• This record comes from PubMed

Single high-dose vitamin D supplementation impacts ultramarathon-induced changes in serum levels of bone turnover markers: a double-blind randomized controlled trial

. 2025 Dec ; 22 (1) : 2561661. [epub] 20250917

Language English Country United States Media print-electronic

Document type Journal Article, Randomized Controlled Trial

BACKGROUND: Recent studies indicate a protective role of vitamin D supplementation against sports performance-induced dysregulation of body homeostasis. However, the effects of a single high dose of vitamin D on changes in bone formation and resorption markers due to ultramarathon running have yet to be explored. This study aimed to analyze the effect of a single high-dose vitamin D supplementation on serum levels of bone turnover markers after a mountain ultramarathon run. METHODS: In this clinical trial (reg. number NCT03417700), 35 semiprofessional male ultramarathon runners were assigned into two groups: supplemented group, administered a single high dose of vitamin D3 (cholecalciferol, 150,000 IU) in vegetable oil 24 h before the start of the run (n = 16), and placebo group (n = 19), administered placebo solution 24 h before the start of the run. Blood samples were collected for analysis at three timepoints: 24 h before, immediately after, and 24 h after the run. RESULTS: Serum 25(OH)D3 level significantly increased (p ≤ 0.05.) after the ultramarathon in both groups. The increase was more pronounced in the supplemented population, especially 24 h after the run (147.01% vs 84.71%). According to post-hoc and other analyses, the levels of N-terminal propeptides of type I collagen, a PINP marker, were increased immediately after the run. The increase was significantly higher in the supplemented group than in the control group. CTX, PTH, sclerostin, and procalcitonin levels were significantly higher 24 h after the run in the control group. CONCLUSIONS: The observed attenuation of post-exercise bone resorption and enhancement of bone formation suggest that vitamin D supplementation may modulate bone metabolism in response to extreme physical exertion, potentially through effects on calcium - PTH homeostasis.

See more in PubMed

Belli T, Macedo DV, de Araujo GG, et al. Mountain ultramarathon induces early increases of muscle damage, inflammation, and risk for acute renal injury. Front Physiol. 2018;9:1368. doi: 10.3389/fphys.2018.01368 PubMed DOI PMC

Martinez-Navarro I, Collado E, Hernando C, et al. Inflammation, muscle damage and postrace physical activity following a mountain ultramarathon. J Sports Med Phys Fit. 2021;61(12):1668–15. doi: 10.23736/S0022-4707.21.11977-2 PubMed DOI

Bizjak DA, Schulz SVW, John L, et al. Running for your life: metabolic effects of a 160.9/230 km non-stop ultramarathon race on body composition, inflammation, heart function, and nutritional parameters. Metabolites. 2022;12(11):1138. doi: 10.3390/metabo12111138 PubMed DOI PMC

Mieszkowski J, Borkowska A, Stankiewicz B, et al. Single high-dose vitamin D supplementation as an approach for reducing ultramarathon-induced inflammation: a double-blind randomized controlled trial. Nutrients. 2021;13(4):1280. doi: 10.3390/nu13041280 PubMed DOI PMC

Gombos GC, Bajsz V, Pek E, et al. Direct effects of physical training on markers of bone metabolism and serum sclerostin concentrations in older adults with low bone mass. BMC Musculoskelet disord. 2016;17:254. doi: 10.1186/s12891-016-1109-5 PubMed DOI PMC

Maimoun L, Sultan C.. Effects of physical activity on bone remodeling. Metabolism. 2011;60(3):373–388. doi: 10.1016/j.metabol.2010.03.001 PubMed DOI

Leeming DJ, Henriksen K, Byrjalsen I, et al. Is bone quality associated with collagen age? Osteoporos Int. 2009;20(9):1461–1470. doi: 10.1007/s00198-009-0904-3 PubMed DOI

Maimoun L, Sultan C. Effect of physical activity on calcium homeostasis and calciotropic hormones: a review. Calcif Tissue Int. 2009;85(4):277–286. doi: 10.1007/s00223-009-9277-z PubMed DOI

Frost HM. Skeletal structural adaptations to mechanical usage (SATMU): 1. Redefining Wolff’s law: the bone modeling problem. Anat Rec. 1990;226(4):403–413. doi: 10.1002/ar.1092260402 PubMed DOI

Banfi G, Lombardi G, Colombini A, et al. Bone metabolism markers in sports medicine. Sports Med. 2010;40(8):697–714. doi: 10.2165/11533090-000000000-00000 PubMed DOI

Seibel MJ. Biochemical markers of bone turnover: part I: biochemistry and variability. Clin Biochem Rev. 2005;26(4):97–122. PubMed PMC

Larsson T, Marsell R, Schipani E, et al. Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. Endocrinology. 2004;145(7):3087–3094. doi: 10.1210/en.2003-1768 PubMed DOI

Marsell R, Krajisnik T, Goransson H, et al. Gene expression analysis of kidneys from transgenic mice expressing fibroblast growth factor-23. Nephrol Dial transplant. 2008;23(3):827–833. doi: 10.1093/ndt/gfm672 PubMed DOI

Lippi G, Schena F, Montagnana M, et al. Acute variation of osteocalcin and parathyroid hormone in athletes after running a half-marathon. Clin Chem. 2008;54(6):1093–1095. doi: 10.1373/clinchem.2007.102657 PubMed DOI

Guillemant J, Accarie C, Peres G, et al. Acute effects of an oral calcium load on markers of bone metabolism during endurance cycling exercise in male athletes. Calcif Tissue Int. 2004;74(5):407–414. doi: 10.1007/s00223-003-0070-0 PubMed DOI

Borer KT. Physical activity in the prevention and amelioration of osteoporosis in women: interaction of mechanical, hormonal and dietary factors. Sports Med. 2005;35(9):779–830. doi: 10.2165/00007256-200535090-00004 PubMed DOI

Gaudio A, Pennisi P, Bratengeier C, et al. Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization-induced bone loss. J Clin Endocrinol Metab. 2010;95(5):2248–2253. doi: 10.1210/jc.2010-0067 PubMed DOI

Goltzman D, Mannstadt M, Marcocci C. Physiology of the calcium-parathyroid hormone-vitamin D axis. Front Horm Res. 2018;50:1–13. doi: 10.1159/000486060 PubMed DOI

Macdonald HM, Reid IR, Gamble GD, et al. 25-hydroxyvitamin D threshold for the effects of vitamin D supplements on bone density: secondary analysis of a randomized controlled trial. J Bone Min Res. 2018;33(8):1464–1469. doi: 10.1002/jbmr.3442 PubMed DOI

Dzik KP, Skrobot W, Kaczor KB, et al. Vitamin D deficiency is associated with muscle atrophy and reduced mitochondrial function in patients with chronic low back pain. Oxid Med Cell Longev 2019. 2019;2019:6835341. doi: 10.1155/2019/6835341 PubMed DOI PMC

Mukhopadhyay P, Ghosh S, Bhattacharjee K, et al. Inverse relationship between 25 hydroxy vitamin D and parathormone: are there two inflection points? Indian J Endocrinol Metab. 2019;23(4):422–427. doi: 10.4103/ijem.IJEM_322_19 PubMed DOI PMC

Mieszkowski J, Stankiewicz B, Kochanowicz A, et al. Ultra-marathon-induced increase in serum levels of vitamin D metabolites: a double-blind randomized controlled trial. Nutrients. 2020;12(12):3629. doi: 10.3390/nu12123629 PubMed DOI PMC

Stankiewicz B, Mieszkowski J, Kochanowicz A, et al. Effect of Single High-Dose Vitamin D3 Supplementation on Post-Ultra Mountain Running Heart Damage and Iron Metabolism Changes: A Double-Blind Randomized Controlled Trial. Nutrients. 2024;16(15):2479. PubMed PMC

Cooper KH. A means of assessing maximal oxygen intake. JAMA. 1968;203(3):201. doi: 10.1001/jama.1968.03140030033008 PubMed DOI

Kasprowicz K, Ratkowski W, Wołyniec W, et al. The effect of vitamin D3 supplementation on hepcidin, iron, and IL-6 responses after a 100 km ultra-marathon. Int J Environ Res Public Health. 2020;17(8):2962. PubMed PMC

Faul F, Erdfelder E, Lang AG, et al. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39(2):175–191. doi: 10.3758/bf03193146 PubMed DOI

Lombardi G, Ziemann E, Banfi G. Physical activity and bone health: what is the role of immune system? A narrative review of the third way. Front Endocrinol (lausanne). 2019;10:60. doi: 10.3389/fendo.2019.00060 PubMed DOI PMC

Gao H, Zhao Y, Zhao L, et al. The role of oxidative stress in multiple exercise-regulated bone homeostasis. Aging Dis. 2023;14(5):1555. doi: 10.14336/AD.2023.0223 PubMed DOI PMC

Mieszkowski J, Kochanowicz A, Piskorska E, et al. Serum levels of bone formation and resorption markers in relation to vitamin D status in professional gymnastics and physically active men during upper and lower body high-intensity exercise. J Int Soc Sports Nutr. 2021;18(1):29. doi: 10.1186/s12970-021-00430-8 PubMed DOI PMC

Herrmann M, Muller M, Scharhag J, et al. The effect of endurance exercise-induced lactacidosis on biochemical markers of bone turnover. Clin Chem Lab Med. 2007;45(10):1381–1389. doi: 10.1515/CCLM.2007.282 PubMed DOI

Schneider HG, Lam QT. Procalcitonin for the clinical laboratory: a review. Pathology. 2007;39(4):383–390. doi: 10.1080/00313020701444564 PubMed DOI

Li LH, Chen CT, Kao WF, et al. Procalcitonin variation before and after 100-km ultramarathon. Clin Chem Lab Med. 2017;55(6):e110–e112. doi: 10.1515/cclm-2016-0764 PubMed DOI

Roupas ND, Mamali I, Maragkos S, et al. The effect of prolonged aerobic exercise on serum adipokine levels during an ultra-marathon endurance race. Horm (athens). 2013;12(2):275–282. doi: 10.14310/horm.2002.1411 PubMed DOI

Bellia A, Garcovich C, D’Adamo M, et al. Serum 25-hydroxyvitamin D levels are inversely associated with systemic inflammation in severe obese subjects. Intern Emerg Med. 2013;8(1):33–40. doi: 10.1007/s11739-011-0559-x PubMed DOI

Sansoni V, Vernillo G, Perego S, et al. Bone turnover response is linked to both acute and established metabolic changes in ultra-marathon runners. Endocrine. 2017;56(1):196–204. doi: 10.1007/s12020-016-1012-8 PubMed DOI

Guillemant J, Le H, Maria A, et al. Acute effects of oral calcium load on parathyroid function and on bone resorption in young men. Am J Nephrol. 2000;20(1):48–52. doi: 10.1159/000013555 PubMed DOI

Scott JP, Sale C, Greeves JP, et al. The effect of training status on the metabolic response of bone to an acute bout of exhaustive treadmill running. J Clin Endocrinol Metab. 2010;95(8):3918–3925. doi: 10.1210/jc.2009-2516 PubMed DOI

van Driel M, Koedam M, Buurman CJ, et al. Evidence for auto/paracrine actions of vitamin D in bone: 1alpha-hydroxylase expression and activity in human bone cells. Faseb J. 2006;20(13):2417–2419. doi: 10.1096/fj.06-6374fje PubMed DOI

Liu S, Tang W, Zhou J, et al. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol. 2006;17(5):1305–1315. doi: 10.1681/ASN.2005111185 PubMed DOI

Kohrt WM, Wherry SJ, Wolfe P, et al. Maintenance of Serum Ionized Calcium During Exercise Attenuates Parathyroid Hormone and Bone Resorption Responses. J Bone Min Res. 2018. Jul;33(7):1326–1334. doi: 10.1002/jbmr.3428. Epub 2018 Apr 18. PMID: 29572961; PMCID: PMC6538281. PubMed DOI PMC

Barry DW, Hansen KC, van Pelt Re, et al. Acute calcium ingestion attenuates exercise-induced disruption of calcium homeostasis. Med Sci Sports ExerC. 2011. Apr;43(4):617–623. doi: 10.1249/MSS.0b013e3181f79fa8. PMID: 20798655; PMCID: PMC3145631. PubMed DOI PMC

Gaffney-Stomberg E, Nakayama AT, Lutz LJ, et al. Load carriage exercise increases calcium absorption and retention in healthy young women. J Bone Min Res. [2024 Mar 4];39(1):39–49. doi: 10.1093/jbmr/zjad003. PMID: 38630876. PubMed DOI

Dolan E, Varley I, Ackerman KE, et al. The Bone Metabolic Response to Exercise and Nutrition. Exerc Sport Sci Rev. 2020. Apr;48(2):49–58. doi: 10.1249/JES.0000000000000215. PMID: 31913188. PubMed DOI

Kerschan-Schindl K, Skenderi K, Wahl-Figlash K, et al. Increased serum levels of fibroblast growth factor 23 after an ultradistance run. J Sci Med Sport. 2021;24(3):297–300. doi: 10.1016/j.jsams.2020.09.010 PubMed DOI

Wetmore JB, Santos PW, Mahnken JD, et al. Elevated FGF23 levels are associated with impaired calcium-mediated suppression of PTH in ESRD. J Clin Endocrinol Metab. 2011;96(1):E57–64. doi: 10.1210/jc.2010-1277 PubMed DOI PMC

Li X, Ominsky MS, Niu QT, et al. Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Min Res. 2008;23(6):860–869. doi: 10.1359/jbmr.080216 PubMed DOI

Winkler DG, Sutherland MK, Geoghegan JC. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. Embo J. 2003;22(23):6267–6276. doi: 10.1093/emboj/cdg599 PubMed DOI PMC

Acibucu F, Dokmetas HS, Acibucu DO, et al. Effect of vitamin D treatment on serum sclerostin level. Exp Clin Endocrinol Diabetes. 2017;125(9):634–637. doi: 10.1055/s-0035-1559790 PubMed DOI

Pleiner-Duxneuner J, Zwettler E, Paschalis E, et al. Treatment of osteoporosis with parathyroid hormone and teriparatide. Calcif Tissue Int. 2009;84(3):159–170. doi: 10.1007/s00223-009-9218-x PubMed DOI

Gennari L, Merlotti D, Valenti R, et al. Circulating sclerostin levels and bone turnover in type 1 and type 2 diabetes. J Clin Endocrinol Metab. 2012;97(5):1737–1744. doi: 10.1210/jc.2011-2958 PubMed DOI

Maimoun L, Mariano-Goulart D, Couret I, et al. Effects of physical activities that induce moderate external loading on bone metabolism in male athletes. J Sports Sci. 2004;22(9):875–883. doi: 10.1080/02640410410001716698 PubMed DOI

Ryan AS, Elahi D. Loss of bone mineral density in women athletes during aging. Calcif Tissue Int. 1998;63(4):287–292. doi: 10.1007/s002239900528 PubMed DOI

Karlsson KM, Karlsson C, Ahlborg HG, et al. The duration of exercise as a regulator of bone turnover. Calcif Tissue Int. 2003;73(4):350–355. doi: 10.1007/s00223-002-0003-3 PubMed DOI

Fredericson M, Chew K, Ngo J, et al. Regional bone mineral density in male athletes: a comparison of soccer players, runners and controls. Br J Sports Med. 2007;41(10):664–668; discussion 668. doi: 10.1136/bjsm.2006.030783 PubMed DOI PMC

Scofield KL, Hecht S. Bone health in endurance athletes: runners, cyclists, and swimmers. Curr Sports Med Rep. 2012;11(6):328–334. doi: 10.1249/JSR.0b013e3182779193 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...