Parasitic plants in Europe: ecological niches and spatial patterns

. 2025 Dec ; 27 (7) : 1285-1299. [epub] 20250918

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40964711

Grantová podpora
CZ.02.2.69/0.0/0.0/19_073/0016943 Masarykova Univerzita
24-12161S Grantová Agentura České Republiky
DNRF173 Danmarks Grundforskningsfond
IT1487-22 Eusko Jaurlaritza

Parasitic plants inhabit a wide range of ecosystems worldwide, where they may have critical roles as "ecosystem engineers". We examined the ecology of parasitic plants in Europe. We aimed to identify habitat preferences, spatial distribution, and environmental drivers of parasitic plant functional types: euphytoid hemiparasites, obligate root parasites, and parasitic vines, and assess individual species' ecological niches. We analysed 244 parasitic plant species in a dataset of 819,452 vegetation plots across European natural vegetation. We used a boosted regression tree model to assess the effects of macro-climate, topography, and habitat descriptors (open, wet, saline) on the distribution of parasitic plant functional types. We analysed their distribution along the gradients of ecological indicator values. Finally, we determined the niches of individual species along all the environmental gradients. Parasitic plants occur across Europe and in nearly all habitats. Euphytoid hemiparasites (173 species) are most abundant in colder environments with moderate to high precipitation and low precipitation seasonality. In contrast, obligate root parasites (52 species) and parasitic vines (12 species) are primarily associated with warm-temperate to Mediterranean dry climates. All three functional types prefer nutrient-poor to moderately rich conditions. Some species diverge from the trend of their functional type. The spatial distribution and niches of parasitic plant functional types correspond to their fundamental physiological properties, including mode of resource acquisition and level of photosynthesis. Euphytoid hemiparasites are likely to be negatively affected by climate warming, while obligate root parasites and parasitic vines might benefit from future warmer and drier climates.

Zobrazit více v PubMed

Amatulli G., Domisch S., Tuanmu M.‐N., Parmentier B., Ranipeta A., Malczyk J., Jetz W. (2018) A suite of global, cross‐scale topographic variables for environmental and biodiversity modeling. Scientific Data, 5, 180040. 10.1038/sdata.2018.40 PubMed DOI PMC

Blažek P., Lepš J. (2015) Victims of agricultural intensification: Mowing date affects DOI

Brun P., Zimmermann N.E., Hari C., Pellissier L., Karger D.N. (2022a) Data from: CHELSA‐BIOCLIM+ A novel set of global climate‐related predictors at kilometre‐resolution. EnviDat. 10.16904/ENVIDAT.332 DOI

Brun P., Zimmermann N.E., Hari C., Pellissier L., Karger D.N. (2022b) Global climate‐related predictors at kilometer resolution for the past and future. Earth System Science Data, 14, 5573–5603. 10.5194/essd-14-5573-2022 DOI

Buckley L.B., Hurlbert A.H., Jetz W. (2012) Broad‐scale ecological implications of ectothermy and endothermy in changing environments. Global Ecology and Biogeography, 21, 873–885. 10.1111/j.1466-8238.2011.00737.x DOI

Chytrý M., Hennekens S.M., Jiménez‐Alfaro B., Knollová I., Dengler J., Jansen F., Landucci F., Schaminée J.H.J., Aćić S., Agrillo E., DOI

Chytrý M., Řezníčková M., Novotný P., Holubová D., Preislerová Z., Attorre F., Biurrun I., Blažek P., Bonari G., Borovyk D., DOI

Chytrý M., Tichý L., Hennekens S.M., Knollová I., Janssen J.A.M., Rodwell J.S., Peterka T., Marcenò C., Landucci F., Danihelka J.,

Clayson C., García‐Ruiz I., Costea M. (2014) Diversity, evolution, and function of stomata bearing structures in DOI

Davies D.M., Graves J.D., Elias C.O., Williams P.J. (1997) The impact of DOI

de Vega C., Thorogood C.J., Albaladejo R.G., Rakotonasolo F., Hobbhahn N., Martos F., Burgoyne P.M., Johnson S.D. (2023) Evolutionary and ecological insights from DOI

De'ath G. (2007) Boosted trees for ecological modeling and prediction. Ecology, 88, 243–251. 10.1890/0012-9658(2007)88[243:btfema]2.0.co;2 PubMed DOI

Dengler J., Jansen F., Chusova O., Hüllbusch E., Nobis M.P., Van Meerbeek K., Axmanová I., Bruun H.H., Chytrý M., Guarino R., DOI

Der J.P., Nickrent D.L. (2008) A molecular phylogeny of Santalaceae (Santalales). Systematic Botany, 33, 107–116. 10.1600/036364408783887438 DOI

Dou Y., Cosentino F., Malek Z., Maiorano L., Thuiller W., Verburg P.H. (2021) A new European land systems representation accounting for landscape characteristics. Landscape Ecology, 36, 2215–2234. 10.1007/s10980-021-01227-5 DOI

Ehleringer J.R., Marshall D. (1995) Water relations. In: Press M.C. (Ed), Parasitic plants. Chapman & Hall, London, UK, pp 125–140.

Elith J., Leathwick J.R., Hastie T. (2008) A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802–813. 10.1111/j.1365-2656.2008.01390.x PubMed DOI

Ellenberg H. (1974) Zeigerwerte der gefäßpflanzen mitteleuropas. Scripta Geobotanica, 9, 1–97.

Euro+Med (2023) Euro+Med PlantBase ‐ the information resource for Euro‐Mediterranean plant diversity. http://www.europlusmed.org [Accessed 9 April 2023]

Fibich P., Lepš J., Chytrý M., Těšitel J. (2017) Root hemiparasitic plants are associated with high diversity in temperate grasslands. Journal of Vegetation Science, 28, 184–191. 10.1111/jvs.12472 DOI

Fischer H.S. (2015) On the combination of species cover values from different vegetation layers. Applied Vegetation Science, 18, 169–170. 10.1111/avsc.12130 DOI

García M.A., Costea M., Kuzmina M., Stefanović S. (2014) Phylogeny, character evolution, and biogeography of PubMed

Giannini T.C., Takahasi A., Medeiros M.C.M.P., Saraiva A.M., Alves‐dos‐Santos I. (2011) Ecological niche modeling and principal component analysis of DOI

Giesemann P., Gebauer G. (2022) Distinguishing carbon gains from photosynthesis and heterotrophy in C3‐hemiparasite‐C3‐host pairs. Annals of Botany, 129, 647–656. 10.1093/aob/mcab153 PubMed DOI PMC

Giraudoux P. (2024) Pgirmess: Spatial analysis and data mining for field ecologists. CRAN: contributed packages. R package version 2.0.3. 10.32614/CRAN.package.pgirmess DOI

Grenz J.H., Sauerborn J. (2007) Mechanisms limiting the geographical range of the parasitic weed DOI

Gussarova G., Popp M., Vitek E., Brochmann C. (2008) Molecular phylogeny and biogeography of the bipolar PubMed DOI

Heer N., Klimmek F., Zwahlen C., Fischer M., Hölzel N., Klaus V.H., Kleinebecker T., Prati D., Boch S. (2018) Hemiparasite‐density effects on grassland plant diversity, composition and biomass. Perspectives in Plant Ecology, Evolution and Systematics, 32, 22–29. 10.1016/j.ppees.2018.01.004 DOI

Heide‐Jørgensen H.S. (2008) Parasitic flowering plants. Brill, Leiden, the Netherlands. 10.1163/ej.9789004167506.i-438 DOI

Heide‐Jørgensen H.S. (2013) Introduction: The parasitic syndrome in higher plants. In: Joel D., Gressel J., Musselman L. (Eds), Parasitic orobanchaceae. Springer, Berlin, Germany, pp 1–18. 10.1007/978-3-642-38146-1_1 DOI

Hijmans R.J., Phillips S., Leathwick J., Elith J. (2023) dismo: Species distribution modeling. CRAN: contributed packages. R package version 1.3‐14. 10.32614/CRAN.package.dismo DOI

Irving L.J., Cameron D.D. (2009) You are what you eat: Interactions between root parasitic plants and their hosts (Chapter 3). In: Kader J.‐C., Delseny M. (Eds), Advances in botanical research, Vol. 50. Academic Press, Burlington, MA, pp 87–138. 10.1016/S0065-2296(08)00803-3 DOI

Jandt U., Bruelheide H., Jansen F., Bonn A., Grescho V., Klenke R.A., Sabatini F.M., Bernhardt‐Römermann M., Blüml V., Dengler J., Diekmann M., Doerfler I., Döring U., Dullinger S., Haider S., Heinken T., Horchler P., Kuhn G., Lindner M., Metze K., Müller N., Naaf T., Peppler‐Lisbach C., Poschlod P., Roscher C., Rosenthal G., Rumpf S.B., Schmidt W., Schrautzer J., Schwabe A., Schwartze P., Sperle T., Stanik N., Storm C., Voigt W., Wegener U., Wesche K., Wittig B., Wulf M. (2022) More losses than gains during one century of plant biodiversity change in Germany. Nature, 611, 512–518. 10.1038/s41586-022-05320-w PubMed DOI

Jennings M.D., Faber‐Langendoen D., Loucks O.L., Peet R.K., Roberts D. (2009) Standards for associations and alliances of the US National Vegetation Classification. Ecological Monographs, 79, 173–199. 10.1890/07-1804.1 DOI

Jiang R., Zhang G. (2021) Distribution patterns and influencing factors of different parasitic angiosperm types in China. Global Ecology and Conservation, 27, e01533. 10.1016/j.gecco.2021.e01533 DOI

Jin Y., Qian H. (2022) V.PhyloMaker2: An updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Diversity, 44, 335–339. 10.1016/j.pld.2022.05.005 PubMed DOI PMC

Joshi A.R., Joshi D.P., Joshi K. (2000) Status of some endemic plants in Nepal. Tiger Papers, 27, 15–20.

Karger D.N., Conrad O., Boehner J., Kawohl T., Kreft H., Soria‐Auza R.W., Zimmermann N.E., Linder H.P., Kessler M. (2017) Climatologies at high resolution for the earth's land surface areas. Scientific Data, 4, 170122. 10.1038/sdata.2017.122 PubMed DOI PMC

Karger D.N., Conrad O., Böhner J., Kawohl T., Kreft H., Soria‐Auza R.W., Zimmermann N.E., Linder H.P., Kessler M. (2018) Data from: Climatologies at high resolution for the earth's land surface areas. Dryad Digital Repository. PubMed PMC

Karlsson T. (1974) Recurrent ecotypic variation in Rhinantheae and Gentianaceae in relation to hemiparasitism and mycotrophy. Botaniska Notiser, 127, 527–539.

Klinkovská K., Glaser M., Danihelka J., Kaplan Z., Knollová I., Novotný P., Pyšek P., Řezníčková M., Wild J., Chytrý M. (2024) Dynamics of the Czech flora over the last 60 years: Winners, losers and causes of changes. Biological Conservation, 292, 110502. 10.1016/j.biocon.2024.110502 DOI

Körner C. (2015) Paradigm shift in plant growth control. Current Opinion in Plant Biology, 25, 107–114. 10.1016/j.pbi.2015.05.003 PubMed DOI

Kuijt J. (1969) The biology of parasitic flowering plants. University of California Press, Berkeley.

Lambers H., Chapin F.S., Pons T.L. (2008) Plant physiological ecology. Springer, New York. 10.1007/978-0-387-78341-3 DOI

Li H.‐L. (1948) A revision of the genus

Liu B., Le C.T., Barrett R.L., Nickrent D.L., Chen Z., Lu L., Vidal‐Russell R. (2018) Historical biogeography of Loranthaceae (Santalales): Diversification agrees with emergence of tropical forests and radiation of songbirds. Molecular Phylogenetics and Evolution, 124, 199–212. 10.1016/j.ympev.2018.03.010 PubMed DOI

Luo F.L., Guo Q.S. (2010) Influences of host species on transpiration, photosynthesis, chlorophyll and mineral contents of medicinal hemiparasite DOI

Martinčová M., Kaštier P., Krasylenko Y.A., Gajdoš P., Čertík M., Matušíková I., Blehová A. (2019) Species‐specific differences in architecture and chemical composition of dodder seeds. Flora, 256, 61–68. 10.1016/j.flora.2019.04.010 DOI

Matthies D. (1995) Parasitic and competitive interactions between the hemiparasites DOI

Maul K., Krug M., Nickrent D.L., Müller K.F., Quandt D., Wicke S. (2019) Morphology, geographic distribution, and host preferences are poor predictors of phylogenetic relatedness in the mistletoe genus PubMed DOI

Midolo G., Axmanová I., Divíšek J., Dřevojan P., Lososová Z., Večeřa M., Karger D.N., Thuiller W., Bruelheide H., Aćić S., DOI

Mudrák O., Lepš J. (2010) Interactions of the hemiparasitic species DOI

Mudrák O., Mládek J., Blažek P., Lepš J., Doležal J., Nekvapilová E., Těšitel J. (2014) Establishment of hemiparasitic DOI

Nagelmüller S., Hiltbrunner E., Körner C. (2017) Low temperature limits for root growth in alpine species are set by cell differentiation. AoB Plants, 9, plx054. 10.1093/aobpla/plx054 PubMed DOI PMC

Nickrent D.L. (2020) Parasitic angiosperms: How often and how many? Taxon, 69, 5–27. 10.1002/tax.12195 DOI

O'Neill A.R., Rana S.K. (2016) An ethnobotanical analysis of parasitic plants ( PubMed DOI PMC

Pennings S.C., Callaway R.M. (1996) Impact of a parasitic plant on the structure and dynamics of salt marsh vegetation. Ecology, 77, 1410–1419. 10.2307/2265538 DOI

QGIS Association (2024) QGIS geographic information system. http://www.qgis.org

Quested H.M. (2008) Parasitic plants ‐ impacts on nutrient cycling. Plant and Soil, 311, 269–272. 10.1007/s11104-008-9646-9 DOI

R Core Team (2023) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Rega C., Short C., Pérez‐Soba M., Paracchini M.L. (2020) A classification of European agricultural land using an energy‐based intensity indicator and detailed crop description. Landscape and Urban Planning, 198, 103793. 10.1016/j.landurbplan.2020.103793 DOI

Sillero N., Campos J., Bonardi A., Corti C., Creemers R., Crochet P.‐A., Crnobrnja Isailović J., Denoël M., Ficetola G.F., Gonçalves J., DOI

Smith S.A., Brown J.W. (2018) Constructing a broadly inclusive seed plant phylogeny. American Journal of Botany, 105, 302–314. 10.1002/ajb2.1019 PubMed DOI

Society for Ecological Restoration, International Network for Seed Based Restoration, Royal Botanic Gardens Kew (2023) Seed information database (SID). https://ser‐sid.org/ [Accessed 17 June 2025]

Svensson B., Carlsson B. (2005) How can we protect rare hemiparasitic plants? Early‐flowering taxa of Euphrasia and Rhinanthus on the Baltic Island of Gotland. Folia Geobotanica, 40, 261–272.

Světlíková P., Hájek T., Těšitel J. (2015) Hydathode trichomes actively secreting water from leaves play a key role in the physiology and evolution of root‐parasitic rhinanthoid Orobanchaceae. Annals of Botany, 116, 61–68. 10.1093/aob/mcv065 PubMed DOI PMC

Světlíková P., Hájek T., Těšitel J. (2018) A hemiparasite in the forest understorey: Photosynthetic performance and carbon balance of PubMed DOI

Taylor K., Rumsey F.J. (2003) DOI

Teixeira‐Costa L. (2021) A living bridge between two enemies: Haustorium structure and evolution across parasitic flowering plants. Brazilian Journal of Botany, 44, 165–178. 10.1007/s40415-021-00704-0 DOI

Teixeira‐Costa L., Davis C.C. (2021) Life history, diversity, and distribution in parasitic flowering plants. Plant Physiology, 187, 32–51. 10.1093/plphys/kiab279 PubMed DOI PMC

Tennakoon K. (1997) Ecophysiological aspects of the woody root hemiparasite DOI

Ter Borg S.J. (1985) Population biology and habitat relations of some hemiparasitic Scrophulariaceae. In: White J. (Ed), The population structure of vegetation. Springer, Dordrecht, Netherlands, pp 463–487.

Ter Borg S.J. (2005) Dormancy and germination of six DOI

Těšitel J. (2016) Functional biology of parasitic plants: A review. Plant Ecology and Evolution, 149, 5–20. 10.5091/plecevo.2016.1097 DOI

Těšitel J., Fibich P., de Bello F., Chytrý M., Lepš J. (2015) Habitats and ecological niches of root‐hemiparasitic plants: An assessment based on a large database of vegetation plots. Preslia, 87, 87–108.

Těšitel J., Hejcman M., Lepš J., Cameron D.D. (2013) How does elevated grassland productivity influence populations of root hemiparasites? Commentary on Borowicz and Armstrong (Oecologia 2012). Oecologia, 172, 933–936. 10.1007/s00442-012-2566-7 PubMed DOI

Těšitel J., Lepš J., Vráblová M., Cameron D.D. (2011) The role of heterotrophic carbon acquisition by the hemiparasitic plant PubMed DOI

Těšitel J., Li A.‐R., Knotková K., McLellan R., Bandaranayake P.C.G., Watson D.M. (2021) The bright side of parasitic plants: What are they good for? Plant Physiology, 185, 1309–1324. 10.1093/plphys/kiaa069 PubMed DOI PMC

Těšitel J., Plavcová L., Cameron D.D. (2010) Interactions between hemiparasitic plants and their hosts: The importance of organic carbon transfer. Plant Signaling & Behavior, 5, 1072–1076. 10.4161/psb.5.9.12563 PubMed DOI PMC

Těšitel J., Říha P., Svobodová Š., Malinová T., Štech M. (2010) Phylogeny, life history evolution and biogeography of the Rhinanthoid Orobanchaceae. Folia Geobotanica, 45, 347–367. 10.1007/s12224-010-9089-y DOI

Těšitel J., Těšitelová T., Fahs N., Blažek P., Knotková K., Axmanová I. (2024) Parasitism and mycoheterotrophy. www.FloraVeg.eu

Těšitel J., Těšitelová T., Fisher J.P., Lepš J., Cameron D.D. (2015) Integrating ecology and physiology of root‐hemiparasitic interaction: Interactive effects of abiotic resources shape the interplay between parasitism and autotrophy. New Phytologist, 205, 350–360. 10.1111/nph.13006 PubMed DOI

Tĕšitel J., Těšitelová T., Minasiewicz J., Selosse M.A. (2018) Mixotrophy in land plants: Why to stay green? Trends in Plant Science, 23, 656–659. 10.1016/j.tplants.2018.05.010 PubMed DOI

Tichý L., Axmanová I., Dengler J., Guarino R., Jansen F., Midolo G., Nobis M.P., Van Meerbeek K., Aćić S., Attorre F., DOI

Van Der Kooij T.A.W., Krause K., Dörr I., Krupinska K. (2000) Molecular, functional and ultrastructural characterisation of plastids from six species of the parasitic flowering plant genus PubMed DOI

Van Hulst R., Shipley B., Theriault A. (1987) Why is DOI

Vapaavuori E.M., Rikala R., Ryyppo A. (1992) Effects of root temperature on growth and photosynthesis in conifer seedlings during shoot elongation. Tree Physiology, 10, 217–230. 10.1093/treephys/10.3.217 PubMed DOI

Večeřa M., Axmanová I., Padullés Cubino J., Lososová Z., Divíšek J., Knollová I., Aćić S., Biurrun I., Boch S., Bonari G., DOI

Večeřa M., Divíšek J., Lenoir J., Jiménez‐Alfaro B., Biurrun I., Knollová I., Agrillo E., Campos J.A., Čarni A., Crespo Jiménez G., Ćuk M., Dimopoulos P., Ewald J., Fernández‐González F., Gégout J., Indreica A., Jandt U., Jansen F., Kącki Z., Rašomavičius V., Řezníčková M., Rodwell J.S., Schaminée J.H.J., Šilc U., Svenning J.‐.C., Swacha G., Vassilev K., Venanzoni R., Willner W., Wohlgemuth T., Chytrý M. (2019) Alpha diversity of vascular plants in European forests. Journal of Biogeography, 46, 1919–1935. 10.1111/jbi.13624 DOI

Verdcourt B. (1948) DOI

Viana D.S., Keil P., Jeliazkov A. (2022) Disentangling spatial and environmental effects: Flexible methods for community ecology and macroecology. Ecosphere, 13, e4028. 10.1002/ecs2.4028 DOI

Vidal‐Russell R., Nickrent D.L. (2008) Evolutionary relationships in the showy mistletoe family (Loranthaceae). American Journal of Botany, 95, 1015–1029. 10.3732/ajb.0800085 PubMed DOI

Weber H.C. (1981) Untersuchungen an parasitischen Scrophulariaceen (Rhinanthoideen) in Kultur. Flora, 171, 23–38.

Westwood J.H. (2013) The physiology of the established parasite–host association, Parasitic Orobanchaceae. Springer, Berlin, Germany, pp 87–114. 10.1007/978-3-642-38146-1_6 DOI

Wolfe A.D., Randle C.P., Liu L., Steiner K.E. (2005) Phylogeny and biogeography of Orobanchaceae. Folia Geobotanica, 40, 115–134. 10.1007/BF02803229 DOI

Yu H., Cooper A.R., Infante D.M. (2020) Improving species distribution model predictive accuracy using species abundance: Application with boosted regression trees. Ecological Modelling, 432, 109202. 10.1016/j.ecolmodel.2020.109202 DOI

Zanne A.E., Tank D.C., Cornwell W.K., Eastman J.M., Smith S.A., FitzJohn R.G., McGlinn D.J., O'Meara B.C., Moles A.T., Reich P.B., PubMed DOI

Zelený D., Schaffers A.P. (2012) Too good to be true: Pitfalls of using mean Ellenberg indicator values in vegetation analyses. Journal of Vegetation Science, 23, 419–431. 10.1111/j.1654-1103.2011.01366.x DOI

Zhang G., Li Q., Sun S. (2018) Diversity and distribution of parasitic angiosperms in China. Ecology and Evolution, 8, 4378–4386. 10.1002/ece3.3992 PubMed DOI PMC

Ziegler H. (1955) PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...