Parasitic plants in Europe: ecological niches and spatial patterns
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.2.69/0.0/0.0/19_073/0016943
Masarykova Univerzita
24-12161S
Grantová Agentura České Republiky
DNRF173
Danmarks Grundforskningsfond
IT1487-22
Eusko Jaurlaritza
PubMed
40964711
PubMed Central
PMC12631522
DOI
10.1111/plb.70099
Knihovny.cz E-zdroje
- Klíčová slova
- CHELSA Bioclim, EUNIS classification, ecological niche, hemiparasite, parasitic plant, parasitic vine, root parasite,
- MeSH
- ekosystém * MeSH
- fyziologie rostlin * MeSH
- kořeny rostlin parazitologie MeSH
- podnebí MeSH
- rostliny * parazitologie MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
Parasitic plants inhabit a wide range of ecosystems worldwide, where they may have critical roles as "ecosystem engineers". We examined the ecology of parasitic plants in Europe. We aimed to identify habitat preferences, spatial distribution, and environmental drivers of parasitic plant functional types: euphytoid hemiparasites, obligate root parasites, and parasitic vines, and assess individual species' ecological niches. We analysed 244 parasitic plant species in a dataset of 819,452 vegetation plots across European natural vegetation. We used a boosted regression tree model to assess the effects of macro-climate, topography, and habitat descriptors (open, wet, saline) on the distribution of parasitic plant functional types. We analysed their distribution along the gradients of ecological indicator values. Finally, we determined the niches of individual species along all the environmental gradients. Parasitic plants occur across Europe and in nearly all habitats. Euphytoid hemiparasites (173 species) are most abundant in colder environments with moderate to high precipitation and low precipitation seasonality. In contrast, obligate root parasites (52 species) and parasitic vines (12 species) are primarily associated with warm-temperate to Mediterranean dry climates. All three functional types prefer nutrient-poor to moderately rich conditions. Some species diverge from the trend of their functional type. The spatial distribution and niches of parasitic plant functional types correspond to their fundamental physiological properties, including mode of resource acquisition and level of photosynthesis. Euphytoid hemiparasites are likely to be negatively affected by climate warming, while obligate root parasites and parasitic vines might benefit from future warmer and drier climates.
Center for Ecological Dynamics in a Novel Biosphere Aarhus University Aarhus Denmark
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czechia
Department of Plant Biology and Ecology University of the Basque Country UPV EHU Leioa Spain
General Botany Institute for Biochemistry and Biology University of Potsdam Potsdam Germany
Higher Institute for Environmental Engineering and Management Fontainebleau France
School for Viticulture and Enology University of Nova Gorica Nova Gorica Slovenia
Swiss Federal Institute for Forest Snow and Landscape Research WSL Birmensdorf Switzerland
Zobrazit více v PubMed
Amatulli G., Domisch S., Tuanmu M.‐N., Parmentier B., Ranipeta A., Malczyk J., Jetz W. (2018) A suite of global, cross‐scale topographic variables for environmental and biodiversity modeling. Scientific Data, 5, 180040. 10.1038/sdata.2018.40 PubMed DOI PMC
Blažek P., Lepš J. (2015) Victims of agricultural intensification: Mowing date affects DOI
Brun P., Zimmermann N.E., Hari C., Pellissier L., Karger D.N. (2022a) Data from: CHELSA‐BIOCLIM+ A novel set of global climate‐related predictors at kilometre‐resolution. EnviDat. 10.16904/ENVIDAT.332 DOI
Brun P., Zimmermann N.E., Hari C., Pellissier L., Karger D.N. (2022b) Global climate‐related predictors at kilometer resolution for the past and future. Earth System Science Data, 14, 5573–5603. 10.5194/essd-14-5573-2022 DOI
Buckley L.B., Hurlbert A.H., Jetz W. (2012) Broad‐scale ecological implications of ectothermy and endothermy in changing environments. Global Ecology and Biogeography, 21, 873–885. 10.1111/j.1466-8238.2011.00737.x DOI
Chytrý M., Hennekens S.M., Jiménez‐Alfaro B., Knollová I., Dengler J., Jansen F., Landucci F., Schaminée J.H.J., Aćić S., Agrillo E., DOI
Chytrý M., Řezníčková M., Novotný P., Holubová D., Preislerová Z., Attorre F., Biurrun I., Blažek P., Bonari G., Borovyk D., DOI
Chytrý M., Tichý L., Hennekens S.M., Knollová I., Janssen J.A.M., Rodwell J.S., Peterka T., Marcenò C., Landucci F., Danihelka J.,
Clayson C., García‐Ruiz I., Costea M. (2014) Diversity, evolution, and function of stomata bearing structures in DOI
Davies D.M., Graves J.D., Elias C.O., Williams P.J. (1997) The impact of DOI
de Vega C., Thorogood C.J., Albaladejo R.G., Rakotonasolo F., Hobbhahn N., Martos F., Burgoyne P.M., Johnson S.D. (2023) Evolutionary and ecological insights from DOI
De'ath G. (2007) Boosted trees for ecological modeling and prediction. Ecology, 88, 243–251. 10.1890/0012-9658(2007)88[243:btfema]2.0.co;2 PubMed DOI
Dengler J., Jansen F., Chusova O., Hüllbusch E., Nobis M.P., Van Meerbeek K., Axmanová I., Bruun H.H., Chytrý M., Guarino R., DOI
Der J.P., Nickrent D.L. (2008) A molecular phylogeny of Santalaceae (Santalales). Systematic Botany, 33, 107–116. 10.1600/036364408783887438 DOI
Dou Y., Cosentino F., Malek Z., Maiorano L., Thuiller W., Verburg P.H. (2021) A new European land systems representation accounting for landscape characteristics. Landscape Ecology, 36, 2215–2234. 10.1007/s10980-021-01227-5 DOI
Ehleringer J.R., Marshall D. (1995) Water relations. In: Press M.C. (Ed), Parasitic plants. Chapman & Hall, London, UK, pp 125–140.
Elith J., Leathwick J.R., Hastie T. (2008) A working guide to boosted regression trees. Journal of Animal Ecology, 77, 802–813. 10.1111/j.1365-2656.2008.01390.x PubMed DOI
Ellenberg H. (1974) Zeigerwerte der gefäßpflanzen mitteleuropas. Scripta Geobotanica, 9, 1–97.
Euro+Med (2023) Euro+Med PlantBase ‐ the information resource for Euro‐Mediterranean plant diversity. http://www.europlusmed.org [Accessed 9 April 2023]
Fibich P., Lepš J., Chytrý M., Těšitel J. (2017) Root hemiparasitic plants are associated with high diversity in temperate grasslands. Journal of Vegetation Science, 28, 184–191. 10.1111/jvs.12472 DOI
Fischer H.S. (2015) On the combination of species cover values from different vegetation layers. Applied Vegetation Science, 18, 169–170. 10.1111/avsc.12130 DOI
García M.A., Costea M., Kuzmina M., Stefanović S. (2014) Phylogeny, character evolution, and biogeography of PubMed
Giannini T.C., Takahasi A., Medeiros M.C.M.P., Saraiva A.M., Alves‐dos‐Santos I. (2011) Ecological niche modeling and principal component analysis of DOI
Giesemann P., Gebauer G. (2022) Distinguishing carbon gains from photosynthesis and heterotrophy in C3‐hemiparasite‐C3‐host pairs. Annals of Botany, 129, 647–656. 10.1093/aob/mcab153 PubMed DOI PMC
Giraudoux P. (2024) Pgirmess: Spatial analysis and data mining for field ecologists. CRAN: contributed packages. R package version 2.0.3. 10.32614/CRAN.package.pgirmess DOI
Grenz J.H., Sauerborn J. (2007) Mechanisms limiting the geographical range of the parasitic weed DOI
Gussarova G., Popp M., Vitek E., Brochmann C. (2008) Molecular phylogeny and biogeography of the bipolar PubMed DOI
Heer N., Klimmek F., Zwahlen C., Fischer M., Hölzel N., Klaus V.H., Kleinebecker T., Prati D., Boch S. (2018) Hemiparasite‐density effects on grassland plant diversity, composition and biomass. Perspectives in Plant Ecology, Evolution and Systematics, 32, 22–29. 10.1016/j.ppees.2018.01.004 DOI
Heide‐Jørgensen H.S. (2008) Parasitic flowering plants. Brill, Leiden, the Netherlands. 10.1163/ej.9789004167506.i-438 DOI
Heide‐Jørgensen H.S. (2013) Introduction: The parasitic syndrome in higher plants. In: Joel D., Gressel J., Musselman L. (Eds), Parasitic orobanchaceae. Springer, Berlin, Germany, pp 1–18. 10.1007/978-3-642-38146-1_1 DOI
Hijmans R.J., Phillips S., Leathwick J., Elith J. (2023) dismo: Species distribution modeling. CRAN: contributed packages. R package version 1.3‐14. 10.32614/CRAN.package.dismo DOI
Irving L.J., Cameron D.D. (2009) You are what you eat: Interactions between root parasitic plants and their hosts (Chapter 3). In: Kader J.‐C., Delseny M. (Eds), Advances in botanical research, Vol. 50. Academic Press, Burlington, MA, pp 87–138. 10.1016/S0065-2296(08)00803-3 DOI
Jandt U., Bruelheide H., Jansen F., Bonn A., Grescho V., Klenke R.A., Sabatini F.M., Bernhardt‐Römermann M., Blüml V., Dengler J., Diekmann M., Doerfler I., Döring U., Dullinger S., Haider S., Heinken T., Horchler P., Kuhn G., Lindner M., Metze K., Müller N., Naaf T., Peppler‐Lisbach C., Poschlod P., Roscher C., Rosenthal G., Rumpf S.B., Schmidt W., Schrautzer J., Schwabe A., Schwartze P., Sperle T., Stanik N., Storm C., Voigt W., Wegener U., Wesche K., Wittig B., Wulf M. (2022) More losses than gains during one century of plant biodiversity change in Germany. Nature, 611, 512–518. 10.1038/s41586-022-05320-w PubMed DOI
Jennings M.D., Faber‐Langendoen D., Loucks O.L., Peet R.K., Roberts D. (2009) Standards for associations and alliances of the US National Vegetation Classification. Ecological Monographs, 79, 173–199. 10.1890/07-1804.1 DOI
Jiang R., Zhang G. (2021) Distribution patterns and influencing factors of different parasitic angiosperm types in China. Global Ecology and Conservation, 27, e01533. 10.1016/j.gecco.2021.e01533 DOI
Jin Y., Qian H. (2022) V.PhyloMaker2: An updated and enlarged R package that can generate very large phylogenies for vascular plants. Plant Diversity, 44, 335–339. 10.1016/j.pld.2022.05.005 PubMed DOI PMC
Joshi A.R., Joshi D.P., Joshi K. (2000) Status of some endemic plants in Nepal. Tiger Papers, 27, 15–20.
Karger D.N., Conrad O., Boehner J., Kawohl T., Kreft H., Soria‐Auza R.W., Zimmermann N.E., Linder H.P., Kessler M. (2017) Climatologies at high resolution for the earth's land surface areas. Scientific Data, 4, 170122. 10.1038/sdata.2017.122 PubMed DOI PMC
Karger D.N., Conrad O., Böhner J., Kawohl T., Kreft H., Soria‐Auza R.W., Zimmermann N.E., Linder H.P., Kessler M. (2018) Data from: Climatologies at high resolution for the earth's land surface areas. Dryad Digital Repository. PubMed PMC
Karlsson T. (1974) Recurrent ecotypic variation in Rhinantheae and Gentianaceae in relation to hemiparasitism and mycotrophy. Botaniska Notiser, 127, 527–539.
Klinkovská K., Glaser M., Danihelka J., Kaplan Z., Knollová I., Novotný P., Pyšek P., Řezníčková M., Wild J., Chytrý M. (2024) Dynamics of the Czech flora over the last 60 years: Winners, losers and causes of changes. Biological Conservation, 292, 110502. 10.1016/j.biocon.2024.110502 DOI
Körner C. (2015) Paradigm shift in plant growth control. Current Opinion in Plant Biology, 25, 107–114. 10.1016/j.pbi.2015.05.003 PubMed DOI
Kuijt J. (1969) The biology of parasitic flowering plants. University of California Press, Berkeley.
Lambers H., Chapin F.S., Pons T.L. (2008) Plant physiological ecology. Springer, New York. 10.1007/978-0-387-78341-3 DOI
Li H.‐L. (1948) A revision of the genus
Liu B., Le C.T., Barrett R.L., Nickrent D.L., Chen Z., Lu L., Vidal‐Russell R. (2018) Historical biogeography of Loranthaceae (Santalales): Diversification agrees with emergence of tropical forests and radiation of songbirds. Molecular Phylogenetics and Evolution, 124, 199–212. 10.1016/j.ympev.2018.03.010 PubMed DOI
Luo F.L., Guo Q.S. (2010) Influences of host species on transpiration, photosynthesis, chlorophyll and mineral contents of medicinal hemiparasite DOI
Martinčová M., Kaštier P., Krasylenko Y.A., Gajdoš P., Čertík M., Matušíková I., Blehová A. (2019) Species‐specific differences in architecture and chemical composition of dodder seeds. Flora, 256, 61–68. 10.1016/j.flora.2019.04.010 DOI
Matthies D. (1995) Parasitic and competitive interactions between the hemiparasites DOI
Maul K., Krug M., Nickrent D.L., Müller K.F., Quandt D., Wicke S. (2019) Morphology, geographic distribution, and host preferences are poor predictors of phylogenetic relatedness in the mistletoe genus PubMed DOI
Midolo G., Axmanová I., Divíšek J., Dřevojan P., Lososová Z., Večeřa M., Karger D.N., Thuiller W., Bruelheide H., Aćić S., DOI
Mudrák O., Lepš J. (2010) Interactions of the hemiparasitic species DOI
Mudrák O., Mládek J., Blažek P., Lepš J., Doležal J., Nekvapilová E., Těšitel J. (2014) Establishment of hemiparasitic DOI
Nagelmüller S., Hiltbrunner E., Körner C. (2017) Low temperature limits for root growth in alpine species are set by cell differentiation. AoB Plants, 9, plx054. 10.1093/aobpla/plx054 PubMed DOI PMC
Nickrent D.L. (2020) Parasitic angiosperms: How often and how many? Taxon, 69, 5–27. 10.1002/tax.12195 DOI
O'Neill A.R., Rana S.K. (2016) An ethnobotanical analysis of parasitic plants ( PubMed DOI PMC
Pennings S.C., Callaway R.M. (1996) Impact of a parasitic plant on the structure and dynamics of salt marsh vegetation. Ecology, 77, 1410–1419. 10.2307/2265538 DOI
QGIS Association (2024) QGIS geographic information system. http://www.qgis.org
Quested H.M. (2008) Parasitic plants ‐ impacts on nutrient cycling. Plant and Soil, 311, 269–272. 10.1007/s11104-008-9646-9 DOI
R Core Team (2023) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Rega C., Short C., Pérez‐Soba M., Paracchini M.L. (2020) A classification of European agricultural land using an energy‐based intensity indicator and detailed crop description. Landscape and Urban Planning, 198, 103793. 10.1016/j.landurbplan.2020.103793 DOI
Sillero N., Campos J., Bonardi A., Corti C., Creemers R., Crochet P.‐A., Crnobrnja Isailović J., Denoël M., Ficetola G.F., Gonçalves J., DOI
Smith S.A., Brown J.W. (2018) Constructing a broadly inclusive seed plant phylogeny. American Journal of Botany, 105, 302–314. 10.1002/ajb2.1019 PubMed DOI
Society for Ecological Restoration, International Network for Seed Based Restoration, Royal Botanic Gardens Kew (2023) Seed information database (SID). https://ser‐sid.org/ [Accessed 17 June 2025]
Svensson B., Carlsson B. (2005) How can we protect rare hemiparasitic plants? Early‐flowering taxa of Euphrasia and Rhinanthus on the Baltic Island of Gotland. Folia Geobotanica, 40, 261–272.
Světlíková P., Hájek T., Těšitel J. (2015) Hydathode trichomes actively secreting water from leaves play a key role in the physiology and evolution of root‐parasitic rhinanthoid Orobanchaceae. Annals of Botany, 116, 61–68. 10.1093/aob/mcv065 PubMed DOI PMC
Světlíková P., Hájek T., Těšitel J. (2018) A hemiparasite in the forest understorey: Photosynthetic performance and carbon balance of PubMed DOI
Taylor K., Rumsey F.J. (2003) DOI
Teixeira‐Costa L. (2021) A living bridge between two enemies: Haustorium structure and evolution across parasitic flowering plants. Brazilian Journal of Botany, 44, 165–178. 10.1007/s40415-021-00704-0 DOI
Teixeira‐Costa L., Davis C.C. (2021) Life history, diversity, and distribution in parasitic flowering plants. Plant Physiology, 187, 32–51. 10.1093/plphys/kiab279 PubMed DOI PMC
Tennakoon K. (1997) Ecophysiological aspects of the woody root hemiparasite DOI
Ter Borg S.J. (1985) Population biology and habitat relations of some hemiparasitic Scrophulariaceae. In: White J. (Ed), The population structure of vegetation. Springer, Dordrecht, Netherlands, pp 463–487.
Ter Borg S.J. (2005) Dormancy and germination of six DOI
Těšitel J. (2016) Functional biology of parasitic plants: A review. Plant Ecology and Evolution, 149, 5–20. 10.5091/plecevo.2016.1097 DOI
Těšitel J., Fibich P., de Bello F., Chytrý M., Lepš J. (2015) Habitats and ecological niches of root‐hemiparasitic plants: An assessment based on a large database of vegetation plots. Preslia, 87, 87–108.
Těšitel J., Hejcman M., Lepš J., Cameron D.D. (2013) How does elevated grassland productivity influence populations of root hemiparasites? Commentary on Borowicz and Armstrong (Oecologia 2012). Oecologia, 172, 933–936. 10.1007/s00442-012-2566-7 PubMed DOI
Těšitel J., Lepš J., Vráblová M., Cameron D.D. (2011) The role of heterotrophic carbon acquisition by the hemiparasitic plant PubMed DOI
Těšitel J., Li A.‐R., Knotková K., McLellan R., Bandaranayake P.C.G., Watson D.M. (2021) The bright side of parasitic plants: What are they good for? Plant Physiology, 185, 1309–1324. 10.1093/plphys/kiaa069 PubMed DOI PMC
Těšitel J., Plavcová L., Cameron D.D. (2010) Interactions between hemiparasitic plants and their hosts: The importance of organic carbon transfer. Plant Signaling & Behavior, 5, 1072–1076. 10.4161/psb.5.9.12563 PubMed DOI PMC
Těšitel J., Říha P., Svobodová Š., Malinová T., Štech M. (2010) Phylogeny, life history evolution and biogeography of the Rhinanthoid Orobanchaceae. Folia Geobotanica, 45, 347–367. 10.1007/s12224-010-9089-y DOI
Těšitel J., Těšitelová T., Fahs N., Blažek P., Knotková K., Axmanová I. (2024) Parasitism and mycoheterotrophy. www.FloraVeg.eu
Těšitel J., Těšitelová T., Fisher J.P., Lepš J., Cameron D.D. (2015) Integrating ecology and physiology of root‐hemiparasitic interaction: Interactive effects of abiotic resources shape the interplay between parasitism and autotrophy. New Phytologist, 205, 350–360. 10.1111/nph.13006 PubMed DOI
Tĕšitel J., Těšitelová T., Minasiewicz J., Selosse M.A. (2018) Mixotrophy in land plants: Why to stay green? Trends in Plant Science, 23, 656–659. 10.1016/j.tplants.2018.05.010 PubMed DOI
Tichý L., Axmanová I., Dengler J., Guarino R., Jansen F., Midolo G., Nobis M.P., Van Meerbeek K., Aćić S., Attorre F., DOI
Van Der Kooij T.A.W., Krause K., Dörr I., Krupinska K. (2000) Molecular, functional and ultrastructural characterisation of plastids from six species of the parasitic flowering plant genus PubMed DOI
Van Hulst R., Shipley B., Theriault A. (1987) Why is DOI
Vapaavuori E.M., Rikala R., Ryyppo A. (1992) Effects of root temperature on growth and photosynthesis in conifer seedlings during shoot elongation. Tree Physiology, 10, 217–230. 10.1093/treephys/10.3.217 PubMed DOI
Večeřa M., Axmanová I., Padullés Cubino J., Lososová Z., Divíšek J., Knollová I., Aćić S., Biurrun I., Boch S., Bonari G., DOI
Večeřa M., Divíšek J., Lenoir J., Jiménez‐Alfaro B., Biurrun I., Knollová I., Agrillo E., Campos J.A., Čarni A., Crespo Jiménez G., Ćuk M., Dimopoulos P., Ewald J., Fernández‐González F., Gégout J., Indreica A., Jandt U., Jansen F., Kącki Z., Rašomavičius V., Řezníčková M., Rodwell J.S., Schaminée J.H.J., Šilc U., Svenning J.‐.C., Swacha G., Vassilev K., Venanzoni R., Willner W., Wohlgemuth T., Chytrý M. (2019) Alpha diversity of vascular plants in European forests. Journal of Biogeography, 46, 1919–1935. 10.1111/jbi.13624 DOI
Verdcourt B. (1948) DOI
Viana D.S., Keil P., Jeliazkov A. (2022) Disentangling spatial and environmental effects: Flexible methods for community ecology and macroecology. Ecosphere, 13, e4028. 10.1002/ecs2.4028 DOI
Vidal‐Russell R., Nickrent D.L. (2008) Evolutionary relationships in the showy mistletoe family (Loranthaceae). American Journal of Botany, 95, 1015–1029. 10.3732/ajb.0800085 PubMed DOI
Weber H.C. (1981) Untersuchungen an parasitischen Scrophulariaceen (Rhinanthoideen) in Kultur. Flora, 171, 23–38.
Westwood J.H. (2013) The physiology of the established parasite–host association, Parasitic Orobanchaceae. Springer, Berlin, Germany, pp 87–114. 10.1007/978-3-642-38146-1_6 DOI
Wolfe A.D., Randle C.P., Liu L., Steiner K.E. (2005) Phylogeny and biogeography of Orobanchaceae. Folia Geobotanica, 40, 115–134. 10.1007/BF02803229 DOI
Yu H., Cooper A.R., Infante D.M. (2020) Improving species distribution model predictive accuracy using species abundance: Application with boosted regression trees. Ecological Modelling, 432, 109202. 10.1016/j.ecolmodel.2020.109202 DOI
Zanne A.E., Tank D.C., Cornwell W.K., Eastman J.M., Smith S.A., FitzJohn R.G., McGlinn D.J., O'Meara B.C., Moles A.T., Reich P.B., PubMed DOI
Zelený D., Schaffers A.P. (2012) Too good to be true: Pitfalls of using mean Ellenberg indicator values in vegetation analyses. Journal of Vegetation Science, 23, 419–431. 10.1111/j.1654-1103.2011.01366.x DOI
Zhang G., Li Q., Sun S. (2018) Diversity and distribution of parasitic angiosperms in China. Ecology and Evolution, 8, 4378–4386. 10.1002/ece3.3992 PubMed DOI PMC
Ziegler H. (1955) PubMed