Maintaining diversity in structured populations
Status In-Process Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40838023
PubMed Central
PMC12363668
DOI
10.1093/pnasnexus/pgaf252
PII: pgaf252
Knihovny.cz E-zdroje
- Klíčová slova
- diversity, evolutionary dynamics, graphs, moran process, random walk,
- Publikační typ
- časopisecké články MeSH
We examine population structures for their ability to maintain diversity in neutral evolution. We use the general framework of evolutionary graph theory and consider birth-death (bd) and death-birth (db) updating. The population is of size N. Initially all individuals represent different types. The basic question is: what is the time T N until one type takes over the population? This time is known as consensus time in computer science and as total coalescent time in evolutionary biology. For the complete graph, it is known that T N is quadratic in N for db and bd. For the cycle, we prove that T N is cubic in N for db and bd. For the star, we prove that T N is cubic for bd and quasilinear ( N log N ) for db. For the double star, we show that T N is quartic for bd. We derive upper and lower bounds for all undirected graphs for bd and db. We also show the Pareto front of graphs (of size N = 8 ) that maintain diversity the longest for bd and db. Further, we show that some graphs that quickly homogenize can maintain high levels of diversity longer than graphs that slowly homogenize. For directed graphs, we give simple contracting star-like structures that have superexponential time scales for maintaining diversity.
Computer Science Institute Charles University Prague 116 36 Czech Republic
Department of Mathematics Harvard University Cambridge MA 02138 USA
Department of Mathematics University of Illinois at Urbana Champaign Urbana IL 61801 USA
Department of Molecular and Cellular Biology Harvard University Cambridge MA 02138 USA
Department of Organismic and Evolutionary Biology Harvard University Cambridge MA 02138 USA
Institute of Science and Technology Austria Klosterneuburg 3400 Austria
John A Paulson School of Engineering and Applied Sciences Harvard University Boston MA 02134 USA
Zobrazit více v PubMed
Nowak MA, May RM. 1992. Evolutionary games and spatial chaos. Nature. 359(6398):826–829.
Nowak MA, Michor F, Iwasa Y. 2003. The linear process of somatic evolution. Proc Natl Acad Sci U S A. 100(25):14966–14969. PubMed PMC
Lieberman E, Hauert C, Nowak MA. 2005. Evolutionary dynamics on graphs. Nature. 433(7023):312–316. PubMed
Nowak MA. Evolutionary dynamics: exploring the equations of life. Harvard University Press, 2006.
Ohtsuki H, Hauert C, Lieberman E, Nowak MA. 2006. A simple rule for the evolution of cooperation on graphs and social networks. Nature. 441(7092):502–505. PubMed PMC
Tarnita CE, Antal T, Ohtsuki H, Nowak MA. 2009. Evolutionary dynamics in set structured populations. Proc Natl Acad Sci U S A. 106(21):8601–8604. PubMed PMC
Allen B, Nowak MA. 2012. Evolutionary shift dynamics on a cycle. J Theor Biol. 311(21):28–39. PubMed PMC
Allen B, Gore J, Nowak MA. 2013. Spatial dilemmas of diffusible public goods. Elife. 2:e01169. PubMed PMC
Díaz J, Mitsche D. 2021. A survey of the modified Moran process and evolutionary graph theory. Comput Sci Rev. 39(1):100347.
Adlam B, Chatterjee K, Nowak MA. 2015. Amplifiers of selection. Proc R Soc A Math Phys Eng Sci. 471(2181):20150114.
Pavlogiannis A, Tkadlec J, Chatterjee K, Nowak MA. 2017. Amplification on undirected population structures: comets beat stars. Sci Rep. 7(1):82. PubMed PMC
Pavlogiannis A, Tkadlec J, Chatterjee K, Nowak MA. 2018. Construction of arbitrarily strong amplifiers of natural selection using evolutionary graph theory. Commun Biol. 1(1):71. PubMed PMC
Tkadlec J, Pavlogiannis A, Chatterjee K, Nowak MA. 2020. Limits on amplifiers of natural selection under death-birth updating. PLoS Comput Biol. 16(1):e1007494. PubMed PMC
Allen B, et al. 2021. Fixation probabilities in graph-structured populations under weak selection. PLoS Comput Biol. 17(2):e1008695. PubMed PMC
Tkadlec J, Pavlogiannis A, Chatterjee K, Nowak MA. 2021. Fast and strong amplifiers of natural selection. Nat Commun. 12(1):4009. PubMed PMC
Abbara A, Pagani L, García-Pareja C, Bitbol A-F. 2024. Mutant fate in spatially structured populations on graphs: connecting models to experiments. PLoS Comput Biol. 20(9):e1012424. PubMed PMC
Fruet C, Müller EL, Loverdo C, Bitbol A-F. 2025. Spatial structure facilitates evolutionary rescue by cost-free drug resistance. PubMed PMC
Svoboda J, Joshi S, Tkadlec J, Chatterjee K. 2024. Amplifiers of selection for the Moran process with both birth-death and death-birth updating. PLoS Comput Biol. 20(3):e1012008. PubMed PMC
Kopfová L, Tkadlec J. 2025. Colonization times in Moran process on graphs. PLoS Comput Biol. 21(5):e1012868. PubMed PMC
Kuo YP, Carja O. 2024. Evolutionary graph theory beyond pairwise interactions: higher-order network motifs shape times to fixation in structured populations. PLoS Comput Biol. 20(3):e1011905. PubMed PMC
Kuo YP, Carja O. 2024. Evolutionary graph theory beyond single mutation dynamics: on how network-structured populations cross fitness landscapes. Genetics. 227(2):iyae055. PubMed PMC
Tkadlec J, Pavlogiannis A, Chatterjee K, Nowak MA. 2019. Population structure determines the tradeoff between fixation probability and fixation time. Commun Biol. 2(1):138. PubMed PMC
Bhaumik J, Masuda N. 2024. Constant-selection evolutionary dynamics on weighted networks.
Adlam B, Nowak MA. 2014. Universality of fixation probabilities in randomly structured populations. Sci Rep. 4(1):6692. PubMed PMC
Díaz J, Goldberg LA, Richerby D, Serna M. 2016. Absorption time of the Moran process. Random Struct Algo. 49(1):137–159.
Brewster DA, Nowak MA, Tkadlec J. 2024. Fixation times on directed graphs. PLoS Comput Biol. 20(7):e1012299. PubMed PMC
Iwamasa Y, Masuda N. 2014. Networks maximizing the consensus time of voter models. Phys Rev E. 90(1):012816. PubMed
McAvoy A, Adlam B, Allen B, Nowak MA. 2018. Stationary frequencies and mixing times for neutral drift processes with spatial structure. Proc R Soc A Math Phys Eng Sci. 474(2218):20180238.
Gao S, Liu Y, Wu B. 2024. The speed of neutral evolution on graphs. J R Soc Interface. 21(214):20230594. PubMed PMC
Kaveh K, McAvoy A, Nowak MA. 2019. Environmental fitness heterogeneity in the Moran process. R Soc Open Sci. 6(1):181661. PubMed PMC
Kaveh K, McAvoy A, Chatterjee K, Nowak MA. 2020. The Moran process on 2-chromatic graphs. PLoS Comput Biol. 16(11):e1008402. PubMed PMC
Nowak MA, May RM. 1993. The spatial dilemmas of evolution. Int J Bifur Chaos. 03(01):35–78.
Nakamaru M, Matsuda H, Iwasa Y. 1997. The evolution of cooperation in a lattice-structured population. J Theor Biol. 184(1):65–81. PubMed
Hauert C, Doebeli M. 2004. Spatial structure often inhibits the evolution of cooperation in the snowdrift game. Nature. 428(6983):643–646. PubMed
Nowak MA. 2006. Five rules for the evolution of cooperation. Science. 314(5805):1560–1563. PubMed PMC
Ohtsuki H, Nowak MA. 2006. Evolutionary games on cycles. Proc R Soc Lond B Biol Sci. 273(1598):2249–2256. PubMed PMC
Taylor PD, Day T, Wild G. 2007. Evolution of cooperation in a finite homogeneous graph. Nature. 447(7143):469–472. PubMed
Ohtsuki H, Nowak MA. 2008. Evolutionary stability on graphs. J Theor Biol. 251(4):698–707. PubMed PMC
Nathanson CG, Tarnita CE, Nowak MA. 2009. Calculating evolutionary dynamics in structured populations. PLoS Comput Biol. 5(12):e1000615. PubMed PMC
Tarnita CE, Ohtsuki H, Antal T, Fu F, Nowak MA. 2009. Strategy selection in structured populations. J Theor Biol. 259(3):570–581. PubMed PMC
Fu F, Nowak MA, Hauert C. 2010. Invasion and expansion of cooperators in lattice populations: prisoner’s dilemma vs. snowdrift games. J Theor Biol. 266(3):358–366. PubMed PMC
Van Veelen M, García J, Rand DG, Nowak MA. 2012. Direct reciprocity in structured populations. Proc Natl Acad Sci U S A. 109(25):9929–9934. PubMed PMC
Allen B, Nowak MA. 2014. Games on graphs. EMS Surv Math Sci. 1(1):113–151.
Allen B, et al. 2017. Evolutionary dynamics on any population structure. Nature. 544(7649):227–230. PubMed
Donnelly P, Welsh D. Finite particle systems and infection models. In:
Nordborg M, Krone SM. Separation of time scales and convergence to the coalescent in structured populations. In:
Nordborg M. Coalescent theory. In:
Allen B, McAvoy A. 2024. The coalescent in finite populations with arbitrary, fixed structure. Theor Popul Biol. 158(208):150–169. PubMed
Arora S, Barak B. Computational complexity: a modern approach. Cambridge University Press, 2009.
Broom M, Hadjichrysanthou C, Rychtář J. 2010. Evolutionary games on graphs and the speed of the evolutionary process. Proc R Soc A Math Phys Eng Sci. 466(2117):1327–1346.
Goldberg LA, Roth M, Schwarz T. 2024. Parameterised approximation of the fixation probability of the dominant mutation in the multi-type Moran process. Theor Comput Sci. 1016(11):114785.
Cooper C, Rivera N. The linear voting model. In:
McKay BD, Piperno A. 2014. Practical graph isomorphism, II. J Symb Comput. 60(3):94–112.