Roadmap for Quantum Nanophotonics with Free Electrons

. 2025 Sep 17 ; 12 (9) : 4760-4817. [epub] 20250715

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40978571

Over the past century, continuous advancements in electron microscopy have enabled the synthesis, control, and characterization of high-quality free-electron beams. These probes carry an evanescent electromagnetic field that can drive localized excitations and provide high-resolution information on material structures and their optical responses, currently reaching the sub-Å and few-meV regime. Moreover, combining free electrons with pulsed light sources in ultrafast electron microscopy adds temporal resolution in the subfemtosecond range while offering enhanced control of the electron wave function. Beyond their exceptional capabilities for time-resolved spectromicroscopy, free electrons are emerging as powerful tools in quantum nanophotonics, on par with photons in their ability to carry and transfer quantum information, create entanglement within and with a specimen, and reveal previously inaccessible details on nanoscale quantum phenomena. This Roadmap outlines the current state of this rapidly evolving field, highlights key challenges and opportunities, and discusses future directions through a collection of topical sections prepared by leading experts.

Center for Nanophotonics NWO Institute AMOLF 1098 XG Amsterdam The Netherlands

Central European Institute of Technology and Institute of Physical Engineering Brno University of Technology Brno 61200 Czech Republic

Centre d'Élaboration de Matériaux et d'Etudes Structurales University of Toulouse and CNRS 31055 Toulouse France

Delmic B 5 Oostsingel 209 2612 HL Delft The Netherlands

Department of Materials Science and Engineering School of Materials and Chemical Technology Institute of Science Tokyo 4259 Nagatsuta Midoriku Yokohama 226 8501 Japan

Department of Nuclear Engineering and Management Graduate School of Engineering The University of Tokyo 7 3 1 Hongo Bunkyo ku Tokyo 113 8656 Japan

Department of Physics The University of Texas at Austin 2515 Speedway C1600 Austin 78712 Texas United States

Department of Ultrafast Dynamics Max Planck Institute for Multidisciplinary Sciences 37077 Göttingen Germany

Electron Microscopy for Materials Science and Nanolight Center of Excellence University of Antwerp Groenenborgerlaan 171 2020 Antwerp Belgium

Faculty of Electrical and Computer Engineering Technion Israel Institute of Technology Haifa 3200003 Israel

Faculty of Mathematics and Physics Charles University Ke Karlovu 3 Prague 12116 Czech Republic

fourth Physical InstituteSolids and Nanostructures University of Göttingen 37077 Göttingen Germany

ICFO Institut de Ciencies Fotoniques The Barcelona Institute of Science and Technology 08860 Castelldefels Barcelona Spain

ICREA Institució Catalana de Recerca i Estudis Avançats Passeig Lluís Companys 23 08010 Barcelona Spain

Institute of Applied Physics Hebrew University of Jerusalem Jerusalem 9190401 Israel

Institute of Experimental and Applied Physics Kiel University 24098 Kiel Germany

Institute of Physics École Polytechnique Fédérale de Lausanne Lausanne 1015 Switzerland

Kiel Nano Surface and Interface Science KiNSIS Kiel University 24118 Kiel Germany

Laboratory of Ultrafast Microscopy for Nanoscale Dynamics Department of Materials Science University of Milano Bicocca Via Cozzi 55 Milano 20126 Italy

Physics Department Friedrich Alexander Universität Erlangen Nürnberg D 91058 Erlangen Germany

Physics Department Ludwig Maximilians Universität München Geschwister Scholl Platz 1 80539 Munich Germany

RIKEN Cluster for Pioneering Research 2 1 Hirosawa Wako Saitama 351 0198 Japan

School of Electrical Engineering The Iby and Aladar Fleischman Faculty of Engineering Tel Aviv University Tel Aviv 69978 Israel

Takasaki Institute for Advanced Quantum Science National Institutes for Quantum Science and Technology 1233 Watanuki machi Takasaki Gunma 370 1292 Japan

Thermo Fisher Scientific Achtseweg Noord 5 5651 GG Eindhoven The Netherlands

Universität Konstanz Fachbereich Physik Universitätsstraße 10 78464 Konstanz Germany

Université Paris Saclay CNRS Laboratoire de Physique des Solides 91405 Orsay France

Zobrazit více v PubMed

Spence, J. C. H. High-Resolution Electron Microscopy; Oxford University Press: Oxford, 2013.

Dellby N., Lovejoy T., Corbin G., Johnson N., Hayner R., Hoffman M., Hrncrik P., Plotkin-Swing B., Taylor D., Krivanek O.. Ultra-High Energy Resolution EELS. Microsc. Microanal. 2020;26:1804–1805. doi: 10.1017/S1431927620019406. DOI

Zhu D., Robert A., Henighan T., Lemke H. T., Chollet M., Glownia J. M., Reis D. A., Trigo M.. Phonon Spectroscopy with Sub-MeV Resolution by Femtosecond x-Ray Diffuse Scattering. Phys. Rev. B. 2015;92:054303. doi: 10.1103/PhysRevB.92.054303. DOI

Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope; Plenum Press, 1996.

García de Abajo F. J.. Optical Excitations in Electron Microscopy. Rev. Mod. Phys. 2010;82:209–275. doi: 10.1103/RevModPhys.82.209. DOI

Yamamoto N., Araya K., García de Abajo F. J.. Photon Emission from silver Particles Induced by a High-Energy Electron Beam. Phys. Rev. B. 2001;64:205419. doi: 10.1103/PhysRevB.64.205419. DOI

Polman A., Kociak M., García de Abajo F. J.. Electron-Beam Spectroscopy for Nanophotonics. Nat. Mater. 2019;18:1158–1171. doi: 10.1038/s41563-019-0409-1. PubMed DOI

Howie A.. Howie Electrons and Photons: Exploiting the Connection. Inst. Phys. Conf. Ser. 1999;161:311.

García de Abajo F. J., Kociak M.. Electron Energy-Gain Spectroscopy. New J. Phys. 2008;10:073035. doi: 10.1088/1367-2630/10/7/073035. PubMed DOI

Henke J.-W., Raja A. S., Feist A., Huang G., Arend G., Yang Y., Kappert F. J., Wang R. N., Möller M., Pan J., Liu J., Kfir O., Ropers C., Kippenberg T. J.. Integrated Photonics Enables Continuous-Beam Electron Phase Modulation. Nature. 2021;600:653–658. doi: 10.1038/s41586-021-04197-5. PubMed DOI PMC

Auad Y., Dias E. J. C., Tencé M., Blazit J.-D., Li X., Zagonel L. F., Stéphan O., Tizei L. H. G., García de Abajo F. J., Kociak M.. μeV Electron Spectromicroscopy Using Free-Space Light. Nat. Commun. 2023;14:4442. doi: 10.1038/s41467-023-39979-0. PubMed DOI PMC

Weingartshofer A., Holmes J. K., Caudle G., Clarke E. M., Kruger H.. Direct Observation of Multiphoton Processes in Laser-Induced Free-Free Transitions. Phys. Rev. Lett. 1977;39:269–270. doi: 10.1103/PhysRevLett.39.269. DOI

Barwick B., Flannigan D. J., Zewail A. H.. Photon-Induced near-Field Electron Microscopy. Nature. 2009;462:902–906. doi: 10.1038/nature08662. PubMed DOI

Feist A., Echternkamp K. E., Schauss J., Yalunin S. V., Schäfer S., Ropers C.. Quantum Coherent Optical Phase Modulation in an Ultrafast Transmission Electron Microscope. Nature. 2015;521:200–203. doi: 10.1038/nature14463. PubMed DOI

Morimoto Y., Baum P.. Diffraction and Microscopy with Attosecond Electron Pulse Trains. Nat. Phys. 2018;14:252–256. doi: 10.1038/s41567-017-0007-6. DOI

Nabben D., Kuttruff J., Stolz L., Ryabov A., Baum P.. Attosecond Electron Microscopy of Sub-Cycle Optical Dynamics. Nature. 2023;619:63–67. doi: 10.1038/s41586-023-06074-9. PubMed DOI

Gaida J. H., Lourenço-Martins H., Sivis M., Rittmann T., Feist A., García de Abajo F. J., Ropers C.. Attosecond Electron Microscopy by Free-Electron Homodyne Detection. Nat. Photonics. 2024;18:509–515. doi: 10.1038/s41566-024-01380-8. DOI

Bucher T., Nahari H., Herzig Sheinfux H., Ruimy R., Niedermayr A., Dahan R., Yan Q., Adiv Y., Yannai M., Chen J., Kurman Y., Park S. T., Masiel D. J., Janzen E., Edgar J. H., Carbone F., Bartal G., Tsesses S., Koppens F. H. L., Vanacore G. M., Kaminer I.. Coherently Amplified Ultrafast Imaging Using a Free-Electron Interferometer. Nat. Photonics. 2024;18:809–815. doi: 10.1038/s41566-024-01451-w. DOI

Bendaña X. M., Polman A., García de Abajo F. J.. Single-Photon Generation by Electron Beams. Nano Lett. 2011;11:5099–5103. doi: 10.1021/nl1034732. PubMed DOI

Ben Hayun A., Reinhardt O., Nemirovsky J., Karnieli A., Rivera N., Kaminer I.. Shaping Quantum Photonic States Using Free Electrons. Sci. Adv. 2021;7:eabe4270. doi: 10.1126/sciadv.abe4270. PubMed DOI PMC

Feist A., Huang G., Arend G., Yang Y., Henke J.-W., Raja A. S., Kappert F. J., Wang R. N., Lourenço-Martins H., Qiu Z., Liu J., Kfir O., Kippenberg T. J., Ropers C.. Cavity-Mediated Electron-Photon Pairs. Science. 2022;377:777–780. doi: 10.1126/science.abo5037. PubMed DOI

Konečná A., Iyikanat F., García de Abajo F. J.. Entangling Free Electrons and Optical Excitations. Sci. Adv. 2022;8:eabo7853. doi: 10.1126/sciadv.abo7853. PubMed DOI PMC

Lichte H., Freitag B.. Inelastic Electron Holography. Ultramicroscopy. 2000;81:177–186. doi: 10.1016/S0304-3991(99)00188-6. PubMed DOI

Potapov P. L., Lichte H., Verbeeck J., van Dyck D.. Experiments on Inelastic Electron Holography. Ultramicroscopy. 2006;106:1012–1028. doi: 10.1016/j.ultramic.2006.05.012. PubMed DOI

Velasco C. I., Di Giulio V., García de Abajo F. J.. Radiative Loss of Coherence in Free Electrons: A Long-Range Quantum Phenomenon. Light Sci. Appl. 2024;13:31. doi: 10.1038/s41377-023-01361-6. PubMed DOI PMC

Velasco, C. I. ; García de Abajo, F. J. . Quantum Sensing and Metrology with Free Electrons. 2025. http://arxiv.org/abs/2505.06124 (accessed May 28, 2025).

Kapitza P. L., Dirac P. A. M.. The Reflection of Electrons from Standing Light Waves. Math. Proc. Cambridge Philos. Soc. 1933;29:297–300. doi: 10.1017/S0305004100011105. DOI

Kfir O., Di Giulio V., García de Abajo F. J., Ropers C.. Optical Coherence Transfer Mediated by Free Electrons. Sci. Adv. 2021;7:eabf6380. doi: 10.1126/sciadv.abf6380. PubMed DOI PMC

García de Abajo F. J., Asenjo-Garcia A., Kociak M.. Multiphoton Absorption and Emission by Interaction of Swift Electrons with Evanescent Light Fields. Nano Lett. 2010;10:1859–1863. doi: 10.1021/nl100613s. PubMed DOI

García de Abajo F. J., Di Giulio V.. Optical Excitations with Electron Beams: Challenges and Opportunities. ACS Photonics. 2021;8:945–974. doi: 10.1021/acsphotonics.0c01950. PubMed DOI PMC

Di Giulio V., Kociak M., García de Abajo F. J.. Probing Quantum Optical Excitations with Fast Electrons. Optica. 2019;6:1524–1534. doi: 10.1364/OPTICA.6.001524. DOI

Di Giulio V., Kfir O., Ropers C., García de Abajo F. J.. Modulation of Cathodoluminescence Emission by Interference with External Light. ACS Nano. 2021;15:7290–7304. doi: 10.1021/acsnano.1c00549. PubMed DOI PMC

Park S. T., Zewail A. H.. Relativistic Effects in Photon-Induced Near Field Electron Microscopy. J. Phys. Chem. A. 2012;116:11128–11133. doi: 10.1021/jp304534n. PubMed DOI

García de Abajo F. J., Konečná A.. Optical Modulation of Electron Beams in Free Space. Phys. Rev. Lett. 2021;126:123901. doi: 10.1103/PhysRevLett.126.123901. PubMed DOI

Park S. T., Lin M., Zewail A. H.. Photon-Induced Near-Field Electron Microscopy (PINEM): Theoretical and Experimental. New J. Phys. 2010;12:123028. doi: 10.1088/1367-2630/12/12/123028. DOI

Freimund D. L., Aflatooni K., Batelaan H.. Observation of the Kapitza−Dirac Effect. Nature. 2001;413:142–143. doi: 10.1038/35093065. PubMed DOI

Velasco C. I., García de Abajo F. J.. Free-Space Optical Modulation of Free Electrons in the Continuous-Wave Regime. Phys. Rev. Lett. 2025;134:123804. doi: 10.1103/PhysRevLett.134.123804. PubMed DOI

Jin X., Velasco C. I., García de Abajo F. J.. Zeptosecond Free-Electron Compression Through Temporal Lensing. arXiv:2504.17770 [cond-mat.mes-hall] 2025:na. doi: 10.48550/arXiv.2504.17770. DOI

Huang G., Engelsen N. J., Kfir O., Ropers C., Kippenberg T. J.. Electron-Photon Quantum State Heralding Using Photonic Integrated Circuits. PRX Quantum. 2023;4:0203051. doi: 10.1103/PRXQuantum.4.020351. DOI

Di Giulio V., Haindl R., Ropers C.. Tunable Quantum Light by Modulated Free Electrons. Nanophotonics. 2025;14:1865–1878. doi: 10.1515/nanoph-2025-0040. PubMed DOI PMC

Karnieli A., Roques-Carmes C., Rivera N., Fan S.. Strong Coupling and Single-Photon Nonlinearity in Free-Electron Quantum Optics. ACS Photonics. 2024;11:3401–3411. doi: 10.1021/acsphotonics.4c00908. DOI

Talebi N.. Strong Interaction of Slow Electrons with Near-Field Light Visited from First Principles. Phys. Rev. Lett. 2020;125:080401. doi: 10.1103/PhysRevLett.125.080401. PubMed DOI

Sirotin M., Rasputnyi A., Chlouba T., Shiloh R., Hommelhoff P.. Quantum Optics with Recoiled Free Electrons. arXiv:2405.06560 [quant-ph] 2024:na. doi: 10.48550/arXiv.2405.06560. DOI

Synanidis A. P., Goncalves P. A. D., Ropers C., García de Abajo F. J.. Quantum Effects in the Interaction of Low-Energy Electrons with Light. Sci. Adv. 2024;10:eadp4096. doi: 10.1126/sciadv.adp4096. PubMed DOI

García de Abajo F. J., Velasco C. I.. Spectrometer-Free Electron Spectromicroscopy. arXiv:2504.16894 [cond-mat.mtrl-sci] 2025:na. doi: 10.48550/arXiv.2504.16894. DOI

Synanidis A. P., Gonçalves P. A. D., García de Abajo F. J.. Rydberg-Atom Manipulation through Strong Interaction with Free Electrons. ACS Nano. 2025;19:11891. doi: 10.1021/acsnano.4c14658. PubMed DOI

Haindl R., Feist A., Domröse T., Möller M., Gaida J. H., Yalunin S. V., Ropers C.. Coulomb-Correlated Electron Number States in a Transmission Electron Microscope Beam. Nat. Phys. 2023;19:1410–1417. doi: 10.1038/s41567-023-02067-7. DOI

Meier S., Heimerl J., Hommelhoff P.. Few-Electron Correlations After Ultrafast Photoemission from Nanometric Needle Tips. Nat. Phys. 2023;19:1402–1409. doi: 10.1038/s41567-023-02059-7. DOI

Haindl R., Di Giulio V., Feist A., Ropers C.. Femtosecond Phase-Space Correlations in Few-Particle Photoelectron Pulses. arXiv:2412.11929 [cond-mat.mes-hall] 2024:na. doi: 10.48550/arXiv.2412.11929. DOI

Kumar S., Lim J., Rivera N., Wong W., Ang Y. S., Ang L. K., Wong L. J.. Strongly Correlated Multielectron Bunches from Interaction with Quantum Light. Sci. Adv. 2024;10:eadm9563. doi: 10.1126/sciadv.adm9563. PubMed DOI PMC

Pan Y., Gover A.. Spontaneous and Stimulated Emissions of a Preformed Quantum Free-Electron Wave Function. Phys. Rev. A. 2019;99:052107. doi: 10.1103/PhysRevA.99.052107. DOI

Bosman M., Keast V. J., García-Muñoz J. L., D’Alfonso A. J., Findlay S. D., Allen L. J.. Two-Dimensional Mapping of Chemical Information at Atomic Resolution. Phys. Rev. Lett. 2007;99:086102. doi: 10.1103/PhysRevLett.99.086102. PubMed DOI

Nelayah J., Kociak M., Stéphan O., García de Abajo F. J., Tencé M., Henrard L., Taverna D., Pastoriza-Santos I., Liz-Marzán L. M., Colliex C.. Mapping Surface Plasmons on a Single Metallic Nanoparticle. Nat. Phys. 2007;3:348–353. doi: 10.1038/nphys575. DOI

Botton G. A., Lazar S., Dwyer C.. Elemental Mapping at the Atomic Scale Using Low Accelerating Voltages. Ultramicroscopy. 2010;110:926–934. doi: 10.1016/j.ultramic.2010.03.008. DOI

Saito H., Lourenço-Martins H., Bonnet N., Li X., Lovejoy T. C., Dellby N., Stéphan O., Kociak M., Tizei L. H. G.. Emergence of Point Defect States in a Plasmonic Crystal. Phys. Rev. B. 2019;100:245402. doi: 10.1103/PhysRevB.100.245402. DOI

Verbeeck J., Tian H., Schattschneider P.. Production and Application of Electron Vortex Beams. Nature. 2010;467:301–304. doi: 10.1038/nature09366. PubMed DOI

Auad Y., Baaboura J., Blazit J.-D., Tencé M., Stéphan O., Kociak M., Tizei L. H. G.. Time Calibration Studies for the Timepix3 Hybrid Pixel Detector in Electron Microscopy. Ultramicroscopy. 2024;257:113889. doi: 10.1016/j.ultramic.2023.113889. PubMed DOI

Lourenço-Martins H., Lubk A., Kociak M.. Bridging Nano-Optics and Condensed Matter Formalisms in a Unified Description of Inelastic Scattering of Relativistic Electron Beams. SciPost Phys. 2021;10:031. doi: 10.21468/SciPostPhys.10.2.031. DOI

Chaupard M., Degrouard J., Li X., Stéphan O., Kociak M., Gref R., de Frutos M.. Nanoscale Multimodal Analysis of Sensitive Nanomaterials by Monochromated STEM-EELS in Low-Dose and Cryogenic Conditions. ACS Nano. 2023;17:3452–3464. doi: 10.1021/acsnano.2c09571. PubMed DOI

Wang Z., Tavabi A. H., Jin L., Rusz J., Tyutyunnikov D., Jiang H., Moritomo Y., Mayer J., Dunin-Borkowski R. E., Yu R., Zhu J., Zhong X.. Atomic Scale Imaging of Magnetic Circular Dichroism by Achromatic Electron Microscopy. Nat. Mater. 2018;17:221–225. doi: 10.1038/s41563-017-0010-4. PubMed DOI

García de Abajo F. J., Kociak M.. Probing the Photonic Local Density of States with Electron Energy Loss Spectroscopy. Phys. Rev. Lett. 2008;100:106804. doi: 10.1103/PhysRevLett.100.106804. PubMed DOI

Maho A., Comeron Lamela L., Henrist C., Henrard L., Tizei L. H. G., Kociak M., Stéphan O., Heo S., Milliron D. J., Vertruyen B., Cloots R.. Solvothermally-Synthesized Tin-Doped Indium Oxide Plasmonic Nanocrystals Spray-Deposited onto Glass as near-Infrared Electrochromic Films. Sol. Energy Mater. Sol. Cells. 2019;200:110014. doi: 10.1016/j.solmat.2019.110014. DOI

Hyun J. K., Couillard M., Rajendran P., Liddell C. M., Muller D. A.. Measuring Far-Ultraviolet Whispering Gallery Modes with High Energy Electrons. Appl. Phys. Lett. 2008;93:243106. doi: 10.1063/1.3046731. DOI

Le Thomas N., Alexander D. T. L., Cantoni M., Sigle W., Houdré R., Hébert C.. Imaging of High-Q Cavity Optical Modes by Electron Energy-Loss Microscopy. Phys. Rev. B. 2013;87:155314. doi: 10.1103/PhysRevB.87.155314. DOI

Bézard M., Si Hadj Mohand I., Ruggierio L., Le Roux A., Auad Y., Baroux P., Tizei L. H. G., Checoury X., Kociak M.. High-Efficiency Coupling of Free Electrons to Sub-λ3 Modal Volume, High-Q Photonic Cavities. ACS Nano. 2024;18:10417–10426. doi: 10.1021/acsnano.3c11211. PubMed DOI

Woo S. Y., Shao F., Arora A., Schneider R., Wu N., Mayne A. J., Ho C.-H., Och M., Mattevi C., Reserbat-Plantey A., Moreno Á., Sheinfux H. H., Watanabe K., Taniguchi T., Michaelis de Vasconcellos S., Koppens F. H. L., Niu Z., Stéphan O., Kociak M., García de Abajo F. J., Bratschitsch R., Konečná A., Tizei L. H. G.. Engineering 2D Material Exciton Line Shape with Graphene/ h-BN Encapsulation. Nano Lett. 2024;24:3678–3685. doi: 10.1021/acs.nanolett.3c05063. PubMed DOI

Yankovich A. B., Munkhbat B., Baranov D. G., Cuadra J., Olsén E., Lourenço-Martins H., Tizei L. H. G., Kociak M., Olsson E., Shegai T.. Visualizing Spatial Variations of Plasmon-Exciton Polaritons at the Nanoscale Using Electron Microscopy. Nano Lett. 2019;19:8171–8181. doi: 10.1021/acs.nanolett.9b03534. PubMed DOI

Tizei L. H. G., Mkhitaryan V., Lourenço-Martins H., Scarabelli L., Watanabe K., Taniguchi T., Tencé M., Blazit J.-D., Li X., Gloter A., Zobelli A., Schmidt F.-P., Liz-Marzán L. M., García de Abajo F. J., Stéphan O., Kociak M.. Tailored Nanoscale Plasmon-Enhanced Vibrational Electron Spectroscopy. Nano Lett. 2020;20:2973–2979. doi: 10.1021/acs.nanolett.9b04659. PubMed DOI PMC

Lourenço-Martins H., Gérard D., Kociak M.. Optical Polarization Analogue in Free Electron Beams. Nat. Phys. 2021;17:598–603. doi: 10.1038/s41567-021-01163-w. DOI

Guzzinati G., Béché A., Lourenço-Martins H., Martin J., Kociak M., Verbeeck J.. Probing the Symmetry of the Potential of Localized Surface Plasmon Resonances with Phase-Shaped Electron Beams. Nat. Commun. 2017;8:14999. doi: 10.1038/ncomms14999. PubMed DOI PMC

Kumar V., Camden J. P.. Imaging Vibrational Excitations in the Electron Microscope. J. Phys. Chem. C. 2022;126:16919–16927. doi: 10.1021/acs.jpcc.2c05108. DOI

Lagos M. J., Trügler A., Hohenester U., Batson P. E.. Mapping Vibrational Surface and Bulk Modes in a Single Nanocube. Nature. 2017;543:529–532. doi: 10.1038/nature21699. PubMed DOI

Li X., Haberfehlner G., Hohenester U., Stéphan O., Kothleitner G., Kociak M.. Three-Dimensional Vectorial Imaging of Surface Phonon Polaritons. Science. 2021;371:1364–1367. doi: 10.1126/science.abg0330. PubMed DOI

Boersch H., Geiger J., Stickel W.. Interaction of 25-keV Electrons with Lattice Vibrations in LiF. Experimental Evidence for Surface Modes of Lattice Vibration. Phys. Rev. Lett. 1966;17:379–381. doi: 10.1103/PhysRevLett.17.379. DOI

Lagos M. J., Batson P. E.. Thermometry with Subnanometer Resolution in the Electron Microscope Using the Principle of Detailed Balancing. Nano Lett. 2018;18:4556–4563. doi: 10.1021/acs.nanolett.8b01791. PubMed DOI

Hachtel J. A., Huang J., Popovs I., Jansone-Popova S., Keum J. K., Jakowski J., Lovejoy T. C., Dellby N., Krivanek O. L., Idrobo J. C.. Identification of Site-Specific Isotopic Labels by Vibrational Spectroscopy in the Electron Microscope. Science. 2019;363:525–528. doi: 10.1126/science.aav5845. PubMed DOI

Hage F. S., Radtke G., Kepaptsoglou D. M., Lazzeri M., Ramasse Q. M.. Single-Atom Vibrational Spectroscopy in the Scanning Transmission Electron Microscope. Science. 2020;367:1124–1127. doi: 10.1126/science.aba1136. PubMed DOI

Senga R., Suenaga K., Barone P., Morishita S., Mauri F., Pichler T.. Position and Momentum Mapping of Vibrations in Graphene Nanostructures. Nature. 2019;573:247–250. doi: 10.1038/s41586-019-1477-8. PubMed DOI

Castioni F., Auad Y., Blazit J.-D., Li X., Woo S. Y., Watanabe K., Taniguchi T., Ho C.-H., Stéphan O., Kociak M., Tizei L. H. G.. Nanosecond Nanothermometry in an Electron Microscope. Nano Lett. 2025;25:1601–1608. doi: 10.1021/acs.nanolett.4c05692. PubMed DOI

Ramasse Q., Kepaptsoglou D., Castellanos-Reyes J.-A., Zeiger P., El Hajraoui K., Alves do Nascimento J., Lazarov V., Bergman A., Rusz J.. Beyond Vibrational Spectroscopy: Hunting the Signature of Elusive Quasiparticles with Monochromated STEM-EELS. Microsc. Microanal. 2024;30:1494. doi: 10.1093/mam/ozae044.738. DOI

Meuret S., Solà Garcia M., Coenen T., Kieft E., Zeijlemaker H., Lätzel M., Christiansen S., Woo S. Y., Ra Y. H., Mi Z., Polman A.. Complementary Cathodoluminescence Lifetime Imaging Configurations in a Scanning Electron Microscope. Ultramicroscopy. 2019;197:28–38. doi: 10.1016/j.ultramic.2018.11.006. PubMed DOI

Weppelman I. G. C., Moerland R. J., Hoogenboom J. P., Kruit P.. Concept and Design of a Beam Blanker with Integrated Photoconductive Switch for Ultrafast Electron Microscopy. Ultramicroscopy. 2018;184:8–17. doi: 10.1016/j.ultramic.2017.10.002. PubMed DOI

Solà Garcia M., Meuret S., Coenen T., Polman A.. Electron-Induced State Conversion in Diamond NV-Centers Measured with Pump-Probe Cathodoluminescence Spectroscopy. ACS Photonics. 2020;7:232–240. doi: 10.1021/acsphotonics.9b01463. PubMed DOI PMC

Merano M.. et al. Probing Carrier Dynamics in Nanostructures by Picosecond Cathodoluminescence. Nature. 2005;438:479–482. doi: 10.1038/nature04298. PubMed DOI

Loeto K.. Uncovering the Carrier Dynamics of AlInGaN Semiconductors using Time-Resolved Cathodoluminescence. Mater. Sci. Technol. 2022;38:780–793. doi: 10.1080/02670836.2022.2064635. DOI

Meuret S., Tizei L. H. G., Houdellier F., Weber S., Auad Y., Tencé M., Chang H.-C., Kociak M., Arbouet A.. Time-Resolved Cathodoluminescence in an Ultrafast Transmission Electron Microscope. Appl. Phys. Lett. 2021;119:062106. doi: 10.1063/5.0057861. DOI

Meuret S., Tizei L. H. G., Cazimajou T., Bourrellier R., Chang H. C., Treussart F., Kociak M.. Photon Bunching in Cathodoluminescence. Phys. Rev. Lett. 2015;114:197401. doi: 10.1103/PhysRevLett.114.197401. PubMed DOI

Sola-Garcia M., Mauser K. W., Liebtrau M., Coenen T., Christiansen S., Meuret S., Polman A.. Photon Statistics of Incoherent Cathodoluminescence with Continuous and Pulsed Electron beams. ACS Photonics. 2021;8:916–925. doi: 10.1021/acsphotonics.0c01939. PubMed DOI PMC

Varkentina N., Auad Y., Woo S. Y., Castioni F., Blazit J.-D., Tence M., Chang H.-C., Chen J., Watanabe K., Taniguchi T., Kociak M., Tizei L. H. G.. Excitation Lifetime Extracted from Electron−Photon (EELS-CL) Nanosecond-Scale Temporal Coincidences. Appl. Phys. Lett. 2023;123:223502. doi: 10.1063/5.0165473. DOI

Brenny B. J. M., Coenen T., Polman A.. Quantifying Coherent and Incoherent Cathodoluminescence in Semiconductors and Metals. J. Appl. Phys. 2014;115:244307. doi: 10.1063/1.4885426. DOI

Auad Y.. et al. Unveiling the Coupling of Single Metallic Nanoparticles to Whispering-Gallery Microcavities. Nano Lett. 2022;22:319–327. doi: 10.1021/acs.nanolett.1c03826. PubMed DOI

van Nielen N., Schilder N., Hentschel M., Giessen H., Polman A., Talebi N.. Electrons Generate Self-Complementary Broadband Vortex Light Beams using Chiral Photon Sieves. Nano Lett. 2020;20:5975–5981. doi: 10.1021/acs.nanolett.0c01964. PubMed DOI

Brenny B. J. M., Polman A., García de Abajo F. J.. Femtosecond Plasmon and Photon Wave Packets excited by a High-Energy Electron on a Metal or Dielectric Surface. Phys. Rev. B. 2016;94:155412. doi: 10.1103/PhysRevB.94.155412. DOI

Smith S. J., Purcell E. M.. Visible Light from Localized Surface Charges Moving Across a Grating. Phys. Rev. 1953;92:1069. doi: 10.1103/PhysRev.92.1069. DOI

Karnieli A., Roitman D., Liebtrau M., Tsesses S., van Nielen N., Kaminer I., Arie A., Polman A.. Cylindrical Metalens For Generation and Focusing of Free-Electron Radiation. Nano Lett. 2022;22:5641–5650. doi: 10.1021/acs.nanolett.1c04556. PubMed DOI PMC

Liebtrau M., Polman A.. Angular Dispersion of Free-Electron-Light Coupling in an Optical Fibre-Integrated Metagrating. ACS Photonics. 2024;11:1125–1136. doi: 10.1021/acsphotonics.3c01574. PubMed DOI PMC

Akerboom E., Di Giulio V., Schilder N. J., García de Abajo F. J., Polman A.. Free Electron-Plasmon Coupling Strength and Near-Field Retrieval through Electron-Energy-Dependent Cathodoluminescence Spectroscopy. ACS Nano. 2024;18:13560–13567. doi: 10.1021/acsnano.3c12972. PubMed DOI PMC

Di Giulio V., Akerboom E., Polman A., García de Abajo F. J.. Toward Optimum Coupling between Free Electrons and Confined Optical Modes. ACS Nano. 2024;18:14255–14275. doi: 10.1021/acsnano.3c12977. PubMed DOI PMC

Schilder N., Agrawal H., Garnett E. C., Polman A.. Phase-Resolved Surface Plasmon Scattering probed by Cathodoluminescence Holography. ACS Photonics. 2020;7:1476–1482. doi: 10.1021/acsphotonics.0c00209. PubMed DOI PMC

Taleb M., Hentschel M., Rossnagel K., Giessen H., Talebi N.. Phase-Locked Photon−Electron Interaction without a Laser. Nat. Phys. 2023;19:869–876. doi: 10.1038/s41567-023-01954-3. DOI

Mauser K. W., Sola-Garcia M., Liebtrau M., Damilano B., Coulon P.-M., Vezian S., Shields P. A., Meuret S., Polman A.. Employing Cathodoluminescence for Nanothermometry and Thermal Transport Measurements in Semiconductor Nanowires. ACS Nano. 2021;15:11385–11395. doi: 10.1021/acsnano.1c00850. PubMed DOI PMC

Yamamoto N., Suzuki T.. Conversion of Surface Plasmon Polaritons to Light by a Surface Step. Appl. Phys. Lett. 2008;93:093114. doi: 10.1063/1.2978248. DOI

Suzuki T., Yamamoto N.. Cathodoluminescent Spectroscopic Imaging of Surface Plasmon Polaritons in a 1-Dimensional Plasmonic Crystal. Opt. Express. 2009;17:23664–23671. doi: 10.1364/OE.17.023664. PubMed DOI

Coenen T., Vesseur E. J. R., Polman A.. Angle-Resolved Cathodoluminescence Spectroscopy. Appl. Phys. Lett. 2011;99:143103. doi: 10.1063/1.3644985. PubMed DOI

Saito H., Yamamoto N., Sannomiya T.. Waveguide Bandgap in Crystalline Bandgap Slows Down Surface Plasmon Polariton. ACS Photonics. 2017;4:1361–1370. doi: 10.1021/acsphotonics.6b00943. DOI

Thollar Z., Wadell C., Matsukata T., Yamamoto N., Sannomiya T.. Three-Dimensional Multipole Rotation in Spherical Silver Nanoparticles Observed by Cathodoluminescence. ACS Photonics. 2018;5:2555–2560. doi: 10.1021/acsphotonics.7b01293. DOI

Ritchie R.. Plasma Losses by Fast Electrons in Thin Films. Phys. Rev. 1957;106:874–881. doi: 10.1103/PhysRev.106.874. DOI

Yasuhara A., Shibata M., Yamamoto W., Machfuudzoh I., Yanagimoto S., Sannomiya T.. Momentum-Resolved EELS and CL Study on 1D-Plasmonic Crystal Prepared by FIB Method. Microscopy. 2024;73:473–480. doi: 10.1093/jmicro/dfae022. PubMed DOI PMC

Matsukata T., García de Abajo F. J., Sannomiya T.. Chiral Light Emission from a Sphere Revealed by Nanoscale Relative-Phase Mapping. ACS Nano. 2021;15:2219–2228. doi: 10.1021/acsnano.0c05624. PubMed DOI PMC

Matsukata T., Ogura S., García de Abajo F. J., Sannomiya T.. Simultaneous Nanoscale Excitation and Emission Mapping by Cathodoluminescence. ACS Nano. 2022;16:21462–21470. doi: 10.1021/acsnano.2c09973. PubMed DOI PMC

Liu A., Davis T., Coenen T., Hari S., Voortman L., Xu Z., Yuan G., Ballard P., Funston A., Etheridge J.. Modulation of Cathodoluminescence by Surface Plasmons in Silver Nanowires. Small. 2023;19:2207747. doi: 10.1002/smll.202207747. PubMed DOI

Meuret S., Coenen T., Woo S., Ra Y., Mi Z., Polman A.. Nanoscale Relative Emission Efficiency Mapping Using Cathodoluminescence g(2) Imaging. Nano Lett. 2018;18:2288–2293. doi: 10.1021/acs.nanolett.7b04891. PubMed DOI PMC

Yanagimoto S., Yamamoto N., Sannomiya T., Akiba K.. Purcell Effect of Nitrogen-Vacancy Centers in Nanodiamond Coupled to Propagating and Localized Surface Plasmons Revealed by Photon-Correlation Cathodoluminescence. Phys. Rev. B. 2021;103:205418. doi: 10.1103/PhysRevB.103.205418. DOI

Yuge T., Yamamoto N., Sannomiya T., Akiba K.. Superbunching in Cathodoluminescence: A Master Equation Approach. Phys. Rev. B. 2023;107:165303. doi: 10.1103/PhysRevB.107.165303. DOI

Yanagimoto S., Yamamoto N., Yuge T., Sannomiya T., Akiba K.. Unveiling the Nature of Cathodoluminescence from Photon Statistics. Commun. Phys. 2025;8:56. doi: 10.1038/s42005-025-01978-6. DOI

Kfir O.. Entanglements of Electrons and Cavity Photons in the Strong-Coupling Regime. Phys. Rev. Lett. 2019;123:103602. doi: 10.1103/PhysRevLett.123.103602. PubMed DOI

Fishman T., Haeusler U., Dahan R., Yannai M., Adiv Y., Abudi T., Shiloh R., Eyal O., Yousefi P., Eisenstein G., Hommelhoff P., Kaminer I.. Imaging the Field Inside Nanophotonic Accelerators. Nat. Commun. 2023;14:3687. doi: 10.1038/s41467-023-38857-z. PubMed DOI PMC

Kruit P., Hobbs R., Kim C., Yang Y., Manfrinato V., Hammer J., Thomas S., Weber P., Klopfer B., Kohstall C., Juffmann T., Kasevich M., Hommelhoff P., Berggren K.. Designs for a Quantum Electron Microscope. Ultramicroscopy. 2016;164:31–45. doi: 10.1016/j.ultramic.2016.03.004. PubMed DOI

Varkentina N., Auad Y., Woo S. Y., Zobelli A., Bocher L., Blazit J.-D., Li X. Y., Tencé M., Watanabe K., Taniguchi T., Stéphan O., Kociak M., Tizei L. H. G.. Cathodoluminescence Excitation Spectroscopy: Nanoscale Imaging of Excitation Pathways. Sci. Adv. 2022;8:eabq4947. doi: 10.1126/sciadv.abq4947. PubMed DOI PMC

Yanagimoto S., Yamamoto N., Yuge T., Saito H., Akiba K., Sannomiya T.. Time-Correlated Electron and Photon Counting Microscopy. Commun. Phys. 2023;6:260. doi: 10.1038/s42005-023-01371-1. DOI

Kazakevich E., Aharon H., Kfir O.. Spatial Electron-Photon Entanglement. Phys. Rev. Res. 2024;6:043010. doi: 10.1103/PhysRevResearch.6.043033. DOI

Boitier F., Godard A., Rosencher E., Fabre C.. Measuring Photon Bunching at Ultrafast Timescales by Two-Photon Absorption in Semiconductors. Nat. Phys. 2009;5:267–270. doi: 10.1038/nphys1218. DOI

Sannomiya T., Konecna A., Matsukata T., Thollar Z., Okamoto T., García de Abajo F. J., Yamamoto N.. Cathodoluminescence Phase Extraction of the Coupling Between Nanoparticles and Surface Plasmon Polaritons. Nano Lett. 2020;20:592–598. doi: 10.1021/acs.nanolett.9b04335. PubMed DOI

Kociak M., Gloter A., Stéphan O.. A Spectromicroscope for Nanophysics. Ultramicroscopy. 2017;180:81–92. doi: 10.1016/j.ultramic.2017.02.008. PubMed DOI

Lagos M. J., Bicket I. C., Mousavi M. S. S., Botton G. A.. Advances in Ultrahigh-Energy Resolution EELS: Phonons, Infrared Plasmons and Strongly Coupled Modes. Microscopy. 2022;71:I174–I199. doi: 10.1093/jmicro/dfab050. PubMed DOI

Bonnet N., Lee H. Y., Shao F., Woo S. Y., Blazit J.-D., Watanabe K., Taniguchi T., Zobelli A., Stéphan O., Kociak M., Gradečak S., Tizei L. H. G.. Nanoscale Modification of WS2 Trion Emission by Its Local Electromagnetic Environment. Nano Lett. 2021;21:10178–10185. doi: 10.1021/acs.nanolett.1c02600. PubMed DOI

Zheng S., So J. K., Liu F., Liu Z., Zheludev N., Fan H. J.. Giant Enhancement of Cathodoluminescence of Monolayer Transitional Metal Dichalcogenides Semiconductors. Nano Lett. 2017;17:6475–6480. doi: 10.1021/acs.nanolett.7b03585. PubMed DOI

Asenjo-Garcia A., García de Abajo F. J.. Plasmon Electron Energy-Gain Spectroscopy. New J. Phys. 2013;15:103021. doi: 10.1088/1367-2630/15/10/103021. DOI

Pomarico E., Madan I., Berruto G., Vanacore G. M., Wang K., Kaminer I., García de Abajo F. J., Carbone F.. meV Resolution in Laser-Assisted Energy-Filtered Transmission Electron Microscopy. ACS Photonics. 2018;5:759–764. doi: 10.1021/acsphotonics.7b01393. DOI

Boersch H.. Experimentelle Bestimmung der Energieverteilung in thermisch ausgelösten Elektronenstrahlen. Z. Phys. 1954;139:115–146. doi: 10.1007/BF01375256. DOI

Wang K., Dahan R., Shentcis M., Kauffmann Y., Ben Hayun A., Reinhardt O., Tsesses S., Kaminer I.. Coherent Interaction between Free Electrons and a Photonic Cavity. Nature. 2020;582:50–54. doi: 10.1038/s41586-020-2321-x. PubMed DOI

Kfir O., Lourenço-Martins H., Storeck G., Sivis M., Harvey T. R., Kippenberg T. J., Feist A., Ropers C.. Controlling Free Electrons with Optical Whispering-Gallery Modes. Nature. 2020;582:46–49. doi: 10.1038/s41586-020-2320-y. PubMed DOI

Müller N., Kabil S., Vosse G., Hansen L., Rathje C., Schäfer S.. Spectrally Resolved Free Electron-Light Coupling Strength in a Transition Metal Dichalcogenide. arXiv:2405.12017 [cond-mat.mes-hall] 2024:na. doi: 10.48550/arXiv.2405.12017. DOI

Das P., Blazit J. D., Tencé M., Zagonel L. F., Auad Y., Lee Y. H., Ling X. Y., Losquin A., Colliex C., Stéphan O., García de Abajo F. J., Kociak M.. Stimulated Electron Energy Loss and Gain in an Electron Microscope without a Pulsed Electron Gun. Ultramicroscopy. 2019;203:44–51. doi: 10.1016/j.ultramic.2018.12.011. PubMed DOI

Liu C., Wu Y., Hu Z., Busche J. A., Beutler E. K., Montoni N. P., Moore T. M., Magel G. A., Camden J. P., Masiello D. J., Duscher G., Rack P. D.. Continuous Wave Resonant Photon Stimulated Electron Energy-Gain and Electron Energy-Loss Spectroscopy of Individual Plasmonic Nanoparticles. ACS Photonics. 2019;6:2499–2508. doi: 10.1021/acsphotonics.9b00830. DOI

Yang Y., Henke J. W., Raja A. S., Kappert F. J., Huang G., Arend G., Qiu Z., Feist A., Wang R. N., Tusnin A., Tikan A., Ropers C., Kippenberg T. J.. Free-Electron Interaction with Nonlinear Optical States in Microresonators. Science. 2024;383:168–173. doi: 10.1126/science.adk2489. PubMed DOI

Arbouet, A. ; Caruso, G. M. ; Houdellier, F. . Ultrafast Transmission Electron Microscopy: Historical Development, Instrumentation, and Applications. Advances in Imaging and Electron Physics; Elsevier Inc., 2018; pp 1−72.

Zewail A. H.. Four-Dimensional Electron Microscopy. Science. 2010;328(5975):187–193. doi: 10.1126/science.1166135. PubMed DOI

Piazza L., Lummen T. T. A., Quiñonez E., Murooka Y., Reed B. W., Barwick B., Carbone F.. Simultaneous Observation of the Quantization and the Interference Pattern of a Plasmonic Near-Field. Nat. Commun. 2015;6:6407. doi: 10.1038/ncomms7407. PubMed DOI PMC

Feist A., Bach N., Rubiano da Silva N., Danz T., Möller M., Priebe K. E., Domröse T., Gatzmann J. G., Rost S., Schauss J., Strauch S., Bormann R., Sivis M., Schäfer S., Ropers C.. Ultrafast Transmission Electron Microscopy Using a Laser-Driven Field Emitter: Femtosecond Resolution with a High Coherence Electron Beam. Ultramicroscopy. 2017;176:63–73. doi: 10.1016/j.ultramic.2016.12.005. PubMed DOI

Houdellier F., Caruso G. M., Weber S., Kociak M., Arbouet A.. Development of a High Brightness Ultrafast Transmission Electron Microscope Based on a Laser-Driven Cold Field Emission Source. Ultramicroscopy. 2018;186:128–138. doi: 10.1016/j.ultramic.2017.12.015. PubMed DOI

Schröder A., Wendeln A., Weber J. T., Mukai M., Kohno Y., Schäfer S.. Laser-Driven Cold Field Emission Source for Ultrafast Transmission Electron Microscopy. Ultramicroscopy. 2025;275:114158. doi: 10.1016/j.ultramic.2025.114158. PubMed DOI

Zhu C., Zheng D., Wang H., Zhang M., Li Z., Sun S., Xu P., Tian H., Li Z., Yang H., Li J.. Development of Analytical Ultrafast Transmission Electron Microscopy Based on Laser-Driven Schottky Field Emission. Ultramicroscopy. 2020;209:112887. doi: 10.1016/j.ultramic.2019.112887. PubMed DOI

Najafi E., Scarborough T. D., Tang J., Zewail A.. Four-Dimensional Imaging of Carrier Interface Dynamics in p-n Junctions. Science. 2015;347:164–167. doi: 10.1126/science.aaa0217. PubMed DOI

Shiloh R., Chlouba T., Hommelhoff P.. Quantum-Coherent Light-Electron Interaction in a Scanning Electron Microscope. Phys. Rev. Lett. 2022;128:235301. doi: 10.1103/PhysRevLett.128.235301. PubMed DOI

Fu X., Wang E., Zhao Y., Liu A., Montgomery E., Gokhale V. J., Gorman J. J., Jing C., Lau J. W., Zhu Y.. Direct Visualization of Electromagnetic Wave Dynamics by Laser-Free Ultrafast Electron Microscopy. Sci. Adv. 2020;6:eabc3456. doi: 10.1126/sciadv.abc3456. PubMed DOI PMC

Garming M. W. H., Bolhuis M., Conesa-Boj S., Kruit P., Hoogenboom J. P.. Lock-in Ultrafast Electron Microscopy Simultaneously Visualizes Carrier Recombination and Interface-Mediated Trapping. J. Phys. Chem. Lett. 2020;11:8880–8886. doi: 10.1021/acs.jpclett.0c02345. PubMed DOI PMC

Borrelli S., De Raadt T. C. H., Van Der Geer S. B., Mutsaers P. H. A., Van Leeuwen K. A. H., Luiten O. J.. Direct Observation of Sub-Poissonian Temporal Statistics in a Continuous Free-Electron Beam with Subpicosecond Resolution. Phys. Rev. Lett. 2024;132:115001. doi: 10.1103/PhysRevLett.132.115001. PubMed DOI

Danz T., Domröse T., Ropers C.. Ultrafast Nanoimaging of the Order Parameter in a Structural Phase Transition. Science. 2021;371:371–374. doi: 10.1126/science.abd2774. PubMed DOI

Kim Y.-J., Nho H.-W., Ji S., Lee H., Ko H., Weissenrieder J., Kwon O.-H.. Femtosecond-Resolved Imaging of a Single-Particle Phase Transition in Energy-Filtered Ultrafast Electron Microscopy. Sci. Adv. 2023;9:eadd5375. doi: 10.1126/sciadv.add5375. PubMed DOI PMC

Yurtsever A., Zewail A. H.. 4D Nanoscale Diffraction Observed by Convergent-Beam Ultrafast Electron Microscopy. Science. 2009;326:708–712. doi: 10.1126/science.1179314. PubMed DOI

Feist A., Rubiano da Silva N., Liang W., Ropers C., Schäfer S.. Nanoscale Diffractive Probing of Strain Dynamics in Ultrafast Transmission Electron Microscopy. Struct. Dyn. 2018;5:014302. doi: 10.1063/1.5009822. PubMed DOI PMC

McKenna A. J., Eliason J. K., Flannigan D. J.. Spatiotemporal Evolution of Coherent Elastic Strain Waves in a Single MoS2 Flake. Nano Lett. 2017;17(6):3952–3958. doi: 10.1021/acs.nanolett.7b01565. PubMed DOI

Nakamura A., Shimojima T., Chiashi Y., Kamitani M., Sakai H., Ishiwata S., Li H., Ishizaka K.. Nanoscale Imaging of Unusual Photoacoustic Waves in Thin Flake VTe2. Nano Lett. 2020;20:4932–4938. doi: 10.1021/acs.nanolett.0c01006. PubMed DOI

Barantani F., Claude R., Iyikanat F., Madan I., Sapozhnik A. A., Puppin M., Weaver B., LaGrange T., García de Abajo F. J., Carbone F.. Ultrafast Momentum-Resolved Visualization of the Interplay between Phonon-Mediated Scattering and Plasmons in Graphite. Sci. Adv. 2025;11:adu1001. doi: 10.1126/sciadv.adu1001. PubMed DOI PMC

Rubiano da Silva N., Möller M., Feist A., Ulrichs H., Ropers C., Schäfer S.. Nanoscale Mapping of Ultrafast Magnetization Dynamics with Femtosecond Lorentz Microscopy. Phys. Rev. X. 2018;8:031052. doi: 10.1103/PhysRevX.8.031052. DOI

Berruto G., Madan I., Murooka Y., Vanacore G. M., Pomarico E., Rajeswari J., Lamb R., Huang P., Kruchkov A. J., Togawa Y., LaGrange T., McGrouther D., Ro̷nnow H. M., Carbone F.. Laser-Induced Skyrmion Writing and Erasing in an Ultrafast Cryo-Lorentz Transmission Electron Microscope. Phys. Rev. Lett. 2018;120:117201. doi: 10.1103/PhysRevLett.120.117201. PubMed DOI

Kurman Y., Dahan R., Sheinfux H. H., Wang K., Yannai M., Adiv Y., Reinhardt O., Tizei L. H. G., Woo S. Y., Li J., Edgar J. H., Kociak M., Koppens F. H. L., Kaminer I.. Spatiotemporal Imaging of 2D Polariton Wave Packet Dynamics Using Free Electrons. Science. 2021;372:1181–1186. doi: 10.1126/science.abg9015. PubMed DOI

Eggebrecht T., Möller M., Gatzmann J. G., Rubiano da Silva N., Feist A., Martens U., Ulrichs H., Münzenberg M., Ropers C., Schäfer S.. Light-Induced Metastable Magnetic Texture Uncovered by in Situ Lorentz Microscopy. Phys. Rev. Lett. 2017;118:097203. doi: 10.1103/PhysRevLett.118.097203. PubMed DOI

Möller M., Gaida J. H., Schäfer S., Ropers C.. Few-Nm Tracking of Current-Driven Magnetic Vortex Orbits Using Ultrafast Lorentz Microscopy. Commun. Phys. 2020;3:36. doi: 10.1038/s42005-020-0301-y. DOI

Voss J. M., Harder O. F., Olshin P. K., Drabbels M., Lorenz U. J.. Rapid Melting and Revitrification as an Approach to Microsecond Time-Resolved Cryo-Electron Microscopy. Chem. Phys. Lett. 2021;778:138812. doi: 10.1016/j.cplett.2021.138812. DOI

de La Torre A., Kennes D. M., Claassen M., Gerber S., McIver J. W., Sentef M. A.. Colloquium: Nonthermal Pathways to Ultrafast Control in Quantum Materials. Rev. Mod. Phys. 2021;93:041002. doi: 10.1103/RevModPhys.93.041002. DOI

Leitenstorfer A.. et al. Terahertz Science and Technology Roadmap. J. Phys. D: Appl. Phys. 2023;56:223001. doi: 10.1088/1361-6463/acbe4c. DOI

Zong A., Nebgen B. R., Lin S.-C., Spies J. A., Zuerch M.. Emerging Ultrafast Techniques for Studying Quantum Materials. Nat. Rev. Mater. 2023;8:224–240. doi: 10.1038/s41578-022-00530-0. DOI

Buzzi M., Först M., Mankowsky R., Cavalleri C.. Probing Dynamics in Quantum Materials with Femtosecond X-rays. Nat. Rev. Mater. 2018;3:299–311. doi: 10.1038/s41578-018-0024-9. DOI

Lobastov V. A., Srinivasan R., Zewail A. H.. Four-Dimensional Ultrafast Electron Microscopy. Proc. Natl. Acad. Sci. U. S. A. 2005;102:7069–7073. doi: 10.1073/pnas.0502607102. PubMed DOI PMC

Aidelsburger M., Kirchner F. O., Krausz F., Baum P.. Single-Electron Pulses for Ultrafast Diffraction. Proc. Natl. Acad. Sci. U. S. A. 2010;107:19714–19719. doi: 10.1073/pnas.1010165107. PubMed DOI PMC

Baum P., Zewail A. H.. Attosecond Electron Pulses for 4D Diffraction and Microscopy. Proc. Natl. Acad. Sci. U. S. A. 2007;104:18409–18414. doi: 10.1073/pnas.0709019104. PubMed DOI PMC

Priebe K. E., Rathje C., Yalunin S. V., Hohage T., Feist A., Schäfer S., Ropers C.. Attosecond Electron Pulse Trains and Quantum State Reconstruction in Ultrafast Transmission Electron Microscopy. Nat. Phot. 2017;11:793–797. doi: 10.1038/s41566-017-0045-8. DOI

Baum P., Zewail A. H.. 4D Attosecond Imaging with Free Electrons: Diffraction Methods and Potential Applications. Chem. Phys. 2009;366:2–8. doi: 10.1016/j.chemphys.2009.07.013. DOI

Tsarev M., Thurner J. W., Baum P.. Nonlinear-Optical Quantum Control of Free-Electron Matter Waves. Nat. Phys. 2023;19:1350–1354. doi: 10.1038/s41567-023-02092-6. DOI

Ryabov A., Baum P.. Electron Microscopy of Electromagnetic Waveforms. Science. 2016;353:374–377. doi: 10.1126/science.aaf8589. PubMed DOI

Gliserin A., Walbran M., Krausz F., Baum P.. Sub-Phonon-Period Compression of Electron Pulses for Atomic Diffraction. Nat. Commun. 2015;6:8723. doi: 10.1038/ncomms9723. PubMed DOI PMC

Lahme S., Kealhofer C., Krausz F., Baum P.. Femtosecond Single-Electron Diffraction. Struct. Dyn. 2014;1:034303. doi: 10.1063/1.4884937. PubMed DOI PMC

Baum P.. On the Physics of Ultrashort Single-Electron Pulses for Time-Resolved Microscopy and Diffraction. Chem. Phys. 2013;423:55–61. doi: 10.1016/j.chemphys.2013.06.012. DOI

Pasmans P. L. E. M., van den Ham G. B., Dal Conte S. F. P., van der Geer S. B., Luiten O. J.. Microwave TM010 Cavities as Versatile 4D Electron Optical Elements. Ultramicroscopy. 2013;127:19–24. doi: 10.1016/j.ultramic.2012.07.011. PubMed DOI

Kealhofer C., Schneider W., Ehberger D., Ryabov A., Krausz F., Baum P.. All-Optical Control and Metrology of Electron Pulses. Science. 2016;352:429–433. doi: 10.1126/science.aae0003. PubMed DOI

Kirchner F. O., Gliserin A., Krausz F., Baum P.. Laser Streaking of Free Electrons at 25 keV. Nat. Phot. 2014;8:52–57. doi: 10.1038/nphoton.2013.315. DOI

Morimoto Y., Baum P.. Attosecond Control of Electron Beams at Dielectric and Absorbing Membranes. Phys. Rev. A. 2018;97:033815. doi: 10.1103/PhysRevA.97.033815. DOI

Fang Y., Kuttruff J., Nabben D., Baum P.. Structured Electrons with Chiral Mass and Charge. Science. 2024;385:183–187. doi: 10.1126/science.adp9143. PubMed DOI

Morimoto Y., Baum P.. Single-Cycle Optical Control of Beam Electrons. Phys. Rev. Lett. 2020;125:193202. doi: 10.1103/PhysRevLett.125.193202. PubMed DOI

Kozák M.. All-Optical Scheme for Generation of Isolated Attosecond Electron Pulses. Phys. Rev. Lett. 2019;123:203202. doi: 10.1103/PhysRevLett.123.203202. PubMed DOI

Kim H. Y., Garg M., Mandal S., Seiffert L., Fennel T., Goulielmakis E.. Attosecond Field Emission. Nature. 2023;613:662–666. doi: 10.1038/s41586-022-05577-1. PubMed DOI PMC

Reinhardt O., Mechel C., Lynch M., Kaminer I.. Free-Electron Qubits. Ann. Phys. 2021;533:2000254. doi: 10.1002/andp.202000254. DOI

Tsarev M., Ryabov A., Baum P.. Free-Electron Qubits and Maximum-Contrast Attosecond Pulses via Temporal Talbot Revivals. Phys. Rev. Research. 2021;3:043033. doi: 10.1103/PhysRevResearch.3.043033. DOI

Mohler K. J., Ehberger D., Gronwald I., Lange C., Huber R., Baum P.. Ultrafast Electron Diffraction from Nanophotonic Waveforms Via Dynamical Aharonov-Bohm phases. Sci. Adv. 2020;6:eabc8804. doi: 10.1126/sciadv.abc8804. PubMed DOI PMC

Yakovlev V. S., Stockman M. I., Krausz F., Baum P.. Atomic-Scale Diffractive Imaging of Sub-Cycle Electron Dynamics in Condensed Matter. Sci. Rep. 2015;5:14581. doi: 10.1038/srep14581. PubMed DOI PMC

Baum P., Ropers C.. Comment on “Attosecond Electron Microscopy and Diffraction”. arXiv:2411.14518 [cond-mat.mtrl-sci] 2024:na.

Baum P., Krausz F.. Capturing Atomic-Acale Carrier Dynamics with Electrons. Chem. Phys. Lett. 2017;683:57–61. doi: 10.1016/j.cplett.2017.03.073. DOI

Yurtsever A., van der Veen R. M., Zewail A. H.. Subparticle Ultrafast Spectrum Imaging in 4D Electron Microscopy. Science. 2012;335:59–64. doi: 10.1126/science.1213504. PubMed DOI

Harvey T. R., Henke J.-W., Kfir O., Lourenço-Martins H., Feist A., García de Abajo F. J., Ropers C.. Probing Chirality with Inelastic Electron-Light Scattering. Nano Lett. 2020;20:4377–4383. doi: 10.1021/acs.nanolett.0c01130. PubMed DOI

Liebtrau M., Sivis M., Feist A., Lourenço-Martins H., Pazos-Pérez N., Alvarez-Puebla R. A., García de Abajo F. J., Polman A., Ropers C.. Spontaneous and Stimulated Electron−Photon Interactions in Nanoscale Plasmonic Near Fields. Light Sci. Appl. 2021;10:82. doi: 10.1038/s41377-021-00511-y. PubMed DOI PMC

Madan I., Vanacore G. M., Pomarico E., Berruto G., Lamb R. J., McGrouther D., Lummen T. T. A., Latychevskaia T., García de Abajo F. J., Carbone F.. Holographic Imaging of Electromagnetic Fields via Electron-Light Quantum Interference. Sci. Adv. 2019;5:eaav8358. doi: 10.1126/sciadv.aav8358. PubMed DOI PMC

Chirita Mihaila M. C., Weber P., Schneller M., Grandits L., Nimmrichter S., Juffmann T.. Transverse Electron-Beam Shaping with Light. Phys. Rev. X. 2022;12:031043. doi: 10.1103/PhysRevX.12.031043. DOI

Vanacore G. M., Berruto G., Madan I., Pomarico E., Biagioni P., Lamb R. J., McGrouther D., Reinhardt O., Kaminer I., Barwick B., Larocque H., Grillo V., Karimi E., García de Abajo F. J., Carbone F.. Ultrafast Generation and Control of an Electron Vortex Beam Via Chiral Plasmonic Near Fields. Nat. Mater. 2019;18:573–579. doi: 10.1038/s41563-019-0336-1. PubMed DOI

Feist A., Yalunin S. V., Schäfer S., Ropers C.. High-Purity Free-Electron Momentum States Prepared by Three-Dimensional Optical Phase Modulation. Phys. Rev. Research. 2020;2:043227. doi: 10.1103/PhysRevResearch.2.043227. DOI

Gaida J. H., Lourenço-Martins H., Yalunin S. V., Feist A., Sivis M., Hohage T., García de Abajo F. J., Ropers C.. Lorentz Microscopy of Optical Fields. Nat. Commun. 2023;14:6545. doi: 10.1038/s41467-023-42054-3. PubMed DOI PMC

Echternkamp K. E., Feist A., Schäfer S., Ropers C.. Ramsey-Type Phase Control of Free-Electron Beams. Nat. Phys. 2016;12:1000–1004. doi: 10.1038/nphys3844. DOI

Kozák M., McNeur J., Leedle K. J., Deng H., Schönenberger N., Ruehl A., Hartl I., Harris J. S., Byer R. L., Hommelhoff P.. Optical Gating and Streaking of Free Electrons with Sub-Optical Cycle Precision. Nat. Commun. 2017;8:14342. doi: 10.1038/ncomms14342. PubMed DOI PMC

Kozák M., Schönenberger N., Hommelhoff P.. Ponderomotive Generation and Detection of Attosecond Free-Electron Pulse Trains. Phys. Rev. Lett. 2018;120:103203. doi: 10.1103/PhysRevLett.120.103203. PubMed DOI

Shi C., Ropers C., Hohage T.. Density Matrix Reconstructions in Ultrafast Transmission Electron Microscopy: Uniqueness, Stability, and Convergence Rates. Inverse Probl. 2020;36:025005. doi: 10.1088/1361-6420/ab539a. DOI

Ryabov A., Thurner J. W., Nabben D., Tsarev M. V., Baum P.. Attosecond Metrology in a Continuous-Beam Transmission Electron Microscope. Sci. Adv. 2020;6:eabb1393. doi: 10.1126/sciadv.abb1393. PubMed DOI PMC

Pijper F. J., Kruit P.. Detection of Energy-Selected Secondary Electrons in Coincidence with Energy-Loss Events in Thin Carbon Foils. Phys. Rev. B. 1991;44:9192–9200. doi: 10.1103/PhysRevB.44.9192. PubMed DOI

Kruit P., Shuman H., Somlyo A. P.. Detection of X-Rays and Electron Energy Loss Events in Time Coincidence. Ultramicroscopy. 1984;13:205–213. doi: 10.1016/0304-3991(84)90199-2. PubMed DOI

Graham R. J., Spence J. C. H., Alexander H.. Infrared Cathodoluminescence Studies from Dislocations in Silicon in tem, a Fourier Transform Spectrometer for Cl in TEM and ELS/CL Coincidence Measurements of Lifetimes in Semiconductors. MRS Online Proceedings Library. 1986;82:235–245. doi: 10.1557/PROC-82-235. DOI

Haak H. W., Sawatzky G. A., Ungier L., Gimzewski J. K., Thomas T. D.. Core-Level Electron−Electron Coincidence Spectroscopy. Rev. Sci. Instrum. 1984;55:696–711. doi: 10.1063/1.1137823. DOI

Ungier L., Thomas T. D.. Near threshold excitation of KVV Auger Spectra in Carbon Monoxide Using Electron−Electron Coincidence Spectroscopy. J. Chem. Phys. 1985;82:3146–3151. doi: 10.1063/1.448212. DOI

Kociak M., Zagonel L. F.. Cathodoluminescence in the Scanning Transmission Electron Microscope. Ultramicroscopy. 2017;176:112–131. doi: 10.1016/j.ultramic.2017.03.014. PubMed DOI

Jannis D., Müller-Caspary K., Béché A., Oelsner A., Verbeeck J.. Spectroscopic Coincidence Experiments in Transmission Electron Microscopy. Appl. Phys. Lett. 2019;114:143101. doi: 10.1063/1.5092945. DOI

Jannis D., Müller-Caspary K., Béché A., Verbeeck J.. Coincidence Detection of EELS and EDX Spectral Events in the Electron Microscope. Appl. Sci. 2021;11:9058. doi: 10.3390/app11199058. DOI

Arend G., Huang G., Feist A., Yang Y., Henke J.-W., Qiu Z., Jeng H., Raja A. S., Haindl R., Wang R. N., Kippenberg T. J., Ropers C.. Electrons Herald Nonclassical Light. arXiv:2409.11300 [quant-ph] 2024:na. doi: 10.48550/arXiv.2409.11300. DOI

Preimesberger A., Bogdanov B., Bicket I. C., Rembold P., Haslinger P.. Experimental Verification of Electron-Photon Entanglement. arXiv:2504.13163 [quant-ph] 2025:na. doi: 10.48550/arXiv.2504.13163. DOI

Henke J.-W., Jeng H., Sivis M., Ropers C.. Observation of Quantum Entanglement between Free Electrons and Photons. arXiv:2504.13047 [quant-ph] 2025:na. doi: 10.48550/arXiv.2504.13047. DOI

Schwartz O., Axelrod J. J., Campbell S. L., Turnbaugh C., Glaeser R. M., Müller H.. Laser Phase Plate for Transmission Electron Microscopy. Nat. Methods. 2019;16:1016–1020. doi: 10.1038/s41592-019-0552-2. PubMed DOI PMC

Konečná A., Rotunno E., Grillo V., García de Abajo F. J., Vanacore G. M.. Single-Pixel Imaging in Space and Time with Optically Modulated Free Electrons. ACS Photonics. 2023;10:1463–1472. doi: 10.1021/acsphotonics.3c00047. PubMed DOI PMC

Rosi P., Viani L., Rotunno E., Frabboni S., Tavabi A. H., Dunin-Borkowski R. E., Roncaglia A., Grillo V.. Increasing the Resolution of Transmission Electron Microscopy by Computational Ghost Imaging. Phys. Rev. Lett. 2024;133:123801. doi: 10.1103/PhysRevLett.133.123801. PubMed DOI

Yu C.-P., Vega Ibañez F., Béché A., Verbeeck J.. Quantum Wavefront Shaping with a 48-Element Programmable Phase Plate for Electrons. SciPost Phys. 2023;15:223. doi: 10.21468/SciPostPhys.15.6.223. DOI

Kozák M., Eckstein T., Schönenberger N., Hommelhoff P.. Inelastic Ponderomotive Scattering of Electrons at a High-Intensity Optical Travelling Wave in Vacuum. Nat. Phys. 2018;14:121–125. doi: 10.1038/nphys4282. DOI

Konečná A., García de Abajo F. J.. Electron Beam Aberration Correction Using Optical Near Fields. Phys. Rev. Lett. 2020;125:030801. doi: 10.1103/PhysRevLett.125.030801. PubMed DOI

Dahan R., Gorlach A., Haeusler U., Karnieli A., Eyal O., Yousefi P., Segev M., Arie A., Eisenstein G., Hommelhoff P., Kaminer I.. Imprinting the Quantum Statistics of Photons on Free Electrons. Science. 2021;373:eabj7128. doi: 10.1126/science.abj7128. PubMed DOI

Talebi N., Lienau C.. Interference between Quantum Paths in Coherent Kapitza−Dirac Effect. New J. Phys. 2019;21:093016. doi: 10.1088/1367-2630/ab3ce3. DOI

Quesnel B., Mora P.. Theory and Simulation of the Interaction of Ultraintense Laser Pulses with Electrons in Vacuum. Phys. Rev. E. 1998;58:3719–3732. doi: 10.1103/PhysRevE.58.3719. DOI

Uesugi Y., Kozawa Y., Sato S.. Electron Round Lenses with Negative Spherical Aberration by a Tightly Focused Cylindrically Polarized Light Beam. Phys. Rev. Appl. 2021;16:223. doi: 10.1103/PhysRevApplied.16.L011002. DOI

Uesugi Y., Kozawa Y., Sato S.. Properties of Electron Lenses Produced by Ponderomotive Potential with Bessel and Laguerre−​Gaussian Beams. J. Opt. 2022;24:054013. doi: 10.1088/2040-8986/ac6524. DOI

Ebel S., Talebi N.. Inelastic Electron Scattering at a Single-Beam Structured Light Wave. Commun. Phys. 2023;6:179. doi: 10.1038/s42005-023-01300-2. PubMed DOI PMC

Yalunin S. V., Feist A., Ropers C.. Tailored High-Contrast Attosecond Electron Pulses for Coherent Excitation and Scattering. Phys. Rev. Research. 2021;3:L032036. doi: 10.1103/PhysRevResearch.3.L032036. DOI

García de Abajo F. J., Ropers C.. Spatiotemporal Electron Beam Focusing through Parallel Interactions with Shaped Optical Fields. Phys. Rev. Lett. 2023;130:246901. doi: 10.1103/PhysRevLett.130.246901. PubMed DOI

Uchida M., Tonomura A.. Generation of Electron Beams Carrying Orbital Angular Momentum. Nature. 2010;464:737–739. doi: 10.1038/nature08904. PubMed DOI

Lloyd S. M., Babiker M., Thirunavukkarasu G., Yuan J.. Electron Vortices: Beams with Orbital Angular Momentum. Rev. Mod. Phys. 2017;89:035004. doi: 10.1103/RevModPhys.89.035004. DOI

Verbeeck J., Béché A., Müller-Caspary K., Guzzinati G., Luong M. A., Den Hertog M.. Demonstration of a 2 × 2 Programmable Phase Plate for Electrons. Ultramicroscopy. 2018;190:58–65. doi: 10.1016/j.ultramic.2018.03.017. PubMed DOI

Tavabi A. H., Rosi P., Rotunno E., Roncaglia A., Belsito L., Frabboni S., Pozzi G., Gazzadi G. C., Lu P.-H., Nijland R., Ghosh M., Tiemeijer P., Karimi E., Dunin-Borkowski R. E., Grillo V.. Experimental Demonstration of an Electrostatic Orbital Angular Momentum Sorter for Electron Beams. Phys. Rev. Lett. 2021;126:094802. doi: 10.1103/PhysRevLett.126.094802. PubMed DOI

Vanacore G. M., Madan I., Berruto G., Wang K., Pomarico E., Lamb R. J., McGrouther D., Kaminer I., Barwick B., García de Abajo F. J., Carbone F.. Attosecond Coherent Control of Free-Electron Wave Functions Using Semi-Infinite Light Fields. Nat. Commun. 2018;9:2694. doi: 10.1038/s41467-018-05021-x. PubMed DOI PMC

Tsesses S., Dahan R., Wang K., Bucher T., Cohen K., Reinhardt O., Bartal G., Kaminer I.. Tunable Photon-Induced Spatial Modulation of Free Electrons. Nat. Mater. 2023;22:345–352. doi: 10.1038/s41563-022-01449-1. PubMed DOI

Madan I., Leccese V., Mazur A., Barantani F., LaGrange T., Sapozhnik A., Tengdin P. M., Gargiulo S., Rotunno E., Olaya J.-C., Kaminer I., Grillo V., García de Abajo F. J., Carbone F., Vanacore G. M.. Ultrafast Transverse Modulation of Free Electrons by Interaction with Shaped Optical Fields. ACS Photonics. 2022;9:3215–3224. doi: 10.1021/acsphotonics.2c00850. PubMed DOI PMC

Ferrari B. M., Duncan C. J. R., Yannai M., Dahan R., Rosi P., Ostroman I., Bravi M. G., Niedermayr A., Abudi T. L., Adiv Y., Fishman T., Park S. T., Masiel D., Lagrange T., Carbone F., Grillo F., García de Abajo F. J., Kaminer I., Vanacore G. M.. Realization of a Pre-Sample Photonic-based Free-Electron Modulator in Ultrafast Transmission Electron Microscopes. arXiv:2503.11313 [physics.optics] 2025:na. doi: 10.48550/arXiv.2503.11313. DOI

Vanacore G. M., Madan I., Carbone F.. Spatio-Temporal Shaping of a Free-Electron Wave Function Via Coherent Light−​Electron Interaction. Riv. Nuovo Cimento. 2020;43:567–597. doi: 10.1007/s40766-020-00012-5. DOI

Basov D. N., Averitt R. D., Hsieh D.. Towards Properties on Demand in Quantum Materials. Nat. Mater. 2017;16:1077–1088. doi: 10.1038/nmat5017. PubMed DOI

Mitrano M., Cantaluppi A., Nicoletti D.. et al. Possible Light-Induced Superconductivity in K3C60 at High Temperature. Nature. 2016;530:461–464. doi: 10.1038/nature16522. PubMed DOI PMC

Ruimy R., Gorlach A., Baranes G., Kaminer I.. Superradiant Electron Energy Loss Spectroscopy. Nano Lett. 2023;23:779–787. doi: 10.1021/acs.nanolett.2c03396. PubMed DOI

Gorlach A., Reinhardt O., Pizzi A., Ruimy R., Baranes G., Rivera N., Kaminer I.. Double-Superradiant Cathodoluminescence. Phys. Rev. A. 2024;109:023722. doi: 10.1103/PhysRevA.109.023722. DOI

Kallepalli A., Viani L., Stellinga D., Rotunno E., Bowman R., Gibson G. M., Sun M. J., Rosi P., Frabboni S., Balboni R., Migliori A., Grillo V., Padgett M. J.. Challenging Point Scanning across Electron Microscopy and Optical Imaging using Computational Imaging. Intell. Comput. 2022;2022:0001. doi: 10.34133/icomputing.0001. DOI

Chirita Mihaila M. C., Kozák M.. Design for Light-Based Spherical Aberration Correction of Ultrafast Electron Microscopes. Opt. Express. 2025;33:758–775. doi: 10.1364/OE.542930. PubMed DOI

Madan I., Dias E. J. C., Gargiulo S., Barantani F., Yannai M., Berruto G., LaGrange T., Piazza L., Lummen T. T. A., Dahan R., Kaminer I., Vanacore G. M., García de Abajo F. J., Carbone F.. Charge Dynamics Electron Microscopy: Nanoscale Imaging of Femtosecond Plasma Dynamics. ACS Nano. 2023;17:3657–3665. doi: 10.1021/acsnano.2c10482. PubMed DOI PMC

Scheel S., Buhmann S. Y.. Macroscopic QED−Concepts and Applications. Acta Phys. Slovaca. 2008;58:675–809. doi: 10.2478/v10155-010-0092-x. DOI

Rivera N., Kaminer I.. Light-Matter Interactions with Photonic Quasiparticles. Nat. Rev. Phys. 2020;2:538–561. doi: 10.1038/s42254-020-0224-2. DOI

Shiloh F.. et al. Miniature Light-Driven Nanophotonic Electron Acceleration and Control. Adv. Opt. Photon. 2022;14:862–932. doi: 10.1364/AOP.461142. DOI

Pines D.. Collective Energy Losses in Solids. Rev. Mod. Phys. 1956;28:184–196. doi: 10.1103/RevModPhys.28.184. DOI

Ginzburg V. L.. Radiation by Uniformly Moving Sources: Vavilov−Cherenkov Effect, Doppler Effect in a Medium, Transition Radiation and Associated Phenomena. Prog. Opt. 1993;32:267–312. doi: 10.1016/S0079-6638(08)70165-3. DOI

Kaminer I.. et al. Quantum Čerenkov Radiation: Spectral Cutoffs and the Role of Spin and Orbital Angular Momentum. Phys. Rev. X. 2016;6:011006. doi: 10.1103/PhysRevX.6.011006. DOI

Huang S., Duan R., Pramanik N., Herrin J. S., Boothroyd C., Liu Z., Wong L. J.. Quantum recoil in free-electron interactions with atomic lattices. Nat. Photonics. 2023;17:224–230. doi: 10.1038/s41566-022-01132-6. DOI

Dahan R., Baranes G., Gorlach H., Ruimy R., Rivera N., Kaminer I.. Creation of Optical Cat and GKP States Using Shaped Free Electrons. Phys. Rev. X. 2023;13:031001. doi: 10.1103/PhysRevX.13.031001. DOI

Adiv Y., Hu H., Tsesses S., Dahan R., Wang K., Kurman Y., Gorlach A., Chen H., Lin X., Bartal G., Kaminer I.. Observation of 2D Cherenkov Radiation. Phys. Rev. X. 2023;13:011002. doi: 10.1103/PhysRevX.13.011002. DOI

Dahan R.. et al. Resonant Phase-Matching Between a Light Wave and a Free-Electron Wavefunction. Nat. Phys. 2020;16:1123–1131. doi: 10.1038/s41567-020-01042-w. DOI

Dahan R., Gorlach A., Haeusler U., Karnieli A., Eyal O., Yousefi P., Segev M., Arie A., Eisenstein G., Hommelhoff P., Kaminer I.. Imprinting the Quantum Statistics of Photons on Free Electrons. Science. 2021;373:eabj7128. doi: 10.1126/science.abj7128. PubMed DOI

Gorlach A., Malka S., Karnieli A., Dahan R., Cohen E., Pe'er A., Kaminer I.. Photonic Quantum State Tomography Using Free Electrons. Phys. Rev. Lett. 2024;133:250801. doi: 10.1103/PhysRevLett.133.250801. PubMed DOI

Reinhardt O., Kaminer I.. Theory of Shaping Electron Wavepackets with Light. ACS Photonics. 2020;7(10):2859–2870. doi: 10.1021/acsphotonics.0c01133. DOI

Lamb W. E., Retherford R. C.. Fine Structure of the Hydrogen Atom by a Microwave Method. Phys. Rev. 1947;72:241–243. doi: 10.1103/PhysRev.72.241. DOI

Di Giulio V., García de Abajo F. J.. Electron Diffraction by Vacuum Fluctuations. New J. Phys. 2020;22:103057. doi: 10.1088/1367-2630/abbddf. DOI

Ruimy R., Tziperman O., Gorlach A., Mølmer K., Kaminer I.. Many-Body Entanglement via ‘Which-Path’ Information. npj Quantum Inf. 2024;10:121. doi: 10.1038/s41534-024-00899-6. DOI

Di Giulio V., García de Abajo F. J.. Optical-Cavity Mode Squeezing by Free Electrons. Nanophotonics. 2022;11:4659–4670. doi: 10.1515/nanoph-2022-0481. PubMed DOI PMC

Tizei L. H. G., Kociak M.. Spatially Resolved Quantum Nano-Optics of Single Photons Using an Electron Microscope. Phys. Rev. Lett. 2013;110:153604. doi: 10.1103/PhysRevLett.110.153604. PubMed DOI

Rasmussen T. P., Rodríguez Echarri A., Cox J. D., García de Abajo F. J.. Generation of Entangled Waveguided Photon Pairs by Free Electrons. Sci. Adv. 2024;10:eadn6312. doi: 10.1126/sciadv.adn6312. PubMed DOI

Koppell S. A., Simonaitis J. W., Krielaart M. A. R., Putnam W. P., Berggren K. K., Keathley P. D.. Analysis and Applications of a Heralded Electron Source. New J. Phys. 2025;27:023012. doi: 10.1088/1367-2630/ada8d0. DOI

Franssen J. G. H., de Raadt T. C. H., van Ninhuijs M. A. W., Luiten O. J.. Compact ultracold electron source based on a grating magneto-optical trap. Phys. Rev. Accel. Beams. 2019;22:023401. doi: 10.1103/PhysRevAccelBeams.22.023401. DOI

Gover A., Yariv A.. Free-Electron−Bound-Electron Resonant Interaction. Phys. Rev. Lett. 2020;124:064801. doi: 10.1103/PhysRevLett.124.064801. PubMed DOI

Preimesberger A., Hornof D., Dorfner T., Schachinger T., Hrtoň M., Konečná A., Haslinger P.. Exploring Single-Photon Recoil on Free Electrons. Phys. Rev. Lett. 2025;134:096901. doi: 10.1103/PhysRevLett.134.096901. PubMed DOI

Zhao Z.. Upper Bound for the Quantum Coupling Between Free Electrons and Photons. Phys. Rev. Lett. 2025;134:0439804. doi: 10.1103/PhysRevLett.134.043804. PubMed DOI

Xie Z., Chen Z., Li H., Yan Q., Chen H., Lin X., Kaminer I., Miller O. D., Yang Y.. Maximal Quantum Interaction Between Free Electrons and Photons. Phys. Rev. Lett. 2025;134:043803. doi: 10.1103/PhysRevLett.134.043803. PubMed DOI

Ates O. E., Slayton B. J., Putnam W. P.. Subwavelength-Modulated Silicon Photonics for Low-Energy Free-Electron-Photon Interactions. Optics Expr. 2024;32:41892–41904. doi: 10.1364/OE.537296. PubMed DOI

Hughes T., Veronis G., Wootton K. P., England R. J., Fan S.. Method for Computationally Efficient Design of Dielectric Laser Accelerator Structures. Opt. Express. 2017;25:15414–15427. doi: 10.1364/OE.25.015414. PubMed DOI

Haeusler U., Seidling M., Yousefi P., Hommelhoff P.. Boosting the Efficiency of Smith−Purcell Radiators Using Nanophotonic Inverse Design. ACS Photonics. 2022;9:664–671. doi: 10.1021/acsphotonics.1c01687. DOI

Zimmermann R., Seidling M., Hommelhoff P.. Charged Particle Guiding and Beam Splitting With Auto-Ponderomotive Potentials on a Chip. Nat. Commun. 2021;12:390. doi: 10.1038/s41467-020-20592-4. PubMed DOI PMC

England R. J., Noble R. J., Bane K., Dowell D. H., Ng C. K., Spencer J. E., Tantawi S., Wu Z., Byer R. L., Peralta E., Soong K.. et al. Dielectric Laser Accelerators. Rev. Mod. Phys. 2014;86:1337–1389. doi: 10.1103/RevModPhys.86.1337. DOI

Niedermayer U., Egenolf T., Boine-Frankenheim O., Hommelhoff P.. Alternating-Phase Focusing for Dielectric-Laser Acceleration. Phys. Rev. Lett. 2018;121:214801. doi: 10.1103/PhysRevLett.121.214801. PubMed DOI

Shiloh R., Illmer J., Chlouba T., Yousefi P., Schönenberger N., Niedermayer U., Mittelbach A., Hommelhoff P.. Electron Phase-Space Control in Photonic Chip-Based Particle Acceleration. Nature. 2021;597:498–502. doi: 10.1038/s41586-021-03812-9. PubMed DOI

Chlouba T., Shiloh R., Kraus S., Brückner L., Litzel J., Hommelhoff P.. Coherent Nanophotonic Electron Accelerator. Nature. 2023;622:476–480. doi: 10.1038/s41586-023-06602-7. PubMed DOI

Broaddus P., Egenolf T., Black D. S., Murillo M., Woodahl C., Miao Y., Niedermayer U., Byer R. L., Leedle K. J., Solgaard O.. Subrelativistic Alternating Phase Focusing Dielectric Laser Accelerators. Phys. Rev. Lett. 2024;132:085001. doi: 10.1103/PhysRevLett.132.085001. PubMed DOI

Schönenberger N., Mittelbach A., Yousefi P., McNeur J., Niedermayer U., Hommelhoff P.. Generation and Characterization of Attosecond Microbunched Electron Pulse Trains via Dielectric Laser Acceleration. Phys. Rev. Lett. 2019;123:264803. doi: 10.1103/PhysRevLett.123.264803. PubMed DOI

Black D. S., Niedermayer U., Miao Y., Zhao Z., Solgaard O., Byer R. L., Leedle K. J.. Net Acceleration and Direct Measurement of Attosecond Electron Pulses in a Silicon Dielectric Laser Accelerator. Phys. Rev. Lett. 2019;123:264802. doi: 10.1103/PhysRevLett.123.264802. PubMed DOI

Leedle K. J., Pease R. F., Byer R. L., Harris J. S.. Laser Acceleration and Deflection of 96.3 keV Electrons With a Silicon Dielectric Structure. Optica. 2015;2:158–161. doi: 10.1364/OPTICA.2.000158. PubMed DOI

Yousefi P., McNeur J., Kozák M., Niedermayer U., Gannott F., Lohse O., Boine-Frankenheim O., Hommelhoff P.. Silicon Dual Pillar Structure With a Distributed Bragg Reflector for Dielectric Laser Accelerators: Design and Fabrication. Nucl. Instrum. Meth. Phys. Res. A. 2018;909:221–223. doi: 10.1016/j.nima.2018.01.065. DOI

Niedermayer U., Egenolf T., Boine-Frankenheim O.. Three-Dimensional Alternating-Phase Focusing for Dielectric-Laser Electron Accelerators. Phys. Rev. Lett. 2020;125:164801. doi: 10.1103/PhysRevLett.125.164801. PubMed DOI

Zhao Z., Black D. S., England R. J., Hughes T. W., Miao Y., Solgaard O., Byer R. L., Fan S.. Design of a Multichannel Photonic Crystal Dielectric Laser Accelerator. Photonics Res. 2020;8:1586–1598. doi: 10.1364/PRJ.394127. DOI

Brückner L., Nauk C., Dienstbier P., Gerner C., Löhrl B., Paschen T., Hommelhoff P.. A Gold Needle Tip Array Ultrafast Electron Source with High Beam Quality. Nano Lett. 2024;24:5018–5023. doi: 10.1021/acs.nanolett.4c00870. PubMed DOI

Freimund D. L., Batelaan H.. Bragg Scattering of Free Electrons Using the Kapitza−Dirac Effect. Phys. Rev. Lett. 2002;89:283602. doi: 10.1103/PhysRevLett.89.283602. PubMed DOI

Streshkova N. L., Koutensky P., Kozák M.. Electron Vortex Beams for Chirality Probing at the Nanoscale. Phys. Rev. Appl. 2024;22:054017. doi: 10.1103/PhysRevApplied.22.054017. DOI

Streshkova N. L., Koutensky P., Novotny T., Kozák M.. Monochromatization of Electron Beams with Spatially and Temporally Modulated Optical Fields. Phys. Rev. Lett. 2024;133:213801. doi: 10.1103/PhysRevLett.133.213801. PubMed DOI

Morimoto Y., Hommelhoff P., Madsen L. B.. Coherent Scattering of an Optically Modulated Electron Beam by Atoms. Phys. Rev. A. 2021;103:043110. doi: 10.1103/PhysRevA.103.043110. DOI

Morimoto Y., Hommelhoff P., Madsen L. B.. Scattering-Asymmetry Control with Ultrafast Electron Wave Packet Shaping. arXiv:2203.13425 [physics.atom-ph] 2022:na. doi: 10.48550/arXiv.2203.13425. DOI

Morimoto Y., Madsen L. B.. Scattering of Ultrashort Electron Wave Packets: Optical Theorem, Differential Phase Contrast and Angular Asymmetries. New J. Phys. 2024;26:053012. doi: 10.1088/1367-2630/ad438b. DOI

Wang Y. H., Steinberg H., Jarillo-Herrero P., Gedik N.. Observation of Floquet-Bloch States on the Surface of a Topological Insulator. Science. 2013;342:453–457. doi: 10.1126/science.1239834. PubMed DOI

McIver J. W., Schulte B., Stein F.-U., Matsuyama T., Jotzu G., Meier G., Cavalleri A.. Light-Induced Anomalous Hall Effect in Graphene. Nat. Phys. 2020;16:38–41. doi: 10.1038/s41567-019-0698-y. PubMed DOI PMC

Wintersperger K., Braun C., Ünal F. N., Eckardt A., Liberto M. D., Goldman N., Bloch I., Aidelsburger M.. Realization of an Anomalous Floquet Topological System with Ultracold Atoms. Nat. Phys. 2020;16:1058–1063. doi: 10.1038/s41567-020-0949-y. DOI

Zhou S., Bao C., Fan B., Zhou H., Gao Q., Zhong H., Lin T., Liu H., Yu P., Tang P., Meng S., Duan W., Zhou S.. Pseudospin-Selective Floquet Band Engineering in Black Phosphorus. Nature. 2023;614:75–80. doi: 10.1038/s41586-022-05610-3. PubMed DOI

Arqué López E., Di Giulio V., García de Abajo F. J.. Atomic Floquet Physics Revealed by Free Electrons. Phys. Rev. Research. 2022;4:013241. doi: 10.1103/PhysRevResearch.4.013241. DOI

Halperin B. I., Rice T. M.. Possible Anomalies at a Semimetal-Semiconductor Transistion. Rev. Mod. Phys. 1968;40:755–766. doi: 10.1103/RevModPhys.40.755. DOI

Cercellier H., Monney C., Clerc F., Battaglia C., Despont L., Garnier M. G., Beck H., Aebi P., Patthey L., Berger H., Forró L.. Evidence for an Excitonic Insulator Phase in 1T-TiSe2 . Phys. Rev. Lett. 2007;99:146403. doi: 10.1103/PhysRevLett.99.146403. PubMed DOI

Wakisaka Y., Sudayama T., Takubo K., Mizokawa T., Arita M., Namatame H., Taniguchi M., Katayama N., Nohara M., Takagi H.. Excitonic Insulator State in Ta2NiSe5 Probed by Photoemission Spectroscopy. Phys. Rev. Lett. 2009;103:026402. doi: 10.1103/PhysRevLett.103.026402. PubMed DOI

Kogar A., Rak M. S., Vig S., Husain A. A., Flicker F., Joe Y. I., Venema L., MacDougall G. J., Chiang T. C., Fradkin E., van Wezel J., Abbamonte P.. Signatures of Exciton Condensation in a Transition Metal Dichalcogenide. Science. 2017;358:1314–1317. doi: 10.1126/science.aam6432. PubMed DOI

Jia Y., Wang P., Chiu C.-L., Song Z., Yu G., Jäck B., Lei S., Klemenz S., Cevallos F. A., Onyszczak M., Fishchenko N., Liu X., Farahi G., Xie F., Xu Y., Watanabe K., Taniguchi T., Bernevig B. A., Cava R. J., Schoop L. M., Yazdani A., Wu S.. Evidence for a Monolayer Excitonic Insulator. Nat. Phys. 2022;18:87–93. doi: 10.1038/s41567-021-01422-w. DOI

Baldini E., Zong A., Choi D., Lee C., Michael M. H., Windgaetter L., Mazin I. I., Latini S., Azoury D., Lv B., Kogar A., Su Y., Wang Y., Lu Y., Takayama T., Takagi H., Millis A. J., Rubio A., Demler E., Gedik N.. The Spontaneous Symmetry Breaking in Ta2NiSe5 Is Structural in Nature. Proc. Natl. Acad. Sci. U. S. A. 2023;120:e2221688120. doi: 10.1073/pnas.2221688120. PubMed DOI PMC

Little W. A.. Possibility of Synthesizing an Organic Superconductor. Phys. Rev. 1964;134:A1416–A1424. doi: 10.1103/PhysRev.134.A1416. DOI

Allender D., Bray J., Bardeen J.. Model for an Exciton Mechanism of Superconductivity. Phys. Rev. B. 1973;7:1020–1029. doi: 10.1103/PhysRevB.7.1020. DOI

Barantani F., Tran M. K., Madan I., Kapon I., Bachar N., Asmara T. C., Paris E., Tseng Y., Zhang W., Hu Y., Giannini E., Gu G., Devereaux T. P., Berthod C., Carbone F., Schmitt T., van der Marel D.. Resonant Inelastic X-Ray Scattering Study of Electron-Exciton Coupling in High-Tc Cuprates. Phys. Rev. X. 2022;12:021068. doi: 10.1103/PhysRevX.12.021068. DOI

Kang S., Kim K., Kim B. H., Kim J., Sim K. I., Lee J.-U., Lee S., Park K., Yun S., Kim T., Nag A., Walters A., Garcia-Fernandez M., Li J., Chapon L., Zhou K.-J., Son Y.-W., Kim J. H., Cheong H., Park J.-G.. Coherent Many-Body Exciton in van Der Waals Antiferromagnet NiPS3. Nature. 2020;583:785–789. doi: 10.1038/s41586-020-2520-5. PubMed DOI

Belvin C. A., Baldini E., Ozel I. O., Mao D., Po H. C., Allington C. J., Son S., Kim B. H., Kim J., Hwang I., Kim J. H., Park J.-G., Senthil T., Gedik N.. Exciton-Driven Antiferromagnetic Metal in a Correlated van Der Waals Insulator. Nat. Commun. 2021;12:4837. doi: 10.1038/s41467-021-25164-8. PubMed DOI PMC

Occhialini C. A., Tseng Y., Elnaggar H., Song Q., Blei M., Tongay S. A., Bisogni V., de Groot F. M. F., Pelliciari J., Comin R.. Nature of Excitons and Their Ligand-Mediated Delocalization in Nickel Dihalide Charge-Transfer Insulators. Phys. Rev. X. 2024;14:031007. doi: 10.1103/PhysRevX.14.031007. DOI

He W., Shen Y., Wohlfeld K., Sears J., Li J., Pelliciari J., Walicki M., Johnston S., Baldini E., Bisogni V., Mitrano M., Dean M. P. M.. Magnetically Propagating Hund’s Exciton in van Der Waals Antiferromagnet NiPS3. Nat. Commun. 2024;15:3496. doi: 10.1038/s41467-024-47852-x. PubMed DOI PMC

Morimoto Y.. Attosecond Electron-Beam Technology: A Review of Recent Progress. Microscopy. 2023;72:2–17. doi: 10.1093/jmicro/dfac054. PubMed DOI

Kazimierczuk T., Fröhlich D., Scheel S., Stolz H., Bayer M.. Giant Rydberg Excitons in the Copper Oxide Cu2O. Nature. 2014;514:343–347. doi: 10.1038/nature13832. PubMed DOI

Orfanakis K., Rajendran S. K., Walther V., Volz T., Pohl T., Ohadi H.. Rydberg Exciton−Polaritons in a Cu2O Microcavity. Nat. Mater. 2022;21:767–772. doi: 10.1038/s41563-022-01230-4. PubMed DOI

Woo S. Y., Tizei L. H. G.. Nano-Optics of Transition Metal Dichalcogenides and Their van Der Waals Heterostructures with Electron Spectroscopies. 2D Mater. 2025;12:012001. doi: 10.1088/2053-1583/ad97c8. DOI

Coenen T., Haegel N. M.. Cathodoluminescence for the 21st Century: Learning More from Light. Appl. Phys. Rev. 2017;4:031103. doi: 10.1063/1.4985767. DOI

Chahshouri F., Taleb M., Diekmann F. K., Rossnagel K., Talebi N.. Interaction of Excitons with Cherenkov Radiation in WSe 2 beyond the Non-Recoil Approximation. J. Phys. D . Appl. Phys. 2022;55:145101. doi: 10.1088/1361-6463/ac453a. DOI

Taleb M., Davoodi F., Diekmann F. K., Rossnagel K., Talebi N.. Charting the Exciton−Polariton Landscape of WSe 2 Thin Flakes by Cathodoluminescence Spectroscopy. Adv. Photonics Res. 2022;3:2100124. doi: 10.1002/adpr.202100124. DOI

Tizei L. H. G., Lin Y.-C., Lu A.-Y., Li L.-J., Suenaga K.. Electron Energy Loss Spectroscopy of Excitons in Two-Dimensional-Semiconductors as a Function of Temperature. Appl. Phys. Lett. 2016;108:163107. doi: 10.1063/1.4947058. DOI

Guthrey H., Moseley J.. A Review and Perspective on Cathodoluminescence Analysis of Halide Perovskites. Adv. Energy Mater. 2020;10:1903840. doi: 10.1002/aenm.201903840. DOI

Shahmohammadi M., Jacopin G., Fu X., Ganière J.-D., Yu D., Deveaud B.. Exciton Hopping Probed by Picosecond Time-Resolved Cathodoluminescence. Appl. Phys. Lett. 2015;107:1411001. doi: 10.1063/1.4932098. DOI

Rossouw D., Botton G. A., Najafi E., Lee V., Hitchcock A. P.. Metallic and Semiconducting Single-Walled Carbon Nanotubes: Differentiating Individual SWCNTs by Their Carbon 1s Spectra. ACS Nano. 2012;6:10965–10972. doi: 10.1021/nn3045227. PubMed DOI

Tizei L. H. G., Lin Y.-C., Mukai M., Sawada H., Lu A.-Y., Li L.-J., Kimoto K., Suenaga K.. Exciton Mapping at Subwavelength Scales in Two-Dimensional Materials. Phys. Rev. Lett. 2015;114:107601. doi: 10.1103/PhysRevLett.114.107601. PubMed DOI

Corfdir P., Ristić J., Lefebvre P., Zhu T., Martin D., Dussaigne A., Ganière J. D., Grandjean N., Deveaud-Plédran B.. Low-Temperature Time-Resolved Cathodoluminescence Study of Exciton Dynamics Involving Basal Stacking Faults in a-Plane GaN. Appl. Phys. Lett. 2009;94:201115. doi: 10.1063/1.3142396. DOI

Kim Y.-J., Kwon O.-H.. Cathodoluminescence in Ultrafast Electron Microscopy. ACS Nano. 2021;15:19480–19489. doi: 10.1021/acsnano.1c06260. PubMed DOI

Talebi N.. Spectral Interferometry with Electron Microscopes. Sci. Rep. 2016;6:33874. doi: 10.1038/srep33874. PubMed DOI PMC

Talebi N., Meuret S., Guo S., Hentschel M., Polman A., Giessen H., van Aken P. A.. Merging Transformation Optics with Electron-Driven Photon Sources. Nat. Commun. 2019;10:599. doi: 10.1038/s41467-019-08488-4. PubMed DOI PMC

Ramsey N. F.. A Molecular Beam Resonance Method with Separated Oscillating Fields. Phys. Rev. 1950;78:695–699. doi: 10.1103/PhysRev.78.695. DOI

Raimond, J.-M. ; Haroche, S. . Monitoring the Decoherence of Mesoscopic Quantum Superpositions in a Cavity. Quantum Decoherence; Birkhäuser: Basel, 2006; pp 33−83.

Susarla S., Naik M. H., Blach D. D., Zipfel J., Taniguchi T., Watanabe K., Huang L., Ramesh R., da Jornada F. H., Louie S. G., Ercius P., Raja A.. Hyperspectral Imaging of Exciton Confinement within a Moiré Unit Cell with a Subnanometer Electron Probe. Science. 2022;378:1235–1239. doi: 10.1126/science.add9294. PubMed DOI

Borghi M. T. A., Wilson N. R.. Cathodoluminescence from Interlayer Excitons in a 2D Semiconductor Heterobilayer. Nanotechnology. 2024;35:465203. doi: 10.1088/1361-6528/ad70b3. PubMed DOI

Naito H., Makino Y., Zhang W., Ogawa T., Endo T., Sannomiya T., Kaneda M., Hashimoto K., Lim H. E., Nakanishi Y., Watanabe K., Taniguchi T., Matsuda K., Miyata Y.. High-Throughput Dry Transfer and Excitonic Properties of Twisted Bilayers Based on CVD-Grown Transition Metal Dichalcogenides. Nanoscale Adv. 2023;5:5115–5121. doi: 10.1039/D3NA00371J. PubMed DOI PMC

Ramsden H., Sarkar S., Wang Y., Zhu Y., Kerfoot J., Alexeev E. M., Taniguchi T., Watanabe K., Tongay S., Ferrari A. C., Chhowalla M.. Nanoscale Cathodoluminescence and Conductive Mode Scanning Electron Microscopy of van Der Waals Heterostructures. ACS Nano. 2023;17:11882–11891. doi: 10.1021/acsnano.3c03261. PubMed DOI PMC

Davoodi F., Taleb M., Diekmann F. K., Coenen T., Rossnagel K., Talebi N.. Tailoring the Band Structure of Plexcitonic Crystals by Strong Coupling. ACS Photonics. 2022;9:2473–2482. doi: 10.1021/acsphotonics.2c00586. DOI

Vu D. T., Matthaiakakis N., Sannomiya T.. Plasmonic Nanopyramid Array Enhancing Luminescence of MoS 2 Investigated by Cathodoluminescence. Adv. Opt. Mater. 2023;11:2300598. doi: 10.1002/adom.202300598. DOI

Fiedler S., Morozov S., Iliushyn L., Boroviks S., Thomaschewski M., Wang J., Booth T. J., Stenger N., Wolff C., Mortensen N. A.. Photon Superbunching in Cathodoluminescence of Excitons in WS 2 Monolayer. 2D Mater. 2023;10:021002. doi: 10.1088/2053-1583/acbf66. DOI

Maciel-Escudero C., Yankovich A. B., Munkhbat B., Baranov D. G., Hillenbrand R., Olsson E., Aizpurua J., Shegai T. O.. Probing Optical Anapoles with Fast Electron Beams. Nat. Commun. 2023;14:8478. doi: 10.1038/s41467-023-43813-y. PubMed DOI PMC

Gonçalves P. A. D., García de Abajo F. J.. Interrogating Quantum Nonlocal Effects in Nanoplasmonics through Electron-Beam Spectroscopy. Nano Lett. 2023;23:4242–4249. doi: 10.1021/acs.nanolett.3c00298. PubMed DOI

Milagres de Oliveira T., Albrecht W., González-Rubio G., Altantzis T., Lobato Hoyos I. P., Béché A., Van Aert S., Guerrero-Martínez A., Liz-Marzán L. M., Bals S.. 3D Characterization and Plasmon Mapping of Gold Nanorods Welded by Femtosecond Laser Irradiation. ACS Nano. 2020;14:12558–12570. doi: 10.1021/acsnano.0c02610. PubMed DOI

Song J. H., Raza S., van de Groep J., Kang J. H., Li Q., Kik P. G., Brongersma M. L.. Nanoelectromechanical modulation of a strongly-coupled plasmonic dimer. Nat. Commun. 2021;12:48. doi: 10.1038/s41467-020-20273-2. PubMed DOI PMC

Baldi A., Askes S. H. C.. Pulsed Photothermal Heterogeneous Catalysis. ACS Catal. 2023;13:3419–3432. doi: 10.1021/acscatal.2c05435. PubMed DOI PMC

Zhang F., Liu W.. Recent Progress of Operando Transmission Electron Microscopy in Heterogeneous Catalysis. Microstructures. 2024;4:2024041. doi: 10.20517/microstructures.2024.03. DOI

Swearer D. F., Bourgeois B. B., Angell D. K., Dionne J. A.. Advancing Plasmon-Induced Selectivity in Chemical Transformations with Optically Coupled Transmission Electron Microscopy. Acc. Chem. Res. 2021;54:3632–3642. doi: 10.1021/acs.accounts.1c00309. PubMed DOI

Yang W. D., Wang C., Fredin L. A., Lin P. A., Shimomoto L., Lezec H. J., Sharma R.. Site-Selective CO Disproportionation Mediated by Localized Surface Plasmon Resonance Excited by Electron Beam. Nat. Mater. 2019;18:614–619. doi: 10.1038/s41563-019-0342-3. PubMed DOI PMC

Miller B. K., Crozier P. A.. Linking Changes in Reaction Kinetics and Atomic-Level Surface Structures on a Supported Ru Catalyst for CO Oxidation. ACS Catal. 2021;11:1456–1463. doi: 10.1021/acscatal.0c03789. DOI

Shen T. H., Spillane L., Peng J., Shao-Horn Y., Tileli V.. Switchable Wetting of Oxygen-Evolving Oxide Catalysts. Nat. Catal. 2022;5:30–36. doi: 10.1038/s41929-021-00723-w. PubMed DOI PMC

Singla S., Joshi P., López-Morales G. I., Sarkar S., Sarkar S., Flick J., Chakraborty B.. Probing Correlation of Optical Emission and Defect Sites in Hexagonal Boron Nitride by High-Resolution STEM-EELS. Nano Lett. 2024;24:9212–9220. doi: 10.1021/acs.nanolett.4c01477. PubMed DOI

Curie D., Krogel J. T., Cavar L., Solanki A., Upadhyaya P., Li T., Pai Y. Y., Chilcote M., Iyer V., Puretzky A., Ivanov I., Du M. H., Reboredo F., Lawrie B.. Correlative Nanoscale Imaging of Strained hBN Spin Defects. ACS Appl. Mater. Interfaces. 2022;14:41361–41368. doi: 10.1021/acsami.2c11886. PubMed DOI

Angell D. K., Li S., Utzat H., Thurston M. L. S., Liu Y., Dahl J., Carlson R., Shen Z., Melosh N., Sinclair R., Dionne J. A.. Unravelling Sources of Emission Heterogeneity in Silicon Vacancy Color Centers with Cryo-Cathodoluminescence Microscopy. Proc. Natl. Acad. Sci. U. S. A. 2024;121:e2308247121. doi: 10.1073/pnas.2308247121. PubMed DOI PMC

Gale A., Li C., Chen Y., Watanabe K., Taniguchi T., Aharonovich I., Toth M.. Site-Specific Fabrication of Blue Quantum Emitters in Hexagonal Boron Nitride. ACS Photonics. 2022;9:2170–2177. doi: 10.1021/acsphotonics.2c00631. DOI

Egerton R. F., Watanabe M.. Characterization of Single-Atom Catalysts by EELS and EDX Spectroscopy. Ultramicroscopy. 2018;193:111–117. doi: 10.1016/j.ultramic.2018.06.013. PubMed DOI

Barwick B., Zewail A. H.. Photonics and Plasmonics in 4D Ultrafast Electron Microscopy. ACS Photonics. 2015;2:1391–1402. doi: 10.1021/acsphotonics.5b00427. DOI

Meng Y., Zhou Y., Wang X., Wei W., Hu Y., Chen B., Zhong D.. Direct Nanosecond Multiframe Imaging of Irreversible Dynamics in 4D Electron Microscopy. Nano Lett. 2024;24:7219–7226. doi: 10.1021/acs.nanolett.4c01025. PubMed DOI

Atre A. C., Brenny J. M. B., Coenen Y., García-Etxarri A., Polman A., Dionne J. A.. Nanoscale Optical Tomography with Cathodoluminescence Spectroscopy. Nat. Nanotechnol. 2015;10:429–436. doi: 10.1038/nnano.2015.39. PubMed DOI

Collins S. M., Midgley P. A.. Progress and Opportunities in EELS and EDS Tomography. Ultramicroscopy. 2017;180:133–141. doi: 10.1016/j.ultramic.2017.01.003. PubMed DOI

Li C., Tardajos A. P., Wang D., Choukroun D., Van Daele K., Breugelmans T., Bals S.. A Simple Method to Clean Ligand Contamination on TEM Grids. Ultramicroscopy. 2021;221:113195. doi: 10.1016/j.ultramic.2020.113195. PubMed DOI

Gault B., Schweinar K., Zhang S., Lahn L., Scheu C., Kim S.-H., Kasian O.. Correlating Atom Probe Tomography with X-Ray and Electron Spectroscopies to Understand Microstructure-Activity Relationships in Electrocatalysis. MRS Bulletin Rev. 2022;47:718–726. doi: 10.1557/s43577-022-00373-8. DOI

Dieperink M., Scalerandi F., Albrecht W.. Correlating Structure, Morphology and Properties of Metal Nanostructures by Combining Single-Particle Optical Spectroscopy and Electron Microscopy. Nanoscale. 2022;14:7460–7472. doi: 10.1039/D1NR08130F. PubMed DOI

Dieperink M., Skorikov A., Claes N., Bals S., Albrecht W.. Considerations for Electromagnetic Simulations for a Quantitative Correlation of Optical Spectroscopy and Electron Tomography of Plasmonic Nanoparticles. Nanophotonics. 2024;13:4647–4665. doi: 10.1515/nanoph-2024-0238. DOI

Chao H. Y., Venkatraman K., Moniri S., Jiang Y., Tang X., Dai S., Gao W., Miao J., Chi M.. In Situ Emerging Transmission Electron Microscopy for Catalysis Research. Chem. Rev. 2023;123(12):8347–8394. doi: 10.1021/acs.chemrev.2c00880. PubMed DOI

Ibáñez F. V., Verbeeck J.. Retrieval of Phase Information from Low-Dose Electron Microscopy Experiments: Are We at the Limit Yet? Microsc. Microanal. 2025;31:ozae125. doi: 10.1093/mam/ozae125. PubMed DOI

Hoppe W.. Beugung im Inhomogenen Primärstrahlwellenfeld. I. Prinzip einer Phasenmessung von Elektronenbeungungsinterferenzen. Acta Crystallogr. A. 1969;25:495–501. doi: 10.1107/S0567739469001045. DOI

Hoppe W., Strube G.. Beugung in Inhomogenen Primärstrahlenwellenfeld. II. Lichtoptische Analogieversuche zur Phasenmessung von Gitterinterferenzen. Acta Crystallogr. A. 1969;25:502–507. doi: 10.1107/S0567739469001057. DOI

Hoppe W.. Beugung im Inhomogenen Primärstrahlwellenfeld. III. Amplituden- und Phasenbestimmung bei Unperiodischen Objekten. Acta Crystallogr. A. 1969;25:508–514. doi: 10.1107/S0567739469001069. DOI

Miao J., Sayre D., Chapman H. N.. Phase Retrieval from the Magnitude of the Fourier Transforms of Nonperiodic Objects. J. Opt. Soc. Am. A. 1998;15:1662–1669. doi: 10.1364/JOSAA.15.001662. DOI

McCallum B., Rodenburg J.. Two-Dimensional Demonstration of Wigner Phase-Retrieval Microscopy in the STEM Configuration. Ultramicroscopy. 1992;45:371–380. doi: 10.1016/0304-3991(92)90149-E. DOI

Nellist P. D., McCallum B. C., Rodenburg J. M.. Resolution beyond the ’Information Limit’ in Transmission Electron Microscopy. Nature. 1995;374:630–632. doi: 10.1038/374630a0. DOI

Chapman H. N.. Phase-Retrieval X-ray Microscopy by Wigner-Distribution Deconvolution. Ultramicroscopy. 1996;66:153–172. doi: 10.1016/S0304-3991(96)00084-8. DOI

Hao B., Ding Z., Tao X., Nellist P. D., Assender H. E.. Atomic-Scale Imaging of Polyvinyl Alcohol Crystallinity Using Electron Ptychography. Polymer. 2023;284:126305. doi: 10.1016/j.polymer.2023.126305. DOI

Dong Z., Zhang E., Jiang Y., Zhang Q., Mayoral A., Jiang H., Ma Y.. Atomic-Level Imaging of Zeolite Local Structures Using Electron Ptychography. J. Am. Chem. Soc. 2023;145:6628–6632. doi: 10.1021/jacs.2c12673. PubMed DOI

Zhou L., Song J., Kim J. S., Pei X., Huang C., Boyce M., Mendonca L., Clare D., Siebert A., Allen C. S., Liberti E., Stuart D., Pan X., Nellist P. D., Zhang P., Kirkland A. I., Wang P.. Low-Dose Phase Retrieval of Biological Specimens Using Cryo-Electron Ptychography. Nat. Commun. 2020;11:2773. doi: 10.1038/s41467-020-16391-6. PubMed DOI PMC

Scheid A., Wang Y., Jung M., Heil T., Moia D., Maier J., van Aken P. A.. Electron Ptychographic Phase Imaging of Beam-Sensitive All-Inorganic Halide Perovskites Using Four-Dimensional Scanning Transmission Electron Microscopy. Microsc. Microanal. 2023;29:869–878. doi: 10.1093/micmic/ozad017. PubMed DOI

Eschen W., Loetgering L., Schuster V., Klas R., Kirsche A., Berthold L., Steinert M., Pertsch T., Gross H., Krause M., Limpert J., Rothhardt J.. Material-specific High-resolution Table-top Extreme Ultraviolet Microscopy. Light: Sci. Appl. 2022;11:117. doi: 10.1038/s41377-022-00797-6. PubMed DOI PMC

Stockmar M., Cloetens P., Zanette I., Enders B., Dierolf M., Pfeiffer F., Thibault P.. Near-field ptychography: Phase retrieval for Inline Holography Using a Structured Illumination. Sci. Rep. 2013;3:1927. doi: 10.1038/srep01927. PubMed DOI PMC

Dierolf M., Menzel A., Thibault P., Schneider P., Kewish C. M., Wepf R., Bunk O., Pfeiffer F.. Ptychographic X-ray Computed Tomography at the Nanoscale. Nature. 2010;467:436–439. doi: 10.1038/nature09419. PubMed DOI

Batey D. J., Cipiccia S., Van Assche F., Vanheule S., Vanmechelen J., Boone M. N., Rau C.. Spectroscopic Imaging with Single Acquisition Ptychography and a Hyperspectral Detector. Sci. Rep. 2019;9:12278. doi: 10.1038/s41598-019-48642-y. PubMed DOI PMC

Rodenburg J. M., Bates R. H. T.. The Theory of Super-resolution Electron Microscopy via Wigner-distribution Deconvolution. Philos. Trans. R. Soc. London. Series A: Phys. Eng. Sci. 1992;339:521–553.

Rodenburg J., McCallum B., Nellist P.. Experimental Tests on Double-resolution Coherent Imaging via STEM. Ultramicroscopy. 1993;48:304–314. doi: 10.1016/0304-3991(93)90105-7. DOI

Faulkner H. M., Rodenburg J. M.. Movable Aperture Lensless Transmission Microscopy: A Novel Phase Retrieval Algorithm. Phys. Rev. Lett. 2004;93:023903. doi: 10.1103/PhysRevLett.93.023903. PubMed DOI

Maiden A. M., Rodenburg J. M.. An Improved Ptychographical Phase Retrieval Algorithm for Diffractive Imaging. Ultramicroscopy. 2009;109:1256–1262. doi: 10.1016/j.ultramic.2009.05.012. PubMed DOI

Guizar-Sicairos M., Fienup J. R.. Phase Retrieval with Transverse Translation Diversity: a Nonlinear Optimization Approach. Opt. Exp. 2008;16:7264–7278. doi: 10.1364/OE.16.007264. PubMed DOI

Wei X., Urbach H. P., Coene W. M.. Cramér-Rao Lower Bound and Maximum-likelihood Estimation in Ptychography with Poisson noise. Phys. Rev. A. 2020;102:043516. doi: 10.1103/PhysRevA.102.043516. DOI

Bouchet D., Dong J., Maestre D., Juffmann T.. Fundamental Bounds on the Precision of Classical Phase Microscopes. Phys. Rev. Appl. 2021;15:024047. doi: 10.1103/PhysRevApplied.15.024047. DOI

Koppell S., Kasevich M.. Information Transfer as a Framework for Optimized Phase Imaging. Optica. 2021;8:493. doi: 10.1364/OPTICA.412129. DOI

Dwyer C., Paganin D. M.. Quantum and Classical Fisher Information in Four-dimensional Scanning Transmission Electron Microscopy. Phys. Rev. B. 2024;110:024110. doi: 10.1103/PhysRevB.110.024110. DOI

Godard P., Allain M., Chamard V., Rodenburg J.. Noise Models for Low Counting Rate Coherent Diffraction Imaging. Opt. Exp. 2012;20:25914–25934. doi: 10.1364/OE.20.025914. PubMed DOI

Katkovnik V., Astola J.. Sparse Ptychographical Coherent Diffractive Imaging from Noisy Measurements. J. Opt. Soc. Am. A. 2013;30:367–379. doi: 10.1364/JOSAA.30.000367. PubMed DOI

Jannis D., Hofer C., Gao C., Xie X., Béché A., Pennycook T., Verbeeck J.. Event Driven 4D STEM Acquisition with a Timepix3 Detector: Microsecond Dwell Time and Faster Scans for High Precision and Low Dose Applications. Ultramicroscopy. 2022;233:113423. doi: 10.1016/j.ultramic.2021.113423. PubMed DOI

Humphry M., Kraus B., Hurst A., Maiden A., Rodenburg J.. Ptychographic Electron Microscopy Using High-angle Dark-field Scattering for Sub-nanometre Resolution Imaging. Nat. Commun. 2012;3:730. doi: 10.1038/ncomms1733. PubMed DOI PMC

Strauch A., Weber D., Clausen A., Lesnichaia A., Bangun A., März B., Lyu F. J., Chen Q., Rosenauer A., Dunin-Borkowski R., Müller-Caspary K.. Live Processing of Momentum-resolved STEM Data for First Moment Imaging and Ptychography. Microsc. Microanal. 2021;27:1078–1092. doi: 10.1017/S1431927621012423. DOI

Pei X., Zhou L., Huang C., Boyce M., Kim J. S., Liberti E., Hu Y., Sasaki T., Nellist P. D., Zhang P., Stuart D. I., Kirkland A. I., Wang P.. Cryogenic Electron Ptychographic Single Particle Analysis with Wide Bandwidth Information Transfer. Nat. Commun. 2023;14:3027. doi: 10.1038/s41467-023-38268-0. PubMed DOI PMC

Ruska E.. The Development of the Electron Microscopy and of Electron Microscopy (Nobel Lecture) Rev. Mod. Phys. 1987;59:627–684. doi: 10.1103/RevModPhys.59.627. DOI

Osorio C. I., Coenen T., Brenny B. J. M., Polman A., Koenderink F.. Angle-Resolved Cathodoluminescence Imaging Polarimetry. ACS Photonics. 2016;3:147–154. doi: 10.1021/acsphotonics.5b00596. DOI

Honda M., Yamamoto N.. Size Dependence of Surface Plasmon Modes in One-Dimensional Plasmonic Crystal Cavities. Opt. Express. 2013;21:11973–11983. doi: 10.1364/OE.21.011973. PubMed DOI

Mignuzzi S.. et al. Energy-Momentum Cathodoluminescence Spectroscopy of Dielectric Nanostructures. ACS Photonics. 2018;5:1381–1387. doi: 10.1021/acsphotonics.7b01404. DOI

Moerland R. J., Weppelman I. G. C., Garming M. W. H., Kruit P., Hoogenboom J. P.. Time-Resolved Cathodoluminescence Microscopy with Sub-Nanosecond Beam Blanking for Direct Evaluation of the Local Density of States. Opt. Express. 2016;24:24760. doi: 10.1364/OE.24.024760. PubMed DOI

Ando T., Bhamidimarri S. P., Brending N., Colin-York H., Collinson L., De Jonge N., de Pablo P. J., Debroye E., Eggeling C., Franck C.. et al. The 2018 correlative microscopy techniques roadmap. J. Phys. D: Appl. Phys. 2018;51:443001. doi: 10.1088/1361-6463/aad055. PubMed DOI PMC

Ura K., Morimura N.. Generation of Picosecond Pulse Electron Beams. J. Vac. Sci. Technol. 1973;10:948–950. doi: 10.1116/1.1318522. DOI

Oldfield L. C.. A Rotationally Symmetric Electron Beam Chopper for Picosecond pulses. J. Phys. E: Sci. Instrum. 1976;9:455. doi: 10.1088/0022-3735/9/6/011. DOI

Bostanjoglo O., Rosin T.. Stroboscopic Study on Ultrasonic Activity in Electron-Microscope. Mikroskopie. 1976;32:190.

Bostanjoglo O., Elschner R., Mao Z., Nink T., Weingärtner M.. Nanosecond Electron Microscopes. Ultramicroscopy. 2000;81:141–147. doi: 10.1016/S0304-3991(99)00180-1. PubMed DOI

LaGrange T., Campbell G. H., Colvin J. D., Reed B., King W. E.. Nanosecond Time Resolved Electron Diffraction Studies of the α→β in Pure Ti Thin Films Using the Dynamic Transmission Electron Microscope (DTEM) J. Mater. Sci. 2006;41:4440–4444. doi: 10.1007/s10853-006-0090-z. DOI

May P., Halbout J.-M., Chiu G.. Picosecond Photoelectron Scanning Electron Microscope for Noncontact Testing of Integrated Circuits. Appl. Phys. Lett. 1987;51:145–147. doi: 10.1063/1.98596. DOI

Yang D.-S., Mohammed O. F., Zewail A. H.. Scanning Ultrafast Electron Microscopy. Proc. Natl. Acad. Sci. U.S.A. 2010;107:14993–14998. doi: 10.1073/pnas.1009321107. PubMed DOI PMC

van Rens J. F. M, Verhoeven W., Kieft E. R., Mutsaers P. H. A., Luiten O. J.. Dual Mode Microwave Deflection Cavities for Ultrafast Electron Microscopy. Appl. Phys. Lett. 2018;113:163104. doi: 10.1063/1.5049806. DOI

Kieft E., Shánl O., Bongiovanni G., Van Cappellen E.. Reaching Sub-picosecond Time Resolution in Ultrafast TEM Without Photoemission. Microsc. Microanal. 2024;30:1446.

Market Research Community. Electron Microscope Market Insights. https://marketresearchcommunity.com/electron-microscope-market/ (accessed 2024−10−10).

Weng S., Li Y., Wang X.. Cryo-EM for Battery Materials and Interfaces: Workflow, Achievements, and Perspectives. iScience. 2021;24:103402. doi: 10.1016/j.isci.2021.103402. PubMed DOI PMC

Faruqi A. R., McMullan G.. Direct Imaging Detectors for Electron Microscopy. Nucl. Instrum. Methods Phys. Res. 2018;878:180–190. doi: 10.1016/j.nima.2017.07.037. DOI

Yücelen E., Lazić I., Bosch E. G. T.. Phase Contrast Scanning Transmission Electron Microscopy Imaging of Light and Heavy Atoms at the Limit of Contrast and Resolution. Sci. Rep. 2018;8:2676. doi: 10.1038/s41598-018-20377-2. PubMed DOI PMC

Li G., Zhang H., Han Y.. 4D-STEM Ptychography for Electron-Beam-Sensitive Materials. ACS Cent. Sci. 2022;8:1579–1588. doi: 10.1021/acscentsci.2c01137. PubMed DOI PMC

Velazco A., Béché A., Jannis D., Verbeeck J.. Reducing Electron Beam Damage through Alternative STEM Scanning Strategies, Part I: Experimental Findings. Ultramicroscopy. 2022;232:113398. doi: 10.1016/j.ultramic.2021.113398. PubMed DOI

Axelrod J. J., Zhang J. T., Petrov P. N., Glaeser R. M., Müller H.. Modern Approaches to Improving Phase Contrast Electron Microscopy. Curr. Opin. Struct. Biol. 2024;86:102805. doi: 10.1016/j.sbi.2024.102805. PubMed DOI

Rezus Y. L. Z., Walt S. G., Lettow R., Renn A., Zumofen G., Götzinger S., Sandoghdar V.. Single-Photon Spectroscopy of a Single Molecule. Phys. Rev. Lett. 2012;108:093601. doi: 10.1103/PhysRevLett.108.093601. PubMed DOI

Powell C. J., Swan J. B.. Origin of the Characteristic Electron Energy Losses in Aluminum. Phys. Rev. 1959;115:869–875. doi: 10.1103/PhysRev.115.869. DOI

García de Abajo F. J.. et al. Roadmap for Quantum Nanophotonics with Free Electrons. arXiv:2503.14678 [cond-mat.mes-hall] 2025:na. doi: 10.48550/arXiv.2503.14678. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...