Effect of Waste Metal and Chamotte Fillers on the Thermal and Mechanical Properties of Geopolymer Composites for Energy Storage Applications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
40870172
PubMed Central
PMC12387336
DOI
10.3390/ma18163853
PII: ma18163853
Knihovny.cz E-zdroje
- Klíčová slova
- geopolymer composite, metakaolinite, thermal energy storage, waste steel chips,
- Publikační typ
- časopisecké články MeSH
This study investigates the effects of varying filler content on the thermal and mechanical performance of metakaolinite-based geopolymer composites designed for thermal energy storage applications. The composites were formulated using a geopolymer binder, combined with a thermally stable filler (ground chamotte) and a thermal energy storage filler (waste steel chips) in different proportions. Chamotte content within the binder matrix (binder + chamotte) ranged from 20 to 40 wt.%, while steel chip content varied from 0 to 40 wt.% of the total composite mass. The thermal properties of the composites were evaluated at room temperature and compared with conventional reference materials, including Ultraboard, chamotte brick, and magnetite brick. Mechanical performance, specifically flexural and compressive strength, was evaluated at room temperature and after exposure to elevated temperatures (800 and 1100 °C), followed by two cooling regimes, slow furnace cooling and rapid water quenching. Microstructural characterization via optical microscopy was used to examine filler dispersion and matrix-filler interactions. The results showed that the thermal effusivity of the optimized composites exceeded that of chamotte brick by more than 50%. The highest flexural (12.68 MPa) and compressive (86.18 MPa) strengths were achieved in the composite containing 20 wt.% steel chips, prior to thermal exposure. Microstructural observations revealed the diverse geometry of the steel chips and arrangement of the chamotte particles. These findings highlight the potential of incorporating metallic waste materials into geopolymer systems to develop multifunctional composites with improved thermal storage capacity and mechanical resilience.
Zobrazit více v PubMed
Turner L.K., Collins F.G. Carbon Dioxide Equivalent (CO2-E) Emissions: A Comparison Between Geopolymer and Opc Cement Concrete. Constr. Build. Mater. 2013;43:125–130. doi: 10.1016/j.conbuildmat.2013.01.023. DOI
Carreño-Gallardo C., Tejeda-Ochoa A., Perez-Ordonez O.I., Ledezma-Sillas J.E., Lardizabal-Gutierrez D., Prieto-Gomez C., Valenzuela-Grado J.A., Robles Hernandez F.C., Herrera-Ramirez J.M. In the CO2 Emission Remediation by Means of Alternative Geopolymers as Substitutes for Cements. J. Environ. Chem. Eng. 2018;6:4878–4884. doi: 10.1016/j.jece.2018.07.033. DOI
Alsalman A., Assi L.N., Kareem R.S., Carter K., Ziehl P. Energy and CO2 Emission Assessments of Alkali-Activated Concrete and Ordinary Portland Cement Concrete: A Comparative Analysis of Different Grades of Concrete. Clean. Environ. Syst. 2021;3:100047. doi: 10.1016/j.cesys.2021.100047. DOI
Abiodun Y.O., Olanrewaju O.A., Gbenebor O.P., Ochulor E.F., Obasa D.V., Adeosun S.O. Cutting Cement Industry CO2 Emissions Through Metakaolin Use in Construction. Atmosphere. 2022;13:1494. doi: 10.3390/atmos13091494. DOI
Hager I., Sitarz M., Mróz K. Fly-Ash Based Geopolymer Mortar for High-Temperature Application—Effect of Slag Addition. J. Clean. Prod. 2021;316:128168. doi: 10.1016/j.jclepro.2021.128168. DOI
Jiao Z., Li X., Yu Q. Effect of Curing Conditions on Freeze-Thaw Resistance of Geopolymer Mortars Containing Various Calcium Resources. Constr. Build. Mater. 2021;313:125507. doi: 10.1016/j.conbuildmat.2021.125507. DOI
Zhuang H.J., Zhang H.Y., Xu H. Resistance of Geopolymer Mortar to Acid and Chloride Attacks. Procedia Eng. 2017;210:126–131. doi: 10.1016/j.proeng.2017.11.057. DOI
Guo G., Lv C., Liu J., Wang L. Properties of Fiber-Reinforced One-Part Geopolymers: A Review. Polymers. 2022;14:3333. doi: 10.3390/polym14163333. PubMed DOI PMC
Provis J.L., van Deventer J.S.J. Geopolymers. Woodhead Publishing Limited; Boca Raton, FL, USA: 2009.
Luhar S., Nicolaides D., Luhar I. Fire Resistance Behaviour of Geopolymer Concrete: An Overview. Buildings. 2021;11:82. doi: 10.3390/buildings11030082. DOI
Mendoza-Cachú D., Rojas-Trigos J.B., Hernández-Wong J., Madera-Santana T.J., Franco-Urquiza E.A. Geopolymers for Space Applications. Physchem. 2024;4:197–213. doi: 10.3390/physchem4030015. DOI
Zhang X., Bai C., Qiao Y., Wang X., Jia D., Li H., Colombo P. Porous Geopolymer Composites: A Review. Compos. Part A Appl. Sci. Manuf. 2021;150:106629. doi: 10.1016/j.compositesa.2021.106629. DOI
Jindal B.B., Alomayri T., Hasan A., Kaze C.R. Geopolymer Concrete with Metakaolin For Sustainability: A Comprehensive Review on Raw Material’s Properties, Synthesis, Performance, and Potential Application. Environ. Sci. Pollut. Res. 2023;30:25299–25324. doi: 10.1007/s11356-021-17849-w. PubMed DOI
Pandurangan K., Thennavan M., Muthadhi A. Studies on Effect of Source of Flyash on the Bond Strength of Geopolymer Concrete. Mater. Today Proc. 2018;5:12725–12733. doi: 10.1016/j.matpr.2018.02.256. DOI
Kohout J., Koutník P., Bezucha P., Kwoczynski Z. Leachability of the Metakaolinite-Rich Materials in Different Alkaline Solutions. Mater. Today Commun. 2019;21:100669. doi: 10.1016/j.mtcomm.2019.100669. DOI
Williamson T., Juenger M.C.G. The Role of Activating Solution Concentration on Alkali–Silica Reaction in Alkali-Activated Fly Ash Concrete. Cem. Concr. Res. 2016;83:124–130. doi: 10.1016/j.cemconres.2016.02.008. DOI
Arnoult M., Perronnet M., Autef A., Rossignol S. How to Control the Geopolymer Setting Time with the Alkaline Silicate Solution. J. Non-Cryst. Solids. 2018;495:59–66. doi: 10.1016/j.jnoncrysol.2018.02.036. DOI
Zhu X., Qian H., Wu H., Zhou Q., Feng H., Zeng Q., Tian Y., Ruan S., Zhang Y., Chen S., et al. Early-Stage Geopolymerization Process of Metakaolin-Based Geopolymer. Materials. 2022;15:6125. doi: 10.3390/ma15176125. PubMed DOI PMC
Chuewangkam N., Kidkhunthod P., Pinitsoontorn S. Direct Evidence for the Mechanism of Early-Stage Geopolymerization Process. Case Stud. Constr. Mater. 2024;21:e03539. doi: 10.1016/j.cscm.2024.e03539. DOI
Kohout J., Koutník P. Effect of Filler Type on the Thermo-Mechanical Properties of Metakaolinite-Based Geopolymer Composites. Materials. 2020;13:2395. doi: 10.3390/ma13102395. PubMed DOI PMC
Kohout J., Koutník P., Hájková P., Kohoutová E., Soukup A. Effect of K/Al Molar Ratio on the Thermo-Mechanical Properties of Metakaolinite-Based Geopolymer Composites. Polymers. 2021;13:3754. doi: 10.3390/polym13213754. PubMed DOI PMC
Rovnaník P. Effect of Curing Temperature on the Development of Hard Structure of Metakaolin-Based Geopolymer. Constr. Build. Mater. 2010;24:1176–1183. doi: 10.1016/j.conbuildmat.2009.12.023. DOI
Wang R., Wang J., Dong T., Ouyang G. Structural and Mechanical Properties of Geopolymers Made of Aluminosilicate Powder with Different SiO2/Al2O3 Ratio: Molecular Dynamics Simulation and Microstructural Experimental Study. Constr. Build. Mater. 2020;240:117935. doi: 10.1016/j.conbuildmat.2019.117935. DOI
Kullová L., Kovářík T., Rieger D., Čekalová M. Geopolymerní Kompozit Na Bázi Roztoku Křemičitanu Draselného S Plnivem O Různém Granulometrickém Složení. Chemické Listy. 2016;110:581–584.
Tammam Y., Uysal M., Canpolat O. Effects of Alternative Ecological Fillers on the Mechanical, Durability, and Microstructure of Fly Ash-Based Geopolymer Mortar. Eur. J. Environ. Civ. Eng. 2022;26:5877–5900. doi: 10.1080/19648189.2021.1925157. DOI
Alserai S.J., Alsaraj W.K., Abass Z.W. Effect of Iron Filings on the Mechanical Properties of Different Types of Sustainable Concrete. Open Civ. Eng. J. 2018;12:441–457. doi: 10.2174/187414950181201044. DOI
Nongnuang T., Jitsangiam P., Rattanasak U., Tangchirapat W., Suwan T., Thongmunee S. Characteristics of Waste Iron Powder as a Fine Filler in a High-Calcium Fly Ash Geopolymer. Materials. 2021;14:2515. doi: 10.3390/ma14102515. PubMed DOI PMC
Shaikh F.U.A., Hosan A. Mechanical Properties of Steel Fibre Reinforced Geopolymer Concretes at Elevated Temperatures. Constr. Build. Mater. 2016;114:15–28. doi: 10.1016/j.conbuildmat.2016.03.158. DOI
Ranjbar N., Talebian S., Mehrali M., Kuenzel C., Cornelis Metselaar H.S., Jumaat M.Z. Mechanisms of Interfacial Bond in Steel and Polypropylene Fiber Reinforced Geopolymer Composites. Compos. Sci. Technol. 2016;122:73–81. doi: 10.1016/j.compscitech.2015.11.009. DOI
Prałat K., Ciemnicka J., Koper A., Szczypiński M.M., Łoś P., Nguyen V.V., Le V.S., Rapiejko C., Ercoli R., Buczkowska K.E. Determination of the Thermal Parameters of Geopolymers Modified with Iron Powder. Polymers. 2022;14:2009. doi: 10.3390/polym14102009. PubMed DOI PMC
Wang M.R., Zheng Y., Jia D.C., Zhou Y. Effect of High-Temperature Heat Treatment on Mechanical Property of Cr-Geopolymer Composite. Adv. Mater. Res. 2011;399–401:469–473. doi: 10.4028/www.scientific.net/AMR.399-401.469. DOI
Kuranlı Ö.F., Uysal M., Abbas M.T., Cosgun T., Niş A., Aygörmez Y., Canpolat O., Al-mashhadani M.M. Evaluation of Slag/Fly Ash Based Geopolymer Concrete with Steel, Polypropylene and Polyamide Fibers. Constr. Build. Mater. 2022;325:126747. doi: 10.1016/j.conbuildmat.2022.126747. DOI
Rahjoo M., Goracci G., Martauz P., Rojas E., Dolado J.S. Geopolymer Concrete Performance Study for High-Temperature Thermal Energy Storage (TES) Applications. Sustainability. 2022;14:1937. doi: 10.3390/su14031937. PubMed DOI PMC
Jacob R., Trout N., Solé A., Clarke S., Fernández A.I., Cabeza L.F., Saman W., Bruno F. Novel Geopolymer for Use as a Sensible Storage Option in High Temperature Thermal Energy Storage Systems. AIP Conf. Proc. 2020;2303:190019. doi: 10.1063/5.0028721. DOI
Colangelo F., Cioffi R., Roviello G., Capasso I., Caputo D., Aprea P., Liguori B., Ferone C. Thermal Cycling Stability of Fly Ash Based Geopolymer Mortars. Compos. Part B Eng. 2017;129:11–17. doi: 10.1016/j.compositesb.2017.06.029. DOI
Thermal Performance of Buildings and Building Components—Physical Quantities and Definitions 2018. ISO; Geneva, Switzerland: 2018.
Milicic I., Folic R., Prokic A., Ceh A. Model for the Analysis of Thermal Conductivity of Composite Material of Natural Origin. Therm. Sci. 2019;23:3513–3523. doi: 10.2298/TSCI181215267M. DOI
Kušnerová M., Harničárová M., Valíček J., Palková Z., Tkáč Z., Panda A., Kmec J., Lukáč O. Measurement of the Thermal Properties of Innovative Highly-Insulating Non-Structural Concretes. Defect Diffus. Forum. 2019;390:41–52. doi: 10.4028/www.scientific.net/DDF.390.41. DOI
Demezhko D.Y. Measurements of the Thermal Effusivity of Solid Materials by the Contact Method. Instrum. Exp. Tech. 2011;54:867–871. doi: 10.1134/S0020441211050113. DOI
Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar 2020. British Standards Institution; London, UK:
Testing of Concrete—Part 10: Determination of Static Modulus of Elasticity in Compression 2010. ISO; Geneva, Switzerland: 2010.
Koutnik P., Soukup A., Bezucha P., Šafář J., Hájková P., Čmelík J. Comparison of Kaolin and Kaolinitic Claystones as Raw Materials for Preparing Meta-Kaolinite-Based Geopolymers. Ceramics-Silikáty. 2019;63:110–123. doi: 10.13168/cs.2019.0003. DOI
Koutník P., Soukup A., Bezucha P., Šafář J., Kohout J. Low Viscosity Metakaolinite Based Geopolymer Binders. Constr. Build. Mater. 2020;230:116978. doi: 10.1016/j.conbuildmat.2019.116978. DOI
Stempkowska A., Mastalska-Popławska J., Izak P., Wójcik Ł., Gawenda T., Karbowy M. Research on the Thermal Properties of Fireplace Concrete Materials Containing Various Mineral Aggregates Enriched by Organic and Inorganic Fibers. Materials. 2021;14:904. doi: 10.3390/ma14040904. PubMed DOI PMC
Khouadjia M.L.K., Bensalem S., Belebchouche C., Boumaza A., Hamlaoui S., Czarnecki S. Sustainable Geopolymer Tuff Composites Utilizing Iron Powder Waste: Rheological and Mechanical Performance Evaluation. Sustainability. 2025;17:1240. doi: 10.3390/su17031240. DOI
Jain A. The Role of Thermal Effusivity in Heat Exchange Between Finite-Sized Bodies. Int. J. Heat Mass Transf. 2023;202:123721. doi: 10.1016/j.ijheatmasstransfer.2022.123721. DOI
An J., Xue X. Life-Cycle Carbon Footprint Analysis of Magnesia Products. Resour. Conserv. Recycl. 2017;119:4–11. doi: 10.1016/j.resconrec.2016.09.023. DOI
Gao X., Yu Q.L., Yu R., Brouwers H.J.H. Evaluation of Hybrid Steel Fiber Reinforcement in High Performance Geopolymer Composites. Mater. Struct. 2017;50:165. doi: 10.1617/s11527-017-1030-x. DOI
Gailitis R., Korniejenko K., Łach M., Sliseris J., Morán J., Rodriguez E., Mikuła J. Mechanical Properties of Geopolymer Concretes Reinforced with Waste Steel Fibers. IOP Conf. Ser. Mater. Sci. Eng. 2019;660:012007. doi: 10.1088/1757-899X/660/1/012007. DOI
Rashad A.M. Effect of Steel Fibers on Geopolymer Properties—The Best Synopsis for Civil Engineer. Constr. Build. Mater. 2020;246:118534. doi: 10.1016/j.conbuildmat.2020.118534. DOI
Zhang P., Wang J., Li Q., Wan J., Ling Y. Mechanical and Fracture Properties of Steel Fiber-Reinforced Geopolymer Concrete. Sci. Eng. Compos. Mater. 2021;28:299–313. doi: 10.1515/secm-2021-0030. DOI
Rovnaník P., Šafránková K. Thermal Behaviour of Metakaolin/Fly Ash Geopolymers with Chamotte Aggregate. Materials. 2016;9:535. doi: 10.3390/ma9070535. PubMed DOI PMC
Schneider U. Concrete at High Temperatures—A General Review. Fire Saf. J. 1988;13:55–68. doi: 10.1016/0379-7112(88)90033-1. DOI
Husem M. The Effects of High Temperature on Compressive and Flexural Strengths of Ordinary and High-Performance Concrete. Fire Saf. J. 2006;41:155–163. doi: 10.1016/j.firesaf.2005.12.002. DOI