Cytidine and dCMP Deaminases-Current Methods of Activity Analysis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
NU22-08-00148
Ministry of Health
MH CZ - DRO (FNOl, 00098892)
Ministry of Health
TN01000013
Technology Agency of the Czech Republic
LM2018133
Ministry of Education Youth and Sports
LX22NPO5102
Ministry of Education Youth and Sports
CZ.02.01.01/00/22_008/0004644
Ministry of Education Youth and Sports
LM2023033
Ministry of Education Youth and Sports
PubMed
40869362
PubMed Central
PMC12386326
DOI
10.3390/ijms26168045
PII: ijms26168045
Knihovny.cz E-zdroje
- Klíčová slova
- LC-MS, cell-based approaches, cytidine deaminase, dCMP deaminase, modified nucleosides, spectrophotometry,
- MeSH
- chromatografie kapalinová MeSH
- cytidin metabolismus MeSH
- cytidindeaminasa * metabolismus MeSH
- enzymatické testy * metody MeSH
- hmotnostní spektrometrie MeSH
- lidé MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- cytidin MeSH
- cytidindeaminasa * MeSH
Cytidine deaminase (CDA) and deoxycytidine monophosphate deaminase (DCTD) play crucial roles in pyrimidine metabolism, affecting DNA synthesis, cell cycle progression, and the efficacy of numerous nucleoside analog-based chemotherapeutics. Given their significance, accurate and sensitive measurement of their enzymatic activity is paramount for both fundamental biochemical research and clinical applications. This review provides a comprehensive overview of the methodologies used to assess CDA and DCTD activity, both established and emerging. We systematically categorize and discuss various approaches, including spectrophotometric, fluorimetric, liquid chromatography-based (Ultraviolet-Visible, fluorescence, and mass spectrometry), radiometric, and cell-based assays. For each method, we present its underlying principles, advantages, and limitations. Furthermore, we draw comparisons across the techniques to highlight their suitability for specific research questions.
Zobrazit více v PubMed
Ligasova A., Kocianova M., Koberna K. A Rapid Approach for Identifying Cell Lines Lacking Functional Cytidine Deaminase. Int. J. Mol. Sci. 2025;26:3344. doi: 10.3390/ijms26073344. PubMed DOI PMC
Frances A., Cordelier P. The Emerging Role of Cytidine Deaminase in Human Diseases: A New Opportunity for Therapy? Mol. Ther. 2020;28:357–366. doi: 10.1016/j.ymthe.2019.11.026. PubMed DOI PMC
Nygaard P. Purine and Pyrimidine Metabolism in Man V. Volume 195B. Springer; New York, NY, USA: 1986. On the Role of Cytidine Deaminase in Cellular Metabolism; pp. 415–420. Advances in Experimental Medicine and Biology. PubMed DOI
Ruan H.M., Qiu S.B., Beard B.C., Black M.E. Creation of Zebularine-Resistant Human Cytidine Deaminase Mutants to Enhance the Chemoprotection of Hematopoietic Stem Cells. Protein Eng. Des. Sel. 2016;29:573–582. doi: 10.1093/protein/gzw012. PubMed DOI PMC
Costanzi S., Vincenzetti S., Vita A., Lambertucci C., Taffi S., Volpini R., Vittori S., Cristalli G. Human Cytidine Deaminase: Understanding the Catalytic Mechanism. Nucleosides Nucleotides Nucleic Acids. 2003;22:1539–1543. doi: 10.1081/NCN-120023029. PubMed DOI
Micozzi D., Pucciarelli S., Carpi F.M., Costanzi S., De Sanctis G., Polzonetti V., Natalini P., Santarelli I.F., Vita A., Vincenzetti S. Role of Tyrosine 33 Residue for the Stabilization of the Tetrameric Structure of Human Cytidine Deaminase. Int. J. Biol. Macromol. 2010;47:471–482. doi: 10.1016/j.ijbiomac.2010.07.001. PubMed DOI PMC
Navaratnam N., Sarwar R. An Overview of Cytidine Deaminases. Int. J. Hematol. 2006;83:195–200. doi: 10.1532/IJH97.06032. PubMed DOI
Vincenzetti S., Quadrini B., Mariani P., De Sanctis G., Cammertoni N., Polzonetti V., Pucciarelli S., Natalini P., Vita A. Modulation of Human Cytidine Deaminase by Specific Aminoacids Involved in the Intersubunit Interactions. Proteins. 2008;70:144–156. doi: 10.1002/prot.21533. PubMed DOI
Vincenzetti S., De Sanctis G., Costanzi S., Cristalli G., Mariani P., Mei G., Neuhard J., Natalini P., Polzonetti V., Vita A. Functional Properties of Subunit Interactions in Human Cytidine Deaminase. Protein Eng. 2003;16:1055–1061. doi: 10.1093/protein/gzg117. PubMed DOI
Betts L., Xiang S., Short S.A., Wolfenden R., Carter C.W., Jr. Cytidine Deaminase. The 2·3 Å Crystal Structure of an Enzyme: Transition-State Analog Complex. J. Mol. Biol. 1994;235:635–656. doi: 10.1006/jmbi.1994.1018. PubMed DOI
Gemble S., Ahuja A., Buhagiar-Labarchede G., Onclercq-Delic R., Dairou J., Biard D.S., Lambert S., Lopes M., Amor-Gueret M. Pyrimidine Pool Disequilibrium Induced by a Cytidine Deaminase Deficiency Inhibits Parp-1 Activity, Leading to the under Replication of DNA. PLoS Genet. 2015;11:e1005384. doi: 10.1371/journal.pgen.1005384. PubMed DOI PMC
Frances A., Lumeau A., Bery N., Gayral M., Stuani L., Sorbara M., Saland E., Pagan D., Hanoun N., Torrisani J., et al. Cytidine Deaminase-Dependent Mitochondrial Biogenesis as a Potential Vulnerability in Pancreatic Cancer Cells. Commun. Biol. 2024;7:1065. doi: 10.1038/s42003-024-06760-y. PubMed DOI PMC
Weiner K.X., Weiner R.S., Maley F., Maley G.F. Primary Structure of Human Deoxycytidylate Deaminase and Overexpression of Its Functional Protein in Escherichia coli. J. Biol. Chem. 1993;268:12983–12989. doi: 10.1016/S0021-9258(18)31483-2. PubMed DOI
Sanchez A., Sharma S., Rozenzhak S., Roguev A., Krogan N.J., Chabes A., Russell P. Replication Fork Collapse and Genome Instability in a Deoxycytidylate Deaminase Mutant. Mol. Cell. Biol. 2012;32:4445–4454. doi: 10.1128/MCB.01062-12. PubMed DOI PMC
Yague-Capilla M., Rudd S.G. Understanding the Interplay between Dntp Metabolism and Genome Stability in Cancer. Dis. Model. Mech. 2024;17:dmm050775. doi: 10.1242/dmm.050775. PubMed DOI PMC
Maley G.F., Lobo A.P., Maley F. Properties of an Affinity-Column-Purified Human Deoxycytidylate Deaminase. Biochim. Biophys. Acta (BBA)-Protein Struct. Mol. Enzym. 1993;1162:161–170. doi: 10.1016/0167-4838(93)90143-F. PubMed DOI
Slyvka A., Rathore I., Yang R., Gewartowska O., Kanai T., Lountos G.T., Skowronek K., Czarnocki-Cieciura M., Wlodawer A., Bochtler M. Activity and Structure of Human (D)Ctp Deaminase Cdadc1. Proc. Natl. Acad. Sci. USA. 2025;122:e2424245122. doi: 10.1073/pnas.2424245122. PubMed DOI PMC
Niu M., Wang Y.H., Wang C.M., Lyu J., Wang Y.L., Dong H., Long W.H., Wang D., Kong W.Y., Wang L.W., et al. ALR Encoding Dcmp Deaminase Is Critical for DNA Damage Repair, Cell Cycle Progression and Plant Development in Rice. J. Exp. Bot. 2017;68:5773–5786. doi: 10.1093/jxb/erx380. PubMed DOI
Zhang S., Tang S., Tang C.J., Luo M.Z., Jia G.Q., Zhi H., Diao X.M. SisSTL2 Is Required for Cell Cycle, Leaf Organ Development, Chloroplast Biogenesis, and Has Effects on C4 Photosynthesis in Setaria italica (L.) P. Beauv. Front. Plant Sci. 2018;9:1103. doi: 10.3389/fpls.2018.01103. PubMed DOI PMC
Lachmann N., Brennig S., Phaltane R., Flasshove M., Dilloo D., Moritz T. Myeloprotection by Cytidine Deaminase Gene Transfer in Antileukemic Therapy. Neoplasia. 2013;15:239–248. doi: 10.1593/neo.121954. PubMed DOI PMC
Ligasova A., Pisklakova B., Friedecky D., Koberna K. A New Technique for the Analysis of Metabolic Pathways of Cytidine Analogues and Cytidine Deaminase Activities in Cells. Sci. Rep. 2023;13:20530. doi: 10.1038/s41598-023-47792-4. PubMed DOI PMC
de Vos D., van Overveld W. Decitabine: A Historical Review of the Development of an Epigenetic Drug. Ann. Hematol. 2005;84((Suppl. 1)):3–8. doi: 10.1007/s00277-005-0008-x. PubMed DOI PMC
Gilbert J.A., Salavaggione O.E., Ji Y., Pelleymounter L.L., Eckloff B.W., Wieben E.D., Ames M.M., Weinshilboum R.M. Gemcitabine Pharmacogenomics: Cytidine Deaminase and Deoxycytidylate Deaminase Gene Resequencing and Functional Genomics. Clin. Cancer Res. 2006;12:1794–1803. doi: 10.1158/1078-0432.CCR-05-1969. PubMed DOI
Hamada A., Kawaguchi T., Nakano M. Clinical Pharmacokinetics of Cytarabine Formulations. Clin. Pharmacokinet. 2002;41:705–718. doi: 10.2165/00003088-200241100-00002. PubMed DOI
Heinemann V., Xu Y.Z., Chubb S., Sen A., Hertel L.W., Grindey G.B., Plunkett W. Cellular Elimination of 2′,2′-Difluorodeoxycytidine 5′-Triphosphate: A Mechanism of Self-Potentiation. Cancer Res. 1992;52:533–539. PubMed
Lamba J.K. Pharmacogenomics of Cytarabine in Childhood Leukemia. Pharmacogenomics. 2011;12:1629–1632. doi: 10.2217/pgs.11.148. PubMed DOI
Xu Y.Z., Plunkett W. Modulation of Deoxycytidylate Deaminase in Intact Human Leukemia Cells: Action of 2′,2′-Difluorodeoxycytidine. Biochem. Pharmacol. 1992;44:1819–1827. doi: 10.1016/0006-2952(92)90077-v. PubMed DOI
Estey E.H. Acute Myeloid Leukemia: 2014 Update on Risk-Stratification and Management. Am. J. Hematol. 2014;89:1063–1081. doi: 10.1002/ajh.23834. PubMed DOI
Ferrara F., Vitagliano O. Induction Therapy in Acute Myeloid Leukemia: Is It Time to Put Aside Standard 3 + 7? Hematol. Oncol. 2019;37:558–563. doi: 10.1002/hon.2615. PubMed DOI
Budman D.R., Meropol N.J., Reigner B., Creaven P.J., Lichtman S.M., Berghorn E., Behr J., Gordon R.J., Osterwalder B., Griffin T. Preliminary Studies of a Novel Oral Fluoropyrimidine Carbamate: Capecitabine. J. Clin. Oncol. 1998;16:1795–1802. doi: 10.1200/JCO.1998.16.5.1795. PubMed DOI
Miwa M., Ura M., Nishida M., Sawada N., Ishikawa T., Mori K., Shimma N., Umeda I., Ishitsuka H. Design of a Novel Oral Fluoropyrimidine Carbamate, Capecitabine, Which Generates 5-Fluorouracil Selectively in Tumours by Enzymes Concentrated in Human Liver and Cancer Tissue. Eur. J. Cancer. 1998;34:1274–1281. doi: 10.1016/S0959-8049(98)00058-6. PubMed DOI
Grem J.L., Keith B. Mechanisms of Action of Cancer Chemotherapeutic Agents: Antimetabolites. In: Alison M.R., editor. The Cancer Handbook. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2005.
Ishikawa T., Sekiguchi F., Fukase Y., Sawada N., Ishitsuka H. Positive Correlation between the Efficacy of Capecitabine and Doxifluridine and the Ratio of Thymidine Phosphorylase to Dihydropyrimidine Dehydrogenase Activities in Tumors in Human Cancer Xenografts. Cancer Res. 1998;58:685–690. PubMed
Terranova-Barberio M., Roca M.S., Zotti A.I., Leone A., Bruzzese F., Vitagliano C., Scogliamiglio G., Russo D., D’Angelo G., Franco R., et al. Valproic Acid Potentiates the Anticancer Activity of Capecitabine In Vitro and In Vivo in Breast Cancer Models Via Induction of Thymidine Phosphorylase Expression. Oncotarget. 2016;7:7715–7731. doi: 10.18632/oncotarget.6802. PubMed DOI PMC
Verweij J. Rational Design of New Tumoractivated Cytotoxic Agents. Oncology. 1999;57((Suppl. 1)):9–15. doi: 10.1159/000055263. PubMed DOI
Zauri M., Berridge G., Thézénas M.L., Pugh K.M., Goldin R., Kessler B.M., Kriaucionis S. Cda Directs Metabolism of Epigenetic Nucleosides Revealing a Therapeutic Window in Cancer. Nature. 2015;524:114–118. doi: 10.1038/nature14948. PubMed DOI PMC
Zhao Y.H., Jiang W., Gao H., Pang G.Z., Wu Y.S., Wang Y.X., Sheng M.Y., Xie J.Y., Wu W.L., Ji Z.J., et al. Dck Confers Sensitivity of Dctd-Positive Cancer Cells to Oxidized Methylcytidines. Protein Cell. 2023;14:532–537. doi: 10.1093/procel/pwac028. PubMed DOI PMC
Lamba J.K. Genetic Factors Influencing Cytarabine Therapy. Pharmacogenomics. 2009;10:1657–1674. doi: 10.2217/pgs.09.118. PubMed DOI PMC
Mahfouz R.Z., Jankowska A., Ebrahem Q., Gu X., Visconte V., Tabarroki A., Terse P., Covey J., Chan K., Ling Y., et al. Increased Cda Expression/Activity in Males Contributes to Decreased Cytidine Analog Half-Life and Likely Contributes to Worse Outcomes with 5-Azacytidine or Decitabine Therapy. Clin. Cancer Res. 2013;19:938–948. doi: 10.1158/1078-0432.CCR-12-1722. PubMed DOI PMC
Sugiyama E., Kaniwa N., Kim S.R., Hasegawa R., Saito Y., Ueno H., Okusaka T., Ikeda M., Morizane C., Kondo S., et al. Population Pharmacokinetics of Gemcitabine and Its Metabolite in Japanese Cancer Patients: Impact of Genetic Polymorphisms. Clin. Pharmacokinet. 2010;49:549–558. doi: 10.2165/11532970-000000000-00000. PubMed DOI
Trumbo T.A., Schultz E., Borland M.G., Pugh M.E. Applied Spectrophotometry: Analysis of a Biochemical Mixture. Biochem. Mol. Biol. Educ. 2013;41:242–250. doi: 10.1002/bmb.20694. PubMed DOI
Zacharioudaki D.E., Fitilis I., Kotti M. Review of Fluorescence Spectroscopy in Environmental Quality Applications. Molecules. 2022;27:4801. doi: 10.3390/molecules27154801. PubMed DOI PMC
Cohen R.M., Wolfenden R. Cytidine Deaminase from Escherichia coli. Purification, Properties and Inhibition by the Potential Transition State Analog 3,4,5,6-Tetrahydrouridine. J. Biol. Chem. 1971;246:7561–7565. doi: 10.1016/S0021-9258(19)45812-2. PubMed DOI
Vita A., Amici A., Cacciamani T., Lanciotti M., Magni G. Cytidine Deaminase from Escherichia coli B. Purification and Enzymatic and Molecular Properties. Biochemistry. 1985;24:6020–6024. doi: 10.1021/bi00342a049. PubMed DOI
Tom J. UV-Vis Spectroscopy: Principle, Strengths and Limitations and Applications. [(accessed on 26 May 2025)]. Available online: https://www.technologynetworks.com/analysis/articles/uv-vis-spectroscopy-principle-strengths-and-limitations-and-applications-349865.
Ressler N. A Simple and Sensitive Method for the Measurement of Deoxycytidylate Deaminase Activity. Clin. Chem. 1969;15:575–581. doi: 10.1093/clinchem/15.7.575. PubMed DOI
Williams G.F., Jones D.D. Deoxycytidylate Deaminase in Pregnancy. Br. Med. J. 1975;2:10–12. doi: 10.1136/bmj.2.5961.10. Erratum in Br. Med. J. 1975, 2, 10–12. PubMed DOI PMC
Targett-Adams L., Jones D.D., Williams G.F. A Rapid Method for the Determination of Deoxycytidylate Deaminase Activity in Pregnancy Serum. Clin. Chim. Acta. 1975;63:377–382. doi: 10.1016/0009-8981(75)90060-1. PubMed DOI
Dong H., Liu Y., Zu X., Li N., Li F., Zhang D. An Enzymatic Assay for High-Throughput Screening of Cytidine-Producing Microbial Strains. PLoS ONE. 2015;10:e0121612. doi: 10.1371/journal.pone.0121612. PubMed DOI PMC
Mroz E.A., Roman R.J., Lechene C. Fluorescence Assay for Picomole Quantities of Ammonia. Kidney Int. 1982;21:524–527. doi: 10.1038/ki.1982.56. PubMed DOI
Taylor S., Ninjoor V., Dowd D.M., Tappel A.L. Cathepsin B2 Measurement by Sensitive Fluorometric Ammonia Analysis. Anal. Biochem. 1974;60:153–162. doi: 10.1016/0003-2697(74)90140-7. PubMed DOI
Shin D., Sinkeldam R.W., Tor Y. Emissive Rna Alphabet. J. Am. Chem. Soc. 2011;133:14912–14915. doi: 10.1021/ja206095a. PubMed DOI PMC
Ludford P.T., Li Y., Yang S.H., Tor Y. Cytidine Deaminase Can Deaminate Fused Pyrimidine Ribonucleosides. Org. Biomol. Chem. 2021;19:6237–6243. doi: 10.1039/D1OB00705J. PubMed DOI PMC
Tor Y. Isomorphic Fluorescent Nucleosides. Acc. Chem. Res. 2024;57:1325–1335. doi: 10.1021/acs.accounts.4c00042. PubMed DOI PMC
Kowalska S., Krupczynska K., Buszewski B. Some Remarks on Characterization and Application of Stationary Phases for Rp-Hplc Determination of Biologically Important Compounds. Biomed. Chromatogr. 2006;20:4–22. doi: 10.1002/bmc.543. PubMed DOI
Shukla R., Singh P.K., Upadhyay S. A Comprehensive Review on High-Performance Liquid Chromatography (HPLC) Ijppr. Hum. 2023;27:312–324.
Zhou B., Xiao J.F., Tuli L., Ressom H.W. Lc-Ms-Based Metabolomics. Mol. Biosyst. 2012;8:470–481. doi: 10.1039/C1MB05350G. PubMed DOI PMC
Ranjbarian F., Sharma S., Falappa G., Taruschio W., Chabes A., Hofer A. Isocratic Hplc Analysis for the Simultaneous Determination of Dntps, Rntps and Adp in Biological Samples. Nucleic Acids Res. 2022;50:e18. doi: 10.1093/nar/gkab1117. PubMed DOI PMC
Rafferty J.L., Zhang L., Siepmann J.I., Schure M.R. Retention Mechanism in Reversed-Phase Liquid Chromatography: A Molecular Perspective. Anal. Chem. 2007;79:6551–6558. doi: 10.1021/ac0705115. PubMed DOI
Zuvela P., Skoczylas M., Jay Liu J., Ba Czek T., Kaliszan R., Wong M.W., Buszewski B., Heberger K. Column Characterization and Selection Systems in Reversed-Phase High-Performance Liquid Chromatography. Chem. Rev. 2019;119:3674–3729. doi: 10.1021/acs.chemrev.8b00246. PubMed DOI
Buszewski B., Noga S. Hydrophilic Interaction Liquid Chromatography (HILIC)—A Powerful Separation Technique. Anal. Bioanal. Chem. 2012;402:231–247. doi: 10.1007/s00216-011-5308-5. PubMed DOI PMC
Jandera P., Janas P. Recent Advances in Stationary Phases and Understanding of Retention in Hydrophilic Interaction Chromatography. A Review. Anal. Chim. Acta. 2017;967:12–32. doi: 10.1016/j.aca.2017.01.060. PubMed DOI
Cubbon S., Bradbury T., Wilson J., Thomas-Oates J. Hydrophilic Interaction Chromatography for Mass Spectrometric Metabonomic Studies of Urine. Anal. Chem. 2007;79:8911–8918. doi: 10.1021/ac071008v. PubMed DOI
Di Pierro D., Tavazzi B., Perno C.F., Bartolini M., Balestra E., Calio R., Giardina B., Lazzarino G. An Ion-Pairing High-Performance Liquid Chromatographic Method for the Direct Simultaneous Determination of Nucleotides, Deoxynucleotides, Nicotinic Coenzymes, Oxypurines, Nucleosides, and Bases in Perchloric Acid Cell Extracts. Anal. Biochem. 1995;231:407–412. doi: 10.1006/abio.1995.0071. PubMed DOI
Cohen S., Jordheim L.P., Megherbi M., Dumontet C., Guitton J. Liquid Chromatographic Methods for the Determination of Endogenous Nucleotides and Nucleotide Analogs Used in Cancer Therapy: A Review. J. Chromatogr. B. 2010;878:1912–1928. doi: 10.1016/j.jchromb.2010.05.016. PubMed DOI
Gouy M.H., Fabre H., Blanchin M.D., Peyrottes S., Périgaud C., Lefebvre I. Quantification of 5′-Monophosphate Cytosine Arabinoside (Ara-Cmp) in Cell Extracts Using Liquid Chromatography-Electrospray Mass Spectrometry. Anal. Chim. Acta. 2006;566:178–184. doi: 10.1016/j.aca.2006.02.058. DOI
Huang S., Liu L., Liu X., Song L., Huang C., Miao L. Development and Application of a Rapid and Sensitive Liquid Chromatography-Mass Spectrometry Method for Simultaneous Analysis of Cytarabine, Cytarabine Monophosphate, Cytarabine Diphosphate and Cytarabine Triphosphate in the Cytosol and Nucleus. J. Pharm. Biomed. Anal. 2022;211:114582. doi: 10.1016/j.jpba.2022.114582. PubMed DOI
Zbornikova E., Knejzlik Z., Hauryliuk V., Krasny L., Rejman D. Analysis of Nucleotide Pools in Bacteria Using HPLC-MS in HILIC Mode. Talanta. 2019;205:120161. doi: 10.1016/j.talanta.2019.120161. PubMed DOI
Crauste C., Lefebvre I., Hovaneissian M., Puy J.Y., Roy B., Peyrottes S., Cohen S., Guitton J., Dumontet C., Perigaud C. Development of a Sensitive and Selective LC/MS/MS Method for the Simultaneous Determination of Intracellular 1-Beta-D-Arabinofuranosylcytosine Triphosphate (araCTP), Cytidine Triphosphate (CTP) and Deoxycytidine Triphosphate (dCTP) in a Human Follicular Lymphoma Cell Line. J. Chromatogr. B. 2009;877:1417–1425. doi: 10.1016/j.jchromb.2009.02.071. PubMed DOI
Crotti S., Posocco B., Marangon E., Nitti D., Toffoli G., Agostini M. Mass Spectrometry in the Pharmacokinetic Studies of Anticancer Natural Products. Mass Spectrom. Rev. 2017;36:213–251. doi: 10.1002/mas.21478. PubMed DOI
Nagaoka H., Nohta H., Saito M., Ohkura Y. High-Performance Liquid Chromatographic Determination of Ribonucleosides and 2′-Deoxyribonucleosides Based on Precoiumn Fluorescence Derivatization of the Sugar Moieties. Anal. Sci. 1992;8:345–349. doi: 10.2116/analsci.8.345. DOI
Banoub J.H., Newton R.P., Esmans E., Ewing D.F., Mackenzie G. Recent Developments in Mass Spectrometry for the Characterization of Nucleosides, Nucleotides, Oligonucleotides, and Nucleic Acids. Chem. Rev. 2005;105:1869–1916. doi: 10.1021/cr030040w. PubMed DOI
Wang E.H., Combe P.C., Schug K.A. Multiple Reaction Monitoring for Direct Quantitation of Intact Proteins Using a Triple Quadrupole Mass Spectrometer. J. Am. Soc. Mass Spectrom. 2016;27:886–896. doi: 10.1007/s13361-016-1368-2. PubMed DOI
Zhou Y., Chang Q., Wang W., Zhang X., Zhou F., Sun J., Wang G., Peng Y. Sensitive Analysis and Pharmacokinetic Study of a Novel Gemcitabine Carbamate Prodrug and Its Active Metabolite Gemcitabine in Rats Using LC-ESI-MS/MS. J. Chromatogr. B. 2018;1083:249–257. doi: 10.1016/j.jchromb.2018.03.015. PubMed DOI
Donnette M., Osanno L., Giocanti M., Venton G., Farnault L., Berda-Haddad Y., Costello R., Caroline S., Ouafik L., Ciccolini J., et al. Determination of 5-Azacitidine in Human Plasma by LC-MS/MS: Application to Pharmacokinetics Pilot Study in MDS/AML Patients. Cancer Chemother. Pharmacol. 2023;91:231–238. doi: 10.1007/s00280-023-04505-y. PubMed DOI
Parise R.A., Egorin M.J., Eiseman J.L., Joseph E., Covey J.M., Beumer J.H. Quantitative Determination of the Cytidine Deaminase Inhibitor Tetrahydrouridine (THU) in Mouse Plasma by Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2007;21:1991–1997. doi: 10.1002/rcm.3054. PubMed DOI
Peters G.J., Giovannetti E., Honeywell R.J., Ciccolini J. Can Cytidine Deaminase Be Used as Predictive Biomarker for Gemcitabine Toxicity and Response? Br. J. Clin. Pharmacol. 2019;85:1213–1214. doi: 10.1111/bcp.13921. PubMed DOI PMC
Liesener A., Karst U. Monitoring Enzymatic Conversions by Mass Spectrometry: A Critical Review. Anal. Bioanal. Chem. 2005;382:1451–1464. doi: 10.1007/s00216-005-3305-2. PubMed DOI
Youdim K.A., Saunders K.C. A Review of LC-MS Techniques and High-Throughput Approaches Used to Investigate Drug Metabolism by Cytochrome P450s. J. Chromatogr. B. 2010;878:1326–1336. doi: 10.1016/j.jchromb.2010.02.013. PubMed DOI
Krijt J., Duta A., Kozich V. Determination of S-Adenosylmethionine and S-Adenosylhomocysteine by LC-MS/MS and Evaluation of Their Stability in Mice Tissues. J. Chromatogr. B. 2009;877:2061–2066. doi: 10.1016/j.jchromb.2009.05.039. PubMed DOI PMC
Fahmy O.T., Korany M.A., Maher H.M. High Performance Liquid Chromatographic Determination of Some Co-Administered Anticancer Drugs in Pharmaceutical Preparations and in Spiked Human Plasma. J. Pharm. Biomed. Anal. 2004;34:1099–1107. doi: 10.1016/S0731-7085(03)00655-1. PubMed DOI
de Sousa Cavalcante L., Monteiro G. Gemcitabine: Metabolism and Molecular Mechanisms of Action, Sensitivity and Chemoresistance in Pancreatic Cancer. Eur. J. Pharmacol. 2014;741:8–16. doi: 10.1016/j.ejphar.2014.07.041. PubMed DOI
Saiki Y., Hirota S., Horii A. Attempts to Remodel the Pathways of Gemcitabine Metabolism: Recent Approaches to Overcoming Tumours with Acquired Chemoresistance. Cancer Drug Resist. 2020;3:819–831. doi: 10.20517/cdr.2020.39. PubMed DOI PMC
Gu X.R., Tohme R., Tomlinson B., Sakre N., Hasipek M., Durkin L., Schuerger C., Grabowski D., Zidan A.M., Radivoyevitch T., et al. Decitabine- and 5-Azacytidine Resistance Emerges from Adaptive Responses of the Pyrimidine Metabolism Network. Leukemia. 2021;35:1023–1036. doi: 10.1038/s41375-020-1003-x. PubMed DOI PMC
Abbara C., Drevin G., Ferec S., Ghamrawi S., Souchet S., Robin J.B., Schmidt A., Hunault-Berger M., Guardiola P., Briet M. Slower Degradation Rate of Cytarabine in Blood Samples from Acute Myeloid Leukemia by Comparison with Control Samples. Cancer Chemother. Pharmacol. 2020;86:687–691. doi: 10.1007/s00280-020-04150-9. PubMed DOI
Jordheim L.P., Dumontet C. Review of Recent Studies on Resistance to Cytotoxic Deoxynucleoside Analogues. Biochim. Biophys. Acta (BBA)-Rev. Cancer. 2007;1776:138–159. doi: 10.1016/j.bbcan.2007.07.004. PubMed DOI
Pavelka S. Radiometric Enzyme Assays: Development of Methods for Extremely Sensitive Determination of Types 1, 2 and 3 Iodothyronine Deiodinase Enzyme Activities. J. Radioanal. Nucl. Chem. 2010;286:861–865. doi: 10.1007/s10967-010-0798-8. DOI
Maguire M.H., Aronson D.M. Measurement of Human Placental 5′-Amp Deaminase Activity by Radiometric Assay. Anal. Biochem. 1981;116:174–180. doi: 10.1016/0003-2697(81)90341-9. PubMed DOI
Meier W., Conscience J.F. A Fast and Simple Radiometric Assay for Adenosine Deaminase Using Reversed-Phase Thin-Layer Chromatography. Anal. Biochem. 1980;105:334–339. doi: 10.1016/0003-2697(80)90466-2. PubMed DOI
Perignon J.L., Chaleon J., Leverger G., Houllier A.M., Thuillier L., Cartier P.H. Cytidine Deaminase Activity of Human Normal and Malignant Lymphoid Cells. Clin. Chim. Acta. 1985;147:67–74. doi: 10.1016/0009-8981(85)90066-X. PubMed DOI
Chabner B.A., Johns D.G., Coleman C.N., Drake J.C., Evans W.H. Purification and Properties of Cytidine Deaminase from Normal and Leukemic Granulocytes. J. Clin. Investig. 1974;53:922–931. doi: 10.1172/JCI107633. PubMed DOI PMC
Chou T.C., Arlin Z., Clarkson B.D., Philips F.S. Metabolism of 1-Beta-D-Arabinofuranosylcytosine in Human Leukemic-Cells. Cancer Res. 1977;37:3561–3570. PubMed
Giusti G., Mangoni C., de Petrocellis B., Scarano E. Deoxycytidylate Deaminase and Deoxycytidine Deaminase in Normal and Neoplastic Human Tissues. Enzymol. Biol. Clin. 1970;11:375–383. doi: 10.1159/000458374. PubMed DOI
Maley G.F., Maley F. The Purification and Properties of Deoxycytidylate Deaminase from Chick Embryo Extracts. J. Biol. Chem. 1964;239:1168–1176. doi: 10.1016/S0021-9258(18)91408-0. PubMed DOI
Scocca J.J., Panny S.R., Bessman M.J. Studies of Deoxycytidylate Deaminase from T4-Infected Escherichia coli. J. Biol. Chem. 1969;244:3698–3706. doi: 10.1016/S0021-9258(18)83425-1. PubMed DOI
Ellims P.H., Medley G. Deoxycytidylate Deaminase Activity in Lymphoproliferative Disorders. Leuk. Res. 1984;8:123–128. doi: 10.1016/0145-2126(84)90040-7. PubMed DOI
Salic A., Mitchison T.J. A Chemical Method for Fast and Sensitive Detection of DNA Synthesis in Vivo. Proc. Natl. Acad. Sci. USA. 2008;105:2415–2420. doi: 10.1073/pnas.0712168105. PubMed DOI PMC
Qu D., Wang G., Wang Z., Zhou L., Chi W., Cong S., Ren X., Liang P., Zhang B. 5-Ethynyl-2′-Deoxycytidine as a New Agent for DNA Labeling: Detection of Proliferating Cells. Anal. Biochem. 2011;417:112–121. doi: 10.1016/j.ab.2011.05.037. PubMed DOI
Ligasova A., Liboska R., Friedecky D., Micova K., Adam T., Ozdian T., Rosenberg I., Koberna K. Dr Jekyll and Mr Hyde: A Strange Case of 5-Ethynyl-2′-Deoxyuridine and 5-Ethynyl-2′-Deoxycytidine. Open Biol. 2016;6:150172. doi: 10.1098/rsob.150172. PubMed DOI PMC
Hughes K.T. Radiometric Assays. In: Eisenthal R., Danson M.J., editors. Enzyme Assays: A Practical Approach. 2nd ed. Oxford University Press; Oxford, UK: 2002. pp. 79–103.