the international Bone Marrow Adiposity Society (BMAS) has previously recommended experimental standards. This paper provides an update on this effort and presents current state-of-the-art methods and technical considerations for isolation and characterization of BMAT and BMAds, including currently available high-throughput omics approaches. This review provides a reference point based on the consensus view of BMAS investigators to support studies on biomedical, biological, biochemical and biophysical questions associated with bone marrow adiposity.

Clinical Hematology Department Centro Hospitalar e Universitário de Coimbra Coimbra Portugal

Department of Biochemistry and Molecular Cell Biology University Medical Center Hamburg Eppendorf Hamburg Germany

Department of Biochemistry Lerner College of Medicine 89 Beaumont Avenue University of Vermont Burlington VT USA

Department of Medical Science and Innovation SiRIUS Institute of Medical Research Tohoku University 1 1 Seiryo machi Aoba ku Sendai City Miyagi 980 8574 Japan

Department of Molecular Medicine Sapienza University Rome Italy

Department of Orthopedics and Rehabilitation University of Iowa Iowa City IA United States

Department of Pharmacology Wayne State University School of Medicine and Karmanos Cancer Institute Detroit MI United States

Group for Hematology and Stem Cells Institute for Medical Research National Institute of Republic of Serbia University of Belgrade 11000 Belgrade Serbia

Institut de Pharmacologie et de Biologie Structurale Université de Toulouse CNRS UMR 5089 205 Route de Narbonne 31077 Toulouse France

Institute of Biomedicine University of Turku Turku Finland

Laboratory for Calcium and Bone Metabolism and Erasmus MC Bone Centre Department of Internal Medicine Erasmus MC Erasmus University Medical Center Rotterdam the Netherlands

Laboratory of Molecular Physiology of Bone Institute of Physiology of the Czech Academy of Sciences Prague Czechia

Marrow Adiposity and Bone Lab MABLab ULR4490 Univ Littoral Côte d'Opale F 62200 Boulogne sur Mer Univ Lille F 59000 Lille CHU Lille F 59000 Lille France

Rheumatology Department of Musculoskeletal Medicine University Hospital Lausanne and University of Lausanne Lausanne Switzerland

University BHF Centre for Cardiovascular Science University of Edinburgh The Queen's Medical Research Institute Edinburgh BioQuarter 47 Little France Crescent Edinburgh UK

Zobrazit více v PubMed

Aaron N., Kraakman M.J., Zhou Q., Liu Q., Costa S., Yang J., et al. Adipsin promotes bone marrow adiposity by priming mesenchymal stem cells. Elife. 2021;10 PubMed PMC

Attane C., Esteve D., Chaoui K., Iacovoni J.S., Corre J., Moutahir M., et al. Human bone marrow is comprised of adipocytes with specific lipid metabolism. Cell Rep. 2020;30(4) 949-58 e6. PubMed

Attane C., Esteve D., Moutahir M., Reina N., Muller C. A protocol for human bone marrow adipocyte isolation and purification. STAR Protoc. 2021;2(3) PubMed PMC

Baccin C., Al-Sabah J., Velten L., Helbling P.M., Grunschlager F., Hernandez-Malmierca P., et al. Combined single-cell and spatial transcriptomics reveal the molecular, cellular and spatial bone marrow niche organization. Nat. Cell Biol. 2020;22(1):38–48. PubMed PMC

Backdahl J., Franzen L., Massier L., Li Q., Jalkanen J., Gao H., et al. Spatial mapping reveals human adipocyte subpopulations with distinct sensitivities to insulin. Cell Metab. 2021;33(9) 1869-82 e6. PubMed

Bartelt A., Koehne T., Todter K., Reimer R., Muller B., Behler-Janbeck F., et al. Quantification of Bone Fatty Acid Metabolism and Its Regulation by Adipocyte Lipoprotein Lipase. Int. J. Mol. Sci. 2017;18(6) PubMed PMC

Bayyari G.R., Cook J.R., Harris G.C., Jr., Macy L.B., Slavik M.F., Skeeles J.K. The evaluation of chicken spermatozoa using fluorescent staining in a 96-well format. Poult. Sci. 1990;69(9):1602–1605. PubMed

Benova A., Ferencakova M., Bardova K., Funda J., Prochazka J., Spoutil F., et al. Omega-3 PUFAs prevent bone impairment and bone marrow adiposity in mouse model of obesity. Commun. Biol. 2023;6(1) PubMed PMC

Bravenboer N., Bredella M.A., Chauveau C., Corsi A., Douni E., Ferris W.F., et al. Standardised nomenclature, abbreviations, and units for the study of bone marrow adiposity: report of the nomenclature working group of the International Bone Marrow Adiposity Society. Front. Endocrinol. (Lausanne). 2019;10 PubMed PMC

Brunmeir R., Wu J., Peng X., Kim S.Y., Julien S.G., Zhang Q., et al. Comparative Transcriptomic and Epigenomic Analyses Reveal New Regulators of Murine Brown Adipogenesis. PLoS Genet. 2016;12(12) PubMed PMC

Carswell K.A., Lee M.J., Fried S.K. Culture of isolated human adipocytes and isolated adipose tissue. Methods Mol. Biol. 2012;806:203–214. PubMed PMC

Cawthorn W.P., Scheller E.L., Learman B.S., Parlee S.D., Simon B.R., Mori H., et al. Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metab. 2014;20(2):368–375. PubMed PMC

Cawthorn W.P., Scheller E.L., Parlee S.D., Pham H.A., Learman B.S., Redshaw C.M., et al. Expansion of bone marrow adipose tissue during caloric restriction is associated with increased circulating glucocorticoids and not with hypoleptinemia. Endocrinology. 2016;157(2):508–521. PubMed PMC

Chen H., He Y., Wu D., Dai G., Zhao C., Huang W., Jiang D. Bone marrow sFRP5 level is negatively associated with bone formation markers. Osteoporos. Int. 2017;28(4):1305–1311. PubMed

Compston J.E. Bone marrow and bone: a functional unit. J. Endocrinol. 2002;173(3):387–394. PubMed

Craft C.S., Li Z., MacDougald O.A., Scheller E.L. Molecular differences between subtypes of bone marrow adipocytes. Curr. Mol. Biol. Rep. 2018;4(1):16–23. PubMed PMC

Craft C.S., Robles H., Lorenz M.R., Hilker E.D., Magee K.L., Andersen T.L., et al. Bone marrow adipose tissue does not express UCP1 during development or adrenergic-induced remodeling. Sci. Rep. 2019;9(1) PubMed PMC

Crissman H.A., Orlicky D.J., Kissane R.J. Fluorescent DNA probes for flow cytometry. Considerations and prospects. J. Histochem. Cytochem. 1979;27(12):1652–1654. PubMed

Dai X., Liu B., Hou Q., Dai Q., Wang D., Xie B., et al. Global and local fat effects on bone mass and quality in obesity. Bone Joint Res. 2023;12(9):580–589. PubMed PMC

Dello Spedale Venti M., Palmisano B., Donsante S., Farinacci G., Adotti F., Coletta I., et al. Morphological and Immunophenotypical Changes of Human Bone Marrow Adipocytes in Marrow Metastasis and Myelofibrosis. Front Endocrinol (Lausanne). 2022;13 PubMed PMC

Du Z.Y., Ma T., Lock E.J., Hao Q., Kristiansen K., Froyland L., Madsen L. Depot-dependent effects of adipose tissue explants on co-cultured hepatocytes. PLoS One. 2011;6(6) PubMed PMC

Dudakovic A., Camilleri E., Riester S.M., Lewallen E.A., Kvasha S., Chen X., et al. High-resolution molecular validation of self-renewal and spontaneous differentiation in clinical-grade adipose-tissue derived human mesenchymal stem cells. J. Cell. Biochem. 2014;115(10):1816–1828. PubMed PMC

Ehnert S., Schreiner A.J., Seeliger C., Ecker J., Springer F., Liebisch G., et al. Amount and composition of total fatty acids in red and yellow bone marrow are altered with changes in bone mineral density. EXCLI J. 2023;22:207–220. PubMed PMC

Emont M.P., Jacobs C., Essene A.L., Pant D., Tenen D., Colleluori G., et al. A single-cell atlas of human and mouse white adipose tissue. Nature. 2022;603(7903):926–933. PubMed PMC

Fairfield H., Falank C., Farrell M., Vary C., Boucher J.M., Driscoll H., et al. Development of a 3D bone marrow adipose tissue model. Bone. 2019;118:77–88. PubMed PMC

Fan Y., Hanai J.I., Le P.T., Bi R., Maridas D., DeMambro V., et al. Parathyroid Hormone Directs Bone Marrow Mesenchymal Cell Fate. Cell Metab. 2017;25(3):661–672. PubMed PMC

Fazeli P.K., Bredella M.A., Pachon-Pena G., Zhao W., Zhang X., Faje A.T., et al. The dynamics of human bone marrow adipose tissue in response to feeding and fasting. JCI Insight. 2021;6(12) PubMed PMC

Ferland-McCollough D., Maselli D., Spinetti G., Sambataro M., Sullivan N., Blom A., Madeddu P. MCP-1 Feedback Loop Between Adipocytes and Mesenchymal Stromal Cells Causes Fat Accumulation and Contributes to Hematopoietic Stem Cell Rarefaction in the Bone Marrow of Patients With Diabetes. Diabetes. 2018;67(7):1380–1394. PubMed

Gonsalves W.I., Broniowska K., Jessen E., Petterson X.M., Bush A.G., Gransee J., et al. Metabolomic and lipidomic profiling of bone marrow plasma differentiates patients with monoclonal gammopathy of undetermined significance from multiple myeloma. Sci. Rep. 2020;10(1) PubMed PMC

Goyal G., Wong K., Nirschl C.J., Souders N., Neuberg D., Anandasabapathy N., Dranoff G. PPARgamma Contributes to Immunity Induced by Cancer Cell Vaccines That Secrete GM-CSF. Cancer Immunol. Res. 2018;6(6):723–732. PubMed PMC

Graves P.R., Haystead T.A. Molecular biologist’s guide to proteomics. Microbiol. Mol. Biol. Rev. 2002;66(1):39–63. (table of contents) PubMed PMC

Griffith J.F., Yeung D.K., Chow S.K., Leung J.C., Leung P.C. Reproducibility of MR perfusion and (1)H spectroscopy of bone marrow. J. Magn. Reson. Imaging. 2009;29(6):1438–1442. PubMed

Griffith J.F., Yeung D.K., Ahuja A.T., Choy C.W., Mei W.Y., Lam S.S., et al. A study of bone marrow and subcutaneous fatty acid composition in subjects of varying bone mineral density. Bone. 2009;44(6):1092–1096. PubMed

Hagberg C.E., Li Q., Kutschke M., Bhowmick D., Kiss E., Shabalina I.G., et al. Flow cytometry of mouse and human adipocytes for the analysis of browning and cellular heterogeneity. Cell Rep. 2018;24(10) 2746-56 e5. PubMed PMC

Harms M.J., Li Q., Lee S., Zhang C., Kull B., Hallen S., et al. Mature human white adipocytes cultured under membranes maintain identity, function, and can transdifferentiate into brown-like adipocytes. Cell Rep. 2019;27(1) 213-25 e5. PubMed

Harrieder E.M., Kretschmer F., Bocker S., Witting M. Current state-of-the-art of separation methods used in LC-MS based metabolomics and lipidomics. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2022;1188 PubMed

Hathaway W.E., Newby L.A., Githens J.H. The Acridine Orange Viability Test Applied to Bone Marrow Cells. I. Correlation with Trypan Blue and Eosin Dye Exclusion and Tissue Culture Transformation. Blood. 1964;23:517–525. PubMed

Hernandez M., Shin S., Muller C., Attane C. The role of bone marrow adipocytes in cancer progression: the impact of obesity. Cancer Metastasis Rev. 2022;41(3):589–605. PubMed

Hirakawa H., Gao L., Tavakol D.N., Vunjak-Novakovic G., Ding L. Cellular plasticity of the bone marrow niche promotes hematopoietic stem cell regeneration. Nat. Genet. 2023;55(11):1941–1952. PubMed

Hopkins A.L., Nelson T.A., Guschina I.A., Parsons L.C., Lewis C.L., Brown R.C., et al. Unacylated ghrelin promotes adipogenesis in rodent bone marrow via ghrelin O-acyl transferase and GHS-R(1a) activity: evidence for target cell-induced acylation. Sci. Rep. 2017;7 PubMed PMC

Hruska P., Kucera J., Kuruczova D., Buzga M., Pekar M., Holeczy P., et al. Unraveling adipose tissue proteomic landscapes in severe obesity: insights into metabolic complications and potential biomarkers. Am. J. Physiol. Endocrinol. Metab. 2023;325(5) E562 E80. PubMed PMC

Inoue K., Qin Y., Xia Y., Han J., Yuan R., Sun J., et al. Bone marrow Adipoq-lineage progenitors are a major cellular source of M-CSF that dominates bone marrow macrophage development, osteoclastogenesis, and bone mass. Elife. 2023;12 PubMed PMC

Justesen J., Stenderup K., Ebbesen E.N., Mosekilde L., Steiniche T., Kassem M. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology. 2001;2(3):165–171. PubMed

Karampinos D.C., Ruschke S., Dieckmeyer M., Diefenbach M., Franz D., Gersing A.S., et al. Quantitative MRI and spectroscopy of bone marrow. J. Magn. Reson. Imaging. 2018;47(2):332–353. PubMed PMC

Koopman G., Reutelingsperger C.P., Kuijten G.A., Keehnen R.M., Pals S.T., van Oers M.H. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood. 1994;84(5):1415–1420. PubMed

Lange M., Angelidou G., Ni Z., Criscuolo A., Schiller J., Bluher M., Fedorova M. AdipoAtlas: A reference lipidome for human white adipose tissue. Cell Rep Med. 2021;2(10) PubMed PMC

Langin D. Adipocyte heterogeneity revealed by spatial transcriptomics of human adipose tissue: Painting and more. Cell Metab. 2021;33(9):1721–1722. PubMed

Larsen J.K., Kruse R., Sahebekhtiari N., Moreno-Justicia R., Gomez Jorba G., Petersen M.H., et al. High-throughput proteomics uncovers exercise training and type 2 diabetes-induced changes in human white adipose tissue. Sci. Adv. 2023;9(48) PubMed PMC

Lecka-Czernik B., Stechschulte L.A., Czernik P.J., Sherman S.B., Huang S., Krings A. Marrow Adipose Tissue: Skeletal Location, Sexual Dimorphism, and Response to Sex Steroid Deficiency. Front Endocrinol (Lausanne). 2017;8:188. PubMed PMC

Lee M.J., Wu Y., Fried S.K. Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Mol. Asp. Med. 2013;34(1):1–11. PubMed PMC

Lefebvre V., Angelozzi M., Haseeb A. SOX9 in cartilage development and disease. Curr. Opin. Cell Biol. 2019;61:39–47. PubMed PMC

Li J., Zhao W.G., Shen Z.F., Yuan T., Liu S.N., Liu Q., et al. Comparative proteome analysis of brown adipose tissue in obese C57BL/6J mice using iTRAQ-coupled 2D LC-MS/MS. PLoS One. 2015;10(3) PubMed PMC

Li Z., Hardij J., Bagchi D.P., Scheller E.L., MacDougald O.A. Development, regulation, metabolism and function of bone marrow adipose tissues. Bone. 2018;110:134–140. PubMed PMC

Li Z., Bowers E., Zhu J., Yu H., Hardij J., Bagchi D.P., et al. Lipolysis of bone marrow adipocytes is required to fuel bone and the marrow niche during energy deficits. Elife. 2022;11 PubMed PMC

Li Z., Bagchi D.P., Zhu J., Bowers E., Yu H., Hardij J., et al. Constitutive bone marrow adipocytes suppress local bone formation. JCI Insight. 2022;7(21) PubMed PMC

Lin M.S., Comings D.E., Alfi O.S. Optical Studies of the interaction of 4′-6′-diamidino-2-phenylindole with DNA and metaphase chromosomes. Chromosoma. 1977;60(1):15–25. PubMed

Liu L.F., Shen W.J., Ueno M., Patel S., Kraemer F.B. Characterization of age-related gene expression profiling in bone marrow and epididymal adipocytes. BMC Genomics. 2011;12(1) PubMed PMC

Liu Y., Wang L., Kikuiri T., Akiyama K., Chen C., Xu X., et al. Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-gamma and TNF-alpha. Nat. Med. 2011;17(12):1594–1601. PubMed PMC

Liu Y., Basty N., Whitcher B., Bell J.D., Sorokin E.P., van Bruggen N., et al. Genetic architecture of 11 organ traits derived from abdominal MRI using deep learning. Elife. 2021;10 PubMed PMC

Lovdel A., Suchacki K.J., Roberts F., Sulston R.J., Wallace R.J., Thomas B.J., et al. Deletion of Hsd11b1 suppresses caloric restriction-induced bone marrow adiposity in male but not female mice. J. Endocrinol. 2024;262(2) PubMed PMC

Lucas S., Tencerova M., von der Weid B., Andersen T.L., Attane C., Behler-Janbeck F., et al. Guidelines for biobanking of bone marrow adipose tissue and related cell types: report of the biobanking working group of the International Bone Marrow Adiposity Society. Front. Endocrinol. (Lausanne) 2021;12 PubMed PMC

Lundgren P., Sharma P.V., Dohnalova L., Coleman K., Uhr G.T., Kircher S., et al. A subpopulation of lipogenic brown adipocytes drives thermogenic memory. Nat. Metab. 2023;5(10):1691–1705. PubMed PMC

Mackay D.L., Tesar P.J., Liang L.N., Haynesworth S.E. Characterizing medullary and human mesenchymal stem cell-derived adipocytes. J. Cell. Physiol. 2006;207(3):722–728. PubMed

Majka S.M., Miller H.L., Helm K.M., Acosta A.S., Childs C.R., Kong R., Klemm D.J. Analysis and isolation of adipocytes by flow cytometry. Methods Enzymol. 2014;537:281–296. PubMed PMC

Maniglio M., Loisay L., de Haro D., Antoniadis A., Hugle T., Geurts J. Subchondral bone marrow adipose tissue lipolysis regulates bone formation in hand osteoarthritis. Osteoarthr. Cartil. 2025;33(3):322–329. PubMed

Massier L., Jalkanen J., Elmastas M., Zhong J., Wang T., Nono Nankam P.A., et al. An integrated single cell and spatial transcriptomic map of human white adipose tissue. Nat. Commun. 2023;14(1) PubMed PMC

Mattiucci D., Maurizi G., Izzi V., Cenci L., Ciarlantini M., Mancini S., et al. Bone marrow adipocytes support hematopoietic stem cell survival. J. Cell. Physiol. 2018;233(2):1500–1511. PubMed

McIlroy G.D., Suchacki K., Roelofs A.J., Yang W., Fu Y., Bai B., et al. Adipose specific disruption of seipin causes early-onset generalised lipodystrophy and altered fuel utilisation without severe metabolic disease. Mol Metab. 2018;10:55–65. PubMed PMC

Miggitsch C., Meryk A., Naismith E., Pangrazzi L., Ejaz A., Jenewein B., et al. Human bone marrow adipocytes display distinct immune regulatory properties. EBioMedicine. 2019;46:387–398. PubMed PMC

Mikkelsen T.S., Xu Z., Zhang X., Wang L., Gimble J.M., Lander E.S., Rosen E.D. Comparative epigenomic analysis of murine and human adipogenesis. Cell. 2010;143(1):156–169. PubMed PMC

Moore S.G., Dawson K.L. Red and yellow marrow in the femur: age-related changes in appearance at MR imaging. Radiology. 1990;175(1):219–223. PubMed

Morris D.M., Wang C., Papanastasiou G., Gray C.D., Xu W., Sjostrom S., et al. A novel deep learning method for large-scale analysis of bone marrow adiposity using UK Biobank Dixon MRI data. Comput. Struct. Biotechnol. J. 2024;24:89–104. PubMed PMC

Musovic S., Olofsson C.S. Adrenergic stimulation of adiponectin secretion in visceral mouse adipocytes is blunted in high-fat diet induced obesity. Sci. Rep. 2019;9(1) PubMed PMC

Nanduri R., Furusawa T., Lobanov A., He B., Xie C., Dadkhah K., et al. Epigenetic regulation of white adipose tissue plasticity and energy metabolism by nucleosome binding HMGN proteins. Nat. Commun. 2022;13(1):7303. PubMed PMC

Otley M.O.C., Sinal C.J. Adipocyte-cancer cell interactions in the bone microenvironment. Front Endocrinol (Lausanne) 2022;13 PubMed PMC

Palmisano B., Labella R., Donsante S., Remoli C., Spica E., Coletta I., et al. Gsalpha(R201C) and estrogen reveal different subsets of bone marrow adiponectin expressing osteogenic cells. Bone Res. 2022;10(1):50. PubMed PMC

Palmisano B., Corsi A., Riminucci M. Adiponectin expressing skeletal stem/progenitor cells in the bone and bone marrow homeostasis. Current Opinion in Endocrine and Metabolic Research. 2024;35:1000524.

Pazzaglia U.E., Benazzo F., Byers P.D., Riboni L., Ceciliani L. Pathogenesis of membranous lipodystrophy. Case report and review of the literature. Clin. Orthop. Relat. Res. 1987;225:279–287. PubMed

Poloni A., Maurizi G., Serrani F., Mancini S., Zingaretti M.C., Frontini A., et al. Molecular and functional characterization of human bone marrow adipocytes. Exp. Hematol. 2013;41(6) 558-66 e2. PubMed

Raza Y., Salman H., Luberto C. Sphingolipids in Hematopoiesis: Exploring Their Role in Lineage Commitment. Cells. 2021;10(10) PubMed PMC

Rebeaud M., Bouche C., Dauvillier S., Attane C., Arellano C., Vaysse C., et al. A novel 3D culture model for human primary mammary adipocytes to study their metabolic crosstalk with breast cancer in lean and obese conditions. Sci. Rep. 2023;13(1) PubMed PMC

Robino J.J., Pamir N., Rosario S., Crawford L.B., Burwitz B.J., Roberts C.T., Jr., et al. Spatial and biochemical interactions between bone marrow adipose tissue and hematopoietic stem and progenitor cells in rhesus macaques. Bone. 2020;133 PubMed PMC

Rodbell M. Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis. J. Biol. Chem. 1964;239:375–380. PubMed

Rosen C.J., Ackert-Bicknell C., Rodriguez J.P., Pino A.M. Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Crit. Rev. Eukaryot. Gene Expr. 2009;19(2):109–124. PubMed PMC

Sarvari A.K., Van Hauwaert E.L., Markussen L.K., Gammelmark E., Marcher A.B., Ebbesen M.F., et al. Plasticity of epididymal adipose tissue in response to diet-induced obesity at single-nucleus resolution. Cell Metab. 2021;33(2) 437–53 e5. PubMed

Scheller E.L., Doucette C.R., Learman B.S., Cawthorn W.P., Khandaker S., Schell B., et al. Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. Nat. Commun. 2015;6 PubMed PMC

Scheller E.L., Burr A.A., MacDougald O.A., Cawthorn W.P. Inside out: Bone marrow adipose tissue as a source of circulating adiponectin. Adipocyte. 2016;5(3):251–269. PubMed PMC

Scheller E.L., Cawthorn W.P., Burr A.A., Horowitz M.C., MacDougald O.A. Marrow adipose tissue: trimming the fat. Trends Endocrinol. Metab. 2016;27(6):392–403. PubMed PMC

Scheller E.L., Khandaker S., Learman B.S., Cawthorn W.P., Anderson L.M., Pham H.A., et al. Bone marrow adipocytes resist lipolysis and remodeling in response to beta-adrenergic stimulation. Bone. 2019;118:32–41. PubMed PMC

Schopow N., Kallendrusch S., Gong S., Rapp F., Korfer J., Gericke M., et al. Examination of ex-vivo viability of human adipose tissue slice culture. PLoS One. 2020;15(5) PubMed PMC

Shen W., Velasquez G., Chen J., Jin Y., Heymsfield S.B., Gallagher D., Pi-Sunyer F.X. Comparison of the relationship between bone marrow adipose tissue and volumetric bone mineral density in children and adults. J. Clin. Densitom. 2014;17(1):163–169. PubMed PMC

Suchacki K.J., Tavares A.A.S., Mattiucci D., Scheller E.L., Papanastasiou G., Gray C., et al. Bone marrow adipose tissue is a unique adipose subtype with distinct roles in glucose homeostasis. Nat. Commun. 2020;11(1):3097. PubMed PMC

Sugihara H., Yonemitsu N., Miyabara S., Yun K. Primary cultures of unilocular fat cells: characteristics of growth in vitro and changes in differentiation properties. Differentiation. 1986;31(1):42–49. PubMed

Sulston R.J., Cawthorn W.P. Bone marrow adipose tissue as an endocrine organ: close to the bone? Horm. Mol. Biol. Clin. Invest. 2016;28(1):21–38. PubMed

Tall A.R., Yvan-Charvet L. Cholesterol, inflammation and innate immunity. Nat. Rev. Immunol. 2015;15(2):104–116. PubMed PMC

Tavassoli M. Cytochemistry of marrow and extramedullary adipocytes in monolayer cultures. Scand. J. Haematol. 1978;20(4):330–334. PubMed

Tavassoli M., Houchin D.N., Jacobs P. Fatty acid composition of adipose cells in red and yellow marrow: A possible determinant of haematopoietic potential. Scand. J. Haematol. 1977;18(1):47–53. PubMed

Templeton Z.S., Lie W.R., Wang W., Rosenberg-Hasson Y., Alluri R.V., Tamaresis J.S., et al. Breast Cancer Cell Colonization of the Human Bone Marrow Adipose Tissue Niche. Neoplasia. 2015;17(12):849–861. PubMed PMC

Tencerova M., Figeac F., Ditzel N., Taipaleenmaki H., Nielsen T.K., Kassem M. High-Fat Diet-Induced Obesity Promotes Expansion of Bone Marrow Adipose Tissue and Impairs Skeletal Stem Cell Functions in Mice. J. Bone Miner. Res. 2018;33(6):1154–1165. PubMed

Thaler R., Khani F., Sturmlechner I., Dehghani S.S., Denbeigh J.M., Zhou X., et al. Vitamin C epigenetically controls osteogenesis and bone mineralization. Nat. Commun. 2022;13(1):5883. PubMed PMC

Tran M.A., Dang T.L., Berlan M. Effects of catecholamines on free fatty acid release from bone marrow adipose tissue. J. Lipid Res. 1981;22(8):1271–1276. PubMed

Tratwal J., Labella R., Bravenboer N., Kerckhofs G., Douni E., Scheller E.L., et al. Reporting guidelines, review of methodological standards, and challenges toward harmonization in bone marrow adiposity research. Front. Endocrinol. (Lausanne). 2020;11 Report of the Methodologies Working Group of the International Bone Marrow Adiposity Society. PubMed PMC

Tratwal J., Falgayrac G., During A., Bertheaume N., Bataclan C., Tavakol D.N., et al. Raman microspectroscopy reveals unsaturation heterogeneity at the lipid droplet level and validates an in vitro model of bone marrow adipocyte subtypes. Front. Endocrinol. (Lausanne) 2022;13 PubMed PMC

Urbonas T., Kievisas M., Petrikaite V., Gibieza P., Baranauskas G., Mistautas T., et al. Assessing Adipocyte Viability and Surgeons’ Work Efficiency by Comparing Different Liposuction Methods. Plast. Reconstr. Surg. Glob. Open. 2023;11(8) PubMed PMC

van de Peppel J., Strini T., Tilburg J., Westerhoff H., van Wijnen A.J., van Leeuwen J.P. Identification of Three Early Phases of Cell-Fate Determination during Osteogenic and Adipogenic Differentiation by Transcription Factor Dynamics. Stem Cell Rep. 2017;8(4):947–960. PubMed PMC

van Wijnen A.J., Stein G.S., Gergen J.P., Groner Y., Hiebert S.W., Ito Y., et al. Nomenclature for runt-related (RUNX) proteins. Oncogene. 2004;23(24):4209–4210. PubMed

Vande Berg B.C., Malghem J., Lecouvet F.E., Maldague B. Magnetic resonance imaging of normal bone marrow. Eur. Radiol. 1998;8(8):1327–1334. PubMed

Vogler J.B., 3rd, Murphy W.A. Bone marrow imaging. Radiology. 1988;168(3):679–693. PubMed

Wang X., Lu L., Chen X., Liang Y., Xie Y., Yu X. The role and mechanism of tumor necrosis factor-alpha in alcohol-induced bone loss. Alcohol Alcohol. 2023;58(4):375–384. PubMed

Wang Z., Wen S., Zhong M., Yang Z., Xiong W., Zhang K., et al. Epigenetics: novel crucial approach for osteogenesis of mesenchymal stem cells. J. Tissue Eng. 2023;14 PubMed PMC

Whitney D.G., Devlin M.J., Alford A.I., Modlesky C.M., Peterson M.D., Li Y., Caird M.S. Test-Retest Reliability and Correlates of Vertebral Bone Marrow Lipid Composition by Lipidomics Among Children With Varying Degrees of Bone Fragility. JBMR Plus. 2020;4(10) PubMed PMC

Whitney D.G., Devlin M.J., Alford A.I., Caird M.S. Pattern of bone marrow lipid composition measures along the vertebral column: A descriptive study of adolescents with idiopathic scoliosis. Bone. 2021;142 PubMed PMC

Xu W., Mesa-Eguiagaray I., Morris D.M., Wang C., Gray C.D., Sjostrom S., et al. Deep learning and genome-wide association meta-analyses of bone marrow adiposity in the UK biobank. Nat. Commun. 2025;16(1) PubMed PMC

Zakaria E., Shafrir E. Yellow bone marrow as adipose tissue. Proc. Soc. Exp. Biol. Med. 1967;124(4):1265–1268. PubMed

Zapata-Linares N., Toillon I., Wanherdrick K., Pigenet A., Duhalde F., Binvignat M., et al. Implication of bone marrow adipose tissue in bone homeostasis during osteoarthritis. Osteoarthr. Cartil. 2025;33(8):951–964. PubMed

Zhang H., Li K., Zhao Y., Zhang Y., Sun J., Li S., Lin G. Long-term use of fluoxetine accelerates bone loss through the disruption of sphingolipids metabolism in bone marrow adipose tissue. Transl. Psychiatry. 2020;10(1):138. PubMed PMC

Zhang X., Robles H., Magee K.L., Lorenz M.R., Wang Z., Harris C.A., et al. A bone-specific adipogenesis pathway in fat-free mice defines key origins and adaptations of bone marrow adipocytes with age and disease. Elife. 2021;10 PubMed PMC

Zhang Z., Huang Z., Ong B., Sahu C., Zeng H., Ruan H.B. Bone marrow adipose tissue-derived stem cell factor mediates metabolic regulation of hematopoiesis. Haematologica. 2019;104(9):1731–1743. PubMed PMC

Zhong L., Yao L., Tower R.J., Wei Y., Miao Z., Park J., et al. Single cell transcriptomics identifies a unique adipose lineage cell population that regulates bone marrow environment. Elife. 2020;9 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...