Inter Laminar Shear Strength of Flax-Glass Hybrid Polymer Composites for Automotive Frame: Numerical Modelling and Experimental Analysis
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_025/0007293
Ministry of Education, Youth and Sports of the Czech Republic and the European Union (European Structural and Investment Funds-Operational Program Research, Development and Education) through the project "Modular platform for autonomous chassis of special
PubMed
40870170
PubMed Central
PMC12387216
DOI
10.3390/ma18163852
PII: ma18163852
Knihovny.cz E-zdroje
- Klíčová slova
- finite element analysis (FEM), flax, glass, hybrid composites, inter laminar shear strength (ILSS), scanning electron microscopy (SEM),
- Publikační typ
- časopisecké články MeSH
This study deals with the mechanical performance in the case of hybrid polymer composites developed from sandwiched reinforcements using natural fibre and glass fibre-based fabrics. The composites developed by using different combinations and arrangements of the glass and flax fabrics were tested for the interlaminar shear strength (ILSS). Finite element analysis based on ANSYS was used to determine the ILSS for the hybrid composites. Further, experimental testing of the ILSS was carried out in order to validate the predicted performance. The comparison of simulated values with the tested values showed percentage error values ranging from 0.106% to 6.25%. The minor error between the tested and simulated values can be due to the presence of very small imperfections in the composite, like the presence of voids, which could potentially be introduced in the composite while manufacturing the samples. Microscopic analysis confirmed the fracture in between the layers and interfacial debonding between the fibre and the matrix. It was found that the flax fibre tends to break earlier as compared to the glass component, which has much better mechanical performance. The findings are important for understanding the performance of hybrid composites in real loading conditions in automotive frames and other similar applications.
Zobrazit více v PubMed
Kumar S., Sharma N., Biswas R., Singh K.K. Effect of temperature on the flexural and ILSS behaviour of symmetric and asymmetric basalt fibre-reinforced polymer composites. Mater. Today Proc. 2023 doi: 10.1016/j.matpr.2023.03.327. in press . DOI
Hawileh R.A., Abu-Obeidah A., JaAbdalla J.A., Al-Tamimi A. Temperature effect on the mechanical properties of carbon, glass and carbon–glass FRP laminates. Constr. Build. Mater. 2015;75:342–348. doi: 10.1016/j.conbuildmat.2014.11.020. DOI
Kumar S., Singh K.K., Ramkumar J. Comparative study of the influence of graphene nanoplatelets filler on the mechanical and tribological behavior of glass fabric-reinforced epoxy composites. Polym. Compos. 2020;41:5403–5417. doi: 10.1002/pc.25804. DOI
Zhou Y., Fan Z., Du J., Sui L., Xing F. Bond behavior of FRP-to-concrete interface under sulfate attack: An experimental study and modeling of bond degradation. Constr. Build. Mater. 2015;85:9–21. doi: 10.1016/j.conbuildmat.2015.03.031. DOI
Akshat T., Petru M., Mishra R.K. Numerical Modelling of Hybrid Polymer Composite Frame for Selected Construction Parts and Experimental Validation of Mechanical Properties. Polymers. 2025;17:168. doi: 10.3390/polym17020168. PubMed DOI PMC
Realfonzo R., Martinelli E., Napoli A., Nunziata B. Experimental investigation of the mechanical connection between FRP laminates and concrete. Compos. Part B Eng. 2013;45:341–355. doi: 10.1016/j.compositesb.2012.05.010. DOI
Wong P.M.H., Wang Y.C. An experimental study of pultruded glass fibre reinforced plastics channel columns at elevated temperatures. Compos. Struct. 2007;81:84–95. doi: 10.1016/j.compstruct.2006.08.001. DOI
Huang X. Fabrication and Properties of Carbon Fibers. Materials. 2009;2:2369–2403. doi: 10.3390/ma2042369. DOI
Vandeurzen P., Ivens J., Verpoest I. A three-dimensional micromechanical analysis of woven-fabric composites: I. Geometric analysis. Compos. Sci. Technol. 1996;56:1303–1315. doi: 10.1016/S0266-3538(96)00092-9. DOI
Thwe M.M., Liao K. Durability of bamboo-glass fiber reinforced polymer matrix hybrid composites. Compos. Sci. Technol. 2003;63:375–387. doi: 10.1016/S0266-3538(02)00225-7. DOI
Jacob M., Joseph S., Pothan L.A., Thomas S. A study of advances in characterization of interfaces and fiber surfaces in lignocellulosic fiber-reinforced composites. Compos. Interfaces. 2005;12:95–124. doi: 10.1163/1568554053542115. DOI
Arumugam V., Militky J., Davies L., Slater S. Thermal and water vapor transmission through porous warp knitted 3D spacer fabrics for car upholstery applications. J. Text. Inst. 2018;109:345–357. doi: 10.1080/00405000.2017.1347023. DOI
Burgani T., Alaie S., Tehrani M. Modeling Flexural Failure in Carbon-Fiber-Reinforced Polymer Composites. J. Compos. Sci. 2022;6:33. doi: 10.3390/jcs6020033. DOI
Behera B.K., Pattanayak A.K., Mishra R. Prediction of Fabric Drape Behaviour using Finite Element Method. J. Text. Eng. 2008;54:103–110. doi: 10.4188/jte.54.103. DOI
Tsai K.-H., Chiu C.-H., Wu T.-H. Fatigue behavior of 3D multi-layer angle interlock woven composite plates. Compos. Sci. Technol. 2000;60:241–248. doi: 10.1016/S0266-3538(99)00120-7. DOI
Suriani M.J., Ilyas R.A., Zuhri M.Y.M., Khalina A., Sultan M.T.H., Sapuan S.M., Ruzaidi C.M., Wan F.N., Zulkifli F., Harussani M.M., et al. Critical Review of Natural Fiber Reinforced Hybrid Composites: Processing, Properties, Applications and Cost. Polymers. 2021;13:3514. doi: 10.3390/polym13203514. PubMed DOI PMC
Wagh J.P., Malagi R.R., Madgule M. Investigative studies on natural fiber reinforced composites for automotive bumper beam applications. J. Reinf. Plast. Compos. 2024 doi: 10.1177/07316844241260764. DOI
Bidadi J., Arabha M., Googarchin H.S. Adhesive bonding in automotive hybrid multi-cell square tubes: Experimental and numerical investigation on quasi-static axial crashworthiness performance. Int. J. Adhes. Adhes. 2024;135:103832. doi: 10.1016/j.ijadhadh.2024.103832. DOI
Venkataraman M., Xiong X., Marek J., Yao J., Zhu G. Electrospun nanofibrous membranes embedded with aerogel for advanced thermal and transport properties. Polym. Adv. Technol. 2018;29:2583–2592. doi: 10.1002/pat.4369. DOI
Chandan V., Mishra R.K., Kolar V., Muller M., Hrabe P. Green hybrid composites partially reinforced with flax woven fabric and coconut shell waste-based micro-fillers. Ind. Crops Prod. 2024;222:119948. doi: 10.1016/j.indcrop.2024.119948. DOI
Bachtiar D., Sapuan S.M., Hamdan M.M. Flexural Properties of Alkaline Treated Sugar Palm Fibre Reinforced Epoxy Composites. Int. J. Automot. Mech. Eng. 2010;1:79–90. doi: 10.15282/ijame.1.2010.7.0007. DOI
Nurazzi N.M., Asyraf M.R.M., Fatimah Athiyah S., Shazleen S.S., Rafiqah S.A., Harussani M.M., Kamarudin S.H., Razman M.R., Rahmah M., Zainudin E.S., et al. A Review on Mechanical Performance of Hybrid Natural Fiber Polymer Composites for Structural Applications. Polymers. 2021;13:2170. doi: 10.3390/polym13132170. PubMed DOI PMC
Lee C.H., Khalina A., Nurazzi N.M., Norli A., Harussani M.M., Rafiqah S.A., Aisyah H.A., Ramli N. The Challenges and Future Perspective of Woven Kenaf Reinforcement in Thermoset Polymer Composites in Malaysia: A Review. Polymers. 2021;13:1390. doi: 10.3390/polym13091390. PubMed DOI PMC
Bidadi J., Hampaiyan M.H., Saeidi G.H., Akhavan-Safar A., da Silva L.F.M. Experimental and numerical investigation on the crashworthiness performance of double hat-section Al-CFRP beam subjected to quasi-static bending test. Polym. Compos. 2024;45:5656–5674. doi: 10.1002/pc.28155. DOI
Bidadi J., Saeidi Googarchin H., Akhavan-Safar A., Carbas R.J.C., da Silva L.F.M. Characterization of Bending Strength in Similar and Dissimilar Carbon-Fiber-Reinforced Polymer/Aluminum Single-Lap Adhesive Joints. Appl. Sci. 2023;13:12879. doi: 10.3390/app132312879. DOI
Suriani M.J., Zainudin H.A., Ilyas R.A., Petrů M., Sapuan S.M., Ruzaidi C.M., Mustapha R. Kenaf Fiber/Pet Yarn Reinforced Epoxy Hybrid Polymer Composites: Morphological, Tensile, and Flammability Properties. Polymers. 2021;13:1532. doi: 10.3390/polym13091532. PubMed DOI PMC
Kalaprasad G., Thomas S., Pavithran C., Neelakantan N.R., Balakrishnan S. Hybrid Effect in the Mechanical Properties of Short Sisal/Glass Hybrid Fiber Reinforced Low Density Polyethylene Composites. J. Reinf. Plast. Compos. 1996;15:48–73. doi: 10.1177/073168449601500104. DOI
Rudov-Clark S., Mouritz A.P. Tensile fatigue properties of a 3D orthogonal woven composite. Compos. Part A Appl. Sci. Manuf. 2008;39:1018–1024. doi: 10.1016/j.compositesa.2008.03.001. DOI
Wang Y., Hu S., Sun X. Experimental investigation on the elastic modulus and fracture properties of basalt fiber–reinforced fly ash geopolymer concrete. Constr. Build. Mater. 2022;338:127570. doi: 10.1016/j.conbuildmat.2022.127570. DOI
Xie H., Yang L., Zhang Q., Huang C., Chen M., Zhao K. Research on energy dissipation and damage evolution of dynamic splitting failure of basalt fiber reinforced concrete. Constr. Build. Mater. 2022;330:127292. doi: 10.1016/j.conbuildmat.2022.127292. DOI
Hassan T., Jamshaid H., Khan M.Q., Tichy M., Muller M. Factors Affecting Acoustic Properties of Natural-Fiber-Based Materials and Composites: A Review. Textiles. 2021;1:55–85. doi: 10.3390/textiles1010005. DOI
Wang A., Wang X., Xian G. Mechanical, Low-Velocity Impact, and Hydrothermal Aging Properties of Flax/Carbon Hybrid Composite Plates. Polym. Test. 2020;90:106759. doi: 10.1016/j.polymertesting.2020.106759. DOI
Fiore V., Valenza A., Di Bella G. Mechanical Behavior of Carbon/Flax Hybrid Composites for Structural Applications. J. Compos. Mater. 2012;46:2089–2096. doi: 10.1177/0021998311429884. DOI
Fehri M., Ragueh R.R., Vivet A., Dammak F., Haddar M. Improvement of Natural Fiber Composite Materials by Carbon Fibers. J. Renew. Mater. 2016;5:38–47. doi: 10.7569/JRM.2016.634123. DOI
Nisini E., Santulli C., Liverani A. Mechanical and Impact Characterization of Hybrid Composite Laminates with Carbon, Basalt and Flax Fibres. Compos. Part B Eng. 2016;127:92–99. doi: 10.1016/j.compositesb.2016.06.071. DOI
Issa H., Robin G., Duigou L., Cadou J.M., Guevel Y., Daya E.M. Experimental Investigation of the Effect of Stacking Sequences in Hybrid Carbon/Flax Composites; Proceedings of the International Congress for Applied Mechanics; Marrakech, Morocco. 13–15 November 2024.
Paturel A., Dhakal H.N. Influence of Water Absorption on the Low Velocity Falling Weight Impact Damage Behaviour of Flax/Glass Reinforced Vinyl Ester Hybrid Composites. Molecules. 2020;25:278. doi: 10.3390/molecules25020278. PubMed DOI PMC
Heckadka S.S., Ballambat R.P., Manjeshwar V.K., Kumar M., Hegde P., Kamath A. Influence of Stack Sequence on the Mechanical Characteristics of Hybrid Composites Analyzed Using Cone Beam Computed Tomography and Scanning Electron Microscopy. Polym. Compos. 2020;41:5059–5071. doi: 10.1002/pc.25774. DOI
Jamshaid H., Ali H., Mishra R.K., Nazari S., Chandan V. Durability and Accelerated Ageing of Natural Fibers in Concrete as a Sustainable Construction Material. Materials. 2023;16:6905. doi: 10.3390/ma16216905. PubMed DOI PMC
Barouni A.K., Dhakal H.N. Damage Investigation and Assessment Due to Low-Velocity Impact on Flax/Glass Hybrid Composite Plates. Compos. Struct. 2019;226:111224. doi: 10.1016/j.compstruct.2019.111224. DOI
Kim C.-U., Song J.-I. Effect of Hybrid Reinforcement on the Mechanical Properties of Vinyl Ester Green Composites. Fibers Polym. 2020;21:428–436. doi: 10.1007/s12221-020-9632-2. DOI
Attia M.A., El-Baky M.A.A., Abdelhaleem M.M., Hassan M.A. Hybrid Composite Laminates Reinforced with Flax-Basalt-Glass Woven Fabrics for Lightweight Load Bearing Structures. J. Ind. Text. 2020;51:4622S–4664S. doi: 10.1177/1528083720960743. DOI
Davies P. Review of standard procedures for delamination resistance testing. In: Sridharan S., editor. Delamination Behaviour of Composites. Woodhead Publishing Limited; Cambridge, UK: 2008. pp. 65–86.
Arumugam V., Militky J., Tunak M. In-plane shear behavior of 3D spacer knitted fabrics. J. Ind. Text. 2016;46:868–886. doi: 10.1177/1528083715601509. DOI
Chaterjee S., Adams D., Oplinger D.W. Test Methods for Composites, a Status Report Volume III: Shear Test Methods. FAA Technical Center; Atlantic City, NJ, USA: 1993. pp. 97–102. DOT/FAA/CT-93/17.
Fuqua M., Huo S., Thapa A., Gibbon L., Ulven C.A. Challenges in manufacturing oilseed versus linen flax fiber reinforced composites; Proceedings of the International SAMPE Symposium and Exhibition; Baltimore, MD, USA. 18–21 May 2009.
Rong M.Z., Zhang M.Q., Liu Y., Yang C.C., Zeng H.M. The effect of fiber treatment on the mechanical properties of unidirectional sisal-reinforced epoxy composites. Compos. Sci. Technol. 2001;61:1437–1447. doi: 10.1016/S0266-3538(01)00046-X. DOI
Monette D., Dumond P., Chikhaoui I., Nichols P., Lemaire E.D. Preliminary Material Evaluation of Flax Fibers for Prosthetic Socket Fabrication. J. Biomech. Eng. 2020;143:021006. doi: 10.1115/1.4048079. PubMed DOI
Dhason R., Roy S., Datta S. The Influence of Composite Bone Plates in Vancouver Femur B1 Fracture Fixation after Post-Operative, and Healed Bone Stages: A Finite Element Study. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2022;236:1288–1296. doi: 10.1177/09544119221116990. PubMed DOI
Bihari A., Gee A., Bougherara H., Brzozowski P., Lawendy A.-R., Schemitsch E.H., Zdero R. Cytotoxicity of Novel Hybrid Composite Materials for Making Bone Fracture Plates. Biomed. Mater. 2024;19:041001. doi: 10.1088/1748-605X/ad45d6. PubMed DOI
Daud S.Z.M., Mustapha F., Adzis Z. Lightning Strike Evaluation on Composite and Biocomposite Vertical-Axis Wind Turbine Blade Using Structural Health Monitoring Approach. J. Intell. Mater. Syst. Struct. 2018;29:3444–3455. doi: 10.1177/1045389X17754259. DOI
Hinzmann C., Johansen N.F.-J., Hasager C.B., Holst B. Towards Greener Wind Power: Nanodiamond-Treated Flax Fiber Composites Outperform Standard Glass Fiber Composites in Impact Fatigue Tests. Compos. Part A Appl. Sci. Manuf. 2024;186:108342. doi: 10.1016/j.compositesa.2024.108342. DOI
Yang T., Xiong X., Venkataraman M., Novák J. Investigation on sound absorption properties of aerogel/polymer nonwovens. J. Text. Inst. 2019;110:196–201. doi: 10.1080/00405000.2018.1472540. DOI
Hess K.M., Srubar W.V., III Mechanical Characterization of Gelatin-Flax Natural-Fiber Composites for Construction. J. Renew. Mater. 2015;3:175–182. doi: 10.7569/JRM.2015.634106. DOI
Bąk A., Mikuła J., Oliinyk I., Łach M. Basic Research on Layered Geopolymer Composites with Insulating Materials of Natural Origin. Sci. Rep. 2024;14:12576. doi: 10.1038/s41598-024-63442-9. PubMed DOI PMC
Mak K., Fam A., MacDougall C. Flax fibre composite sandwich panels for structural applications. Building on our growth opportunities; Proceedings of the Annual Conference—Canadian Society for Civil Engineering; Regina, SK, Canada. 27–30 May 2015; Red Hook, NY, USA: Curran Associates, Inc.; 2016. pp. 1585–1594.
Mohammed L., Ansari M.N.M., Pua G., Jawaid M., Islam M.S. A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. Int. J. Polym. Sci. 2015;2015:243947. doi: 10.1155/2015/243947. DOI
Lincoln J.D., Shapiro A.A., Earthman J.C., Saphores J.-d.M., Ogunseitan O.A. Design and Evaluation of Bioepoxy-Flax Composites for Printed Circuit Boards. IEEE Trans. Electron. Packag. Manuf. 2008;31:211–220. doi: 10.1109/TEPM.2008.926273. DOI
Amiri A., Burkart V., Yu A., Webster D., Ulven C. Sustainable Composites for Aerospace Applications. Woodhead Publishing; Cambridge, UK: 2018. The Potential of Natural Composite Materials in Structural Design; pp. 269–291.
Faruk O., Bledzki A.K., Fink H.-P., Sain M. Biocomposites Reinforced with Natural Fibers: 2000–2010. Prog. Polym. Sci. 2012;37:1552–1596. doi: 10.1016/j.progpolymsci.2012.04.003. DOI
Papanicolaou G., Chalkias D., Koutsomitopoulou A. Low Energy Impact and post-impact Behaviour of Epoxy matrix-woven flax fabric composites. UPB Sci. Bull. Ser. D Mech. Eng. 2016;78:25–36.
Flax Weaves Its Way into Cars and Aircraft. [(accessed on 3 July 2025)]. Available online: https://www.plasticsnews.com/article/20130328/NEWS/130329909/flax-weaves-its-way-into-cars-and-aircraft.
Manivannan J.M., Sathishkumar T.P., Subramani S., Dhairiyasamy R. Investigation on the Fracture and Creep Behavior of the Synthetic and Natural Fiber Laminate Polymer Composite. Matéria (Rio J. ) 2024;29:e20240608. doi: 10.1590/1517-7076-rmat-2024-0608. DOI
Zouhar J., Slaný M., Sedlák J., Joska Z., Pokorný Z., Barényi I., Majerík J., Fiala Z. Application of Carbon–Flax Hybrid Composite in High Performance Electric Personal Watercraft. Polymers. 2022;14:1765. doi: 10.3390/polym14091765. PubMed DOI PMC
An H., Song Y., Liu L., Meng X. Experimental Study of the Compressive Strengths of Basalt Fiber-Reinforced Concrete after Various High-Temperature Treatments and Cooling in Open Air and Water. Appl. Sci. 2021;11:8729. doi: 10.3390/app11188729. DOI
Deng Z., Liu X., Liang N., de la Fuente A., Peng H. Flexural Performance of a New Hybrid Basalt-Polypropylene Fiber-Reinforced Concrete Oriented to Concrete Pipelines. Fibers. 2021;9:43. doi: 10.3390/fib9070043. DOI
Mohammad Jani N., Shakir Nasif M., Shafiq N., Holt I. Experimental Investigation on the Effect of Varying Fiber Mix Proportion on the Mechanical and Thermal Performances of Fiber-Reinforced Self-Compacting Concrete under Hydrocarbon Fire Condition. Appl. Sci. 2020;10:4586. doi: 10.3390/app10134586. DOI
Xiong X., Yang T., Mishra R., Militky J. Transport properties of aerogel-based nanofibrous nonwoven fabrics. Fibers Polym. 2017;17:1709–1714. doi: 10.1007/s12221-016-6745-8. DOI
Dvorkin L., Bordiuzhenko O., Tekle B.H., Ribakov Y. A Method for the Design of Concrete with Combined Steel and Basalt Fiber. Appl. Sci. 2021;11:8850. doi: 10.3390/app11198850. DOI
Bakis C., Bank L.C., Brown V., Cosenza E., Davalos J.F., Lesko J.J., Triantafillou T.C. Fiber-reinforced polymer composites for construction-state-of-the-art review. J. Compos. Constr. 2002;6:73–87. doi: 10.1061/(ASCE)1090-0268(2002)6:2(73). DOI
Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates. ASTM International; West Conshohocken, PA, USA: 2022.
Fan Z., Santare M.H., Advani S.G. Interlaminar Shear Strength of Glass Fiber Reinforced Epoxy Composites Enhanced with Multi-Walled Carbon Nanotubes. Compos. Part A Appl. Sci. Manuf. 2007;39:540–554. doi: 10.1016/j.compositesa.2007.11.013. DOI
Petrucci R., Santulli C., Puglia D., Sarasini F., Torre L., Kenny J.M. Mechanical Characterisation of Hybrid Composite Laminates Based on Basalt Fibres in Combination with Flax, Hemp and Glass Fibres Manufactured by Vacuum Infusion. Mater. Des. 2013;49:728–735. doi: 10.1016/j.matdes.2013.02.014. DOI
Barouni A., Lupton C., Jiang C., Saifullah A., Giasin K., Zhang Z., Dhakal H.N. Investigation into the Fatigue Properties of Flax Fibre Epoxy Composites and Hybrid Composites Based on Flax and Glass Fibres. Compos. Struct. 2021;281:115046. doi: 10.1016/j.compstruct.2021.115046. DOI
Poole M., Gower M. Mechanical Characterisation of 3D Fibre-Reinforced Plastic (FRP) Composites. The National Physical Laboratory; Teddington, UK: 2022. Good Practise Guide No. 151. DOI
Padmanabhan K., Kishore J. Interlaminar shear of woven fabric Kevlar-epoxy composites in three-point loading. Mater. Sci. Eng. A. 1995;197:113–118. doi: 10.1016/0921-5093(94)09742-9. DOI
Cui W.C., Wisnom M.R., Jones M. Failure mechanisms in three and four point short beam bending tests of unidirectional glass/epoxy. J. Strain Anal. Eng. Des. 1992;27:235–243. doi: 10.1243/03093247V274235. DOI
Madsen B., Aslan M., Lilholt H. Fractographic Observations of the Microstructural Characteristics of Flax Fibre Composites. Compos. Sci. Technol. 2015;123:151–162. doi: 10.1016/j.compscitech.2015.12.003. DOI
Aslan M., Chinga-Carrasco G., Sørensen B.F., Madsen B. Strength Variability of Single Flax Fibres. J. Mater. Sci. 2011;46:6344–6354. doi: 10.1007/s10853-011-5581-x. DOI
Beaugrand J., Guessasma S. Scenarios of Crack Propagation in Bast Fibers: Combining Experimental and Finite Element Approaches. Compos. Struct. 2015;133:667–678. doi: 10.1016/j.compstruct.2015.07.119. DOI
Richely E., Beaugrand J., Coret M., Binetruy C., Ouagne P., Bourmaud A., Guessasma S. In Situ Tensile Testing under High-Speed Optical Recording to Determine Hierarchical Damage Kinetics in Polymer Layers of Flax Fibre Elements. Polymers. 2023;15:2794. doi: 10.3390/polym15132794. PubMed DOI PMC