Roadmap for Quantum Nanophotonics with Free Electrons
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
40978571
PubMed Central
PMC12447556
DOI
10.1021/acsphotonics.5c00585
Knihovny.cz E-zdroje
- Klíčová slova
- electron microscopy, electron−light interactions, materials science, quantum physics, ultrafast phenomena,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Over the past century, continuous advancements in electron microscopy have enabled the synthesis, control, and characterization of high-quality free-electron beams. These probes carry an evanescent electromagnetic field that can drive localized excitations and provide high-resolution information on material structures and their optical responses, currently reaching the sub-Å and few-meV regime. Moreover, combining free electrons with pulsed light sources in ultrafast electron microscopy adds temporal resolution in the subfemtosecond range while offering enhanced control of the electron wave function. Beyond their exceptional capabilities for time-resolved spectromicroscopy, free electrons are emerging as powerful tools in quantum nanophotonics, on par with photons in their ability to carry and transfer quantum information, create entanglement within and with a specimen, and reveal previously inaccessible details on nanoscale quantum phenomena. This Roadmap outlines the current state of this rapidly evolving field, highlights key challenges and opportunities, and discusses future directions through a collection of topical sections prepared by leading experts.
Center for Nanophotonics NWO Institute AMOLF 1098 XG Amsterdam The Netherlands
Delmic B 5 Oostsingel 209 2612 HL Delft The Netherlands
Faculty of Mathematics and Physics Charles University Ke Karlovu 3 Prague 12116 Czech Republic
fourth Physical InstituteSolids and Nanostructures University of Göttingen 37077 Göttingen Germany
Institute of Applied Physics Hebrew University of Jerusalem Jerusalem 9190401 Israel
Institute of Experimental and Applied Physics Kiel University 24098 Kiel Germany
Institute of Physics École Polytechnique Fédérale de Lausanne Lausanne 1015 Switzerland
Kiel Nano Surface and Interface Science KiNSIS Kiel University 24118 Kiel Germany
Physics Department Friedrich Alexander Universität Erlangen Nürnberg D 91058 Erlangen Germany
RIKEN Cluster for Pioneering Research 2 1 Hirosawa Wako Saitama 351 0198 Japan
Thermo Fisher Scientific Achtseweg Noord 5 5651 GG Eindhoven The Netherlands
Universität Konstanz Fachbereich Physik Universitätsstraße 10 78464 Konstanz Germany
Université Paris Saclay CNRS Laboratoire de Physique des Solides 91405 Orsay France
Zobrazit více v PubMed
Spence, J. C. H. High-Resolution Electron Microscopy; Oxford University Press: Oxford, 2013.
Dellby N., Lovejoy T., Corbin G., Johnson N., Hayner R., Hoffman M., Hrncrik P., Plotkin-Swing B., Taylor D., Krivanek O.. Ultra-High Energy Resolution EELS. Microsc. Microanal. 2020;26:1804–1805. doi: 10.1017/S1431927620019406. DOI
Zhu D., Robert A., Henighan T., Lemke H. T., Chollet M., Glownia J. M., Reis D. A., Trigo M.. Phonon Spectroscopy with Sub-MeV Resolution by Femtosecond x-Ray Diffuse Scattering. Phys. Rev. B. 2015;92:054303. doi: 10.1103/PhysRevB.92.054303. DOI
Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope; Plenum Press, 1996.
García de Abajo F. J.. Optical Excitations in Electron Microscopy. Rev. Mod. Phys. 2010;82:209–275. doi: 10.1103/RevModPhys.82.209. DOI
Yamamoto N., Araya K., García de Abajo F. J.. Photon Emission from silver Particles Induced by a High-Energy Electron Beam. Phys. Rev. B. 2001;64:205419. doi: 10.1103/PhysRevB.64.205419. DOI
Polman A., Kociak M., García de Abajo F. J.. Electron-Beam Spectroscopy for Nanophotonics. Nat. Mater. 2019;18:1158–1171. doi: 10.1038/s41563-019-0409-1. PubMed DOI
Howie A.. Howie Electrons and Photons: Exploiting the Connection. Inst. Phys. Conf. Ser. 1999;161:311.
García de Abajo F. J., Kociak M.. Electron Energy-Gain Spectroscopy. New J. Phys. 2008;10:073035. doi: 10.1088/1367-2630/10/7/073035. PubMed DOI
Henke J.-W., Raja A. S., Feist A., Huang G., Arend G., Yang Y., Kappert F. J., Wang R. N., Möller M., Pan J., Liu J., Kfir O., Ropers C., Kippenberg T. J.. Integrated Photonics Enables Continuous-Beam Electron Phase Modulation. Nature. 2021;600:653–658. doi: 10.1038/s41586-021-04197-5. PubMed DOI PMC
Auad Y., Dias E. J. C., Tencé M., Blazit J.-D., Li X., Zagonel L. F., Stéphan O., Tizei L. H. G., García de Abajo F. J., Kociak M.. μeV Electron Spectromicroscopy Using Free-Space Light. Nat. Commun. 2023;14:4442. doi: 10.1038/s41467-023-39979-0. PubMed DOI PMC
Weingartshofer A., Holmes J. K., Caudle G., Clarke E. M., Kruger H.. Direct Observation of Multiphoton Processes in Laser-Induced Free-Free Transitions. Phys. Rev. Lett. 1977;39:269–270. doi: 10.1103/PhysRevLett.39.269. DOI
Barwick B., Flannigan D. J., Zewail A. H.. Photon-Induced near-Field Electron Microscopy. Nature. 2009;462:902–906. doi: 10.1038/nature08662. PubMed DOI
Feist A., Echternkamp K. E., Schauss J., Yalunin S. V., Schäfer S., Ropers C.. Quantum Coherent Optical Phase Modulation in an Ultrafast Transmission Electron Microscope. Nature. 2015;521:200–203. doi: 10.1038/nature14463. PubMed DOI
Morimoto Y., Baum P.. Diffraction and Microscopy with Attosecond Electron Pulse Trains. Nat. Phys. 2018;14:252–256. doi: 10.1038/s41567-017-0007-6. DOI
Nabben D., Kuttruff J., Stolz L., Ryabov A., Baum P.. Attosecond Electron Microscopy of Sub-Cycle Optical Dynamics. Nature. 2023;619:63–67. doi: 10.1038/s41586-023-06074-9. PubMed DOI
Gaida J. H., Lourenço-Martins H., Sivis M., Rittmann T., Feist A., García de Abajo F. J., Ropers C.. Attosecond Electron Microscopy by Free-Electron Homodyne Detection. Nat. Photonics. 2024;18:509–515. doi: 10.1038/s41566-024-01380-8. DOI
Bucher T., Nahari H., Herzig Sheinfux H., Ruimy R., Niedermayr A., Dahan R., Yan Q., Adiv Y., Yannai M., Chen J., Kurman Y., Park S. T., Masiel D. J., Janzen E., Edgar J. H., Carbone F., Bartal G., Tsesses S., Koppens F. H. L., Vanacore G. M., Kaminer I.. Coherently Amplified Ultrafast Imaging Using a Free-Electron Interferometer. Nat. Photonics. 2024;18:809–815. doi: 10.1038/s41566-024-01451-w. DOI
Bendaña X. M., Polman A., García de Abajo F. J.. Single-Photon Generation by Electron Beams. Nano Lett. 2011;11:5099–5103. doi: 10.1021/nl1034732. PubMed DOI
Ben Hayun A., Reinhardt O., Nemirovsky J., Karnieli A., Rivera N., Kaminer I.. Shaping Quantum Photonic States Using Free Electrons. Sci. Adv. 2021;7:eabe4270. doi: 10.1126/sciadv.abe4270. PubMed DOI PMC
Feist A., Huang G., Arend G., Yang Y., Henke J.-W., Raja A. S., Kappert F. J., Wang R. N., Lourenço-Martins H., Qiu Z., Liu J., Kfir O., Kippenberg T. J., Ropers C.. Cavity-Mediated Electron-Photon Pairs. Science. 2022;377:777–780. doi: 10.1126/science.abo5037. PubMed DOI
Konečná A., Iyikanat F., García de Abajo F. J.. Entangling Free Electrons and Optical Excitations. Sci. Adv. 2022;8:eabo7853. doi: 10.1126/sciadv.abo7853. PubMed DOI PMC
Lichte H., Freitag B.. Inelastic Electron Holography. Ultramicroscopy. 2000;81:177–186. doi: 10.1016/S0304-3991(99)00188-6. PubMed DOI
Potapov P. L., Lichte H., Verbeeck J., van Dyck D.. Experiments on Inelastic Electron Holography. Ultramicroscopy. 2006;106:1012–1028. doi: 10.1016/j.ultramic.2006.05.012. PubMed DOI
Velasco C. I., Di Giulio V., García de Abajo F. J.. Radiative Loss of Coherence in Free Electrons: A Long-Range Quantum Phenomenon. Light Sci. Appl. 2024;13:31. doi: 10.1038/s41377-023-01361-6. PubMed DOI PMC
Velasco, C. I. ; García de Abajo, F. J. . Quantum Sensing and Metrology with Free Electrons. 2025. http://arxiv.org/abs/2505.06124 (accessed May 28, 2025).
Kapitza P. L., Dirac P. A. M.. The Reflection of Electrons from Standing Light Waves. Math. Proc. Cambridge Philos. Soc. 1933;29:297–300. doi: 10.1017/S0305004100011105. DOI
Kfir O., Di Giulio V., García de Abajo F. J., Ropers C.. Optical Coherence Transfer Mediated by Free Electrons. Sci. Adv. 2021;7:eabf6380. doi: 10.1126/sciadv.abf6380. PubMed DOI PMC
García de Abajo F. J., Asenjo-Garcia A., Kociak M.. Multiphoton Absorption and Emission by Interaction of Swift Electrons with Evanescent Light Fields. Nano Lett. 2010;10:1859–1863. doi: 10.1021/nl100613s. PubMed DOI
García de Abajo F. J., Di Giulio V.. Optical Excitations with Electron Beams: Challenges and Opportunities. ACS Photonics. 2021;8:945–974. doi: 10.1021/acsphotonics.0c01950. PubMed DOI PMC
Di Giulio V., Kociak M., García de Abajo F. J.. Probing Quantum Optical Excitations with Fast Electrons. Optica. 2019;6:1524–1534. doi: 10.1364/OPTICA.6.001524. DOI
Di Giulio V., Kfir O., Ropers C., García de Abajo F. J.. Modulation of Cathodoluminescence Emission by Interference with External Light. ACS Nano. 2021;15:7290–7304. doi: 10.1021/acsnano.1c00549. PubMed DOI PMC
Park S. T., Zewail A. H.. Relativistic Effects in Photon-Induced Near Field Electron Microscopy. J. Phys. Chem. A. 2012;116:11128–11133. doi: 10.1021/jp304534n. PubMed DOI
García de Abajo F. J., Konečná A.. Optical Modulation of Electron Beams in Free Space. Phys. Rev. Lett. 2021;126:123901. doi: 10.1103/PhysRevLett.126.123901. PubMed DOI
Park S. T., Lin M., Zewail A. H.. Photon-Induced Near-Field Electron Microscopy (PINEM): Theoretical and Experimental. New J. Phys. 2010;12:123028. doi: 10.1088/1367-2630/12/12/123028. DOI
Freimund D. L., Aflatooni K., Batelaan H.. Observation of the Kapitza−Dirac Effect. Nature. 2001;413:142–143. doi: 10.1038/35093065. PubMed DOI
Velasco C. I., García de Abajo F. J.. Free-Space Optical Modulation of Free Electrons in the Continuous-Wave Regime. Phys. Rev. Lett. 2025;134:123804. doi: 10.1103/PhysRevLett.134.123804. PubMed DOI
Jin X., Velasco C. I., García de Abajo F. J.. Zeptosecond Free-Electron Compression Through Temporal Lensing. arXiv:2504.17770 [cond-mat.mes-hall] 2025:na. doi: 10.48550/arXiv.2504.17770. DOI
Huang G., Engelsen N. J., Kfir O., Ropers C., Kippenberg T. J.. Electron-Photon Quantum State Heralding Using Photonic Integrated Circuits. PRX Quantum. 2023;4:0203051. doi: 10.1103/PRXQuantum.4.020351. DOI
Di Giulio V., Haindl R., Ropers C.. Tunable Quantum Light by Modulated Free Electrons. Nanophotonics. 2025;14:1865–1878. doi: 10.1515/nanoph-2025-0040. PubMed DOI PMC
Karnieli A., Roques-Carmes C., Rivera N., Fan S.. Strong Coupling and Single-Photon Nonlinearity in Free-Electron Quantum Optics. ACS Photonics. 2024;11:3401–3411. doi: 10.1021/acsphotonics.4c00908. DOI
Talebi N.. Strong Interaction of Slow Electrons with Near-Field Light Visited from First Principles. Phys. Rev. Lett. 2020;125:080401. doi: 10.1103/PhysRevLett.125.080401. PubMed DOI
Sirotin M., Rasputnyi A., Chlouba T., Shiloh R., Hommelhoff P.. Quantum Optics with Recoiled Free Electrons. arXiv:2405.06560 [quant-ph] 2024:na. doi: 10.48550/arXiv.2405.06560. DOI
Synanidis A. P., Goncalves P. A. D., Ropers C., García de Abajo F. J.. Quantum Effects in the Interaction of Low-Energy Electrons with Light. Sci. Adv. 2024;10:eadp4096. doi: 10.1126/sciadv.adp4096. PubMed DOI
García de Abajo F. J., Velasco C. I.. Spectrometer-Free Electron Spectromicroscopy. arXiv:2504.16894 [cond-mat.mtrl-sci] 2025:na. doi: 10.48550/arXiv.2504.16894. DOI
Synanidis A. P., Gonçalves P. A. D., García de Abajo F. J.. Rydberg-Atom Manipulation through Strong Interaction with Free Electrons. ACS Nano. 2025;19:11891. doi: 10.1021/acsnano.4c14658. PubMed DOI
Haindl R., Feist A., Domröse T., Möller M., Gaida J. H., Yalunin S. V., Ropers C.. Coulomb-Correlated Electron Number States in a Transmission Electron Microscope Beam. Nat. Phys. 2023;19:1410–1417. doi: 10.1038/s41567-023-02067-7. DOI
Meier S., Heimerl J., Hommelhoff P.. Few-Electron Correlations After Ultrafast Photoemission from Nanometric Needle Tips. Nat. Phys. 2023;19:1402–1409. doi: 10.1038/s41567-023-02059-7. DOI
Haindl R., Di Giulio V., Feist A., Ropers C.. Femtosecond Phase-Space Correlations in Few-Particle Photoelectron Pulses. arXiv:2412.11929 [cond-mat.mes-hall] 2024:na. doi: 10.48550/arXiv.2412.11929. DOI
Kumar S., Lim J., Rivera N., Wong W., Ang Y. S., Ang L. K., Wong L. J.. Strongly Correlated Multielectron Bunches from Interaction with Quantum Light. Sci. Adv. 2024;10:eadm9563. doi: 10.1126/sciadv.adm9563. PubMed DOI PMC
Pan Y., Gover A.. Spontaneous and Stimulated Emissions of a Preformed Quantum Free-Electron Wave Function. Phys. Rev. A. 2019;99:052107. doi: 10.1103/PhysRevA.99.052107. DOI
Bosman M., Keast V. J., García-Muñoz J. L., D’Alfonso A. J., Findlay S. D., Allen L. J.. Two-Dimensional Mapping of Chemical Information at Atomic Resolution. Phys. Rev. Lett. 2007;99:086102. doi: 10.1103/PhysRevLett.99.086102. PubMed DOI
Nelayah J., Kociak M., Stéphan O., García de Abajo F. J., Tencé M., Henrard L., Taverna D., Pastoriza-Santos I., Liz-Marzán L. M., Colliex C.. Mapping Surface Plasmons on a Single Metallic Nanoparticle. Nat. Phys. 2007;3:348–353. doi: 10.1038/nphys575. DOI
Botton G. A., Lazar S., Dwyer C.. Elemental Mapping at the Atomic Scale Using Low Accelerating Voltages. Ultramicroscopy. 2010;110:926–934. doi: 10.1016/j.ultramic.2010.03.008. DOI
Saito H., Lourenço-Martins H., Bonnet N., Li X., Lovejoy T. C., Dellby N., Stéphan O., Kociak M., Tizei L. H. G.. Emergence of Point Defect States in a Plasmonic Crystal. Phys. Rev. B. 2019;100:245402. doi: 10.1103/PhysRevB.100.245402. DOI
Verbeeck J., Tian H., Schattschneider P.. Production and Application of Electron Vortex Beams. Nature. 2010;467:301–304. doi: 10.1038/nature09366. PubMed DOI
Auad Y., Baaboura J., Blazit J.-D., Tencé M., Stéphan O., Kociak M., Tizei L. H. G.. Time Calibration Studies for the Timepix3 Hybrid Pixel Detector in Electron Microscopy. Ultramicroscopy. 2024;257:113889. doi: 10.1016/j.ultramic.2023.113889. PubMed DOI
Lourenço-Martins H., Lubk A., Kociak M.. Bridging Nano-Optics and Condensed Matter Formalisms in a Unified Description of Inelastic Scattering of Relativistic Electron Beams. SciPost Phys. 2021;10:031. doi: 10.21468/SciPostPhys.10.2.031. DOI
Chaupard M., Degrouard J., Li X., Stéphan O., Kociak M., Gref R., de Frutos M.. Nanoscale Multimodal Analysis of Sensitive Nanomaterials by Monochromated STEM-EELS in Low-Dose and Cryogenic Conditions. ACS Nano. 2023;17:3452–3464. doi: 10.1021/acsnano.2c09571. PubMed DOI
Wang Z., Tavabi A. H., Jin L., Rusz J., Tyutyunnikov D., Jiang H., Moritomo Y., Mayer J., Dunin-Borkowski R. E., Yu R., Zhu J., Zhong X.. Atomic Scale Imaging of Magnetic Circular Dichroism by Achromatic Electron Microscopy. Nat. Mater. 2018;17:221–225. doi: 10.1038/s41563-017-0010-4. PubMed DOI
García de Abajo F. J., Kociak M.. Probing the Photonic Local Density of States with Electron Energy Loss Spectroscopy. Phys. Rev. Lett. 2008;100:106804. doi: 10.1103/PhysRevLett.100.106804. PubMed DOI
Maho A., Comeron Lamela L., Henrist C., Henrard L., Tizei L. H. G., Kociak M., Stéphan O., Heo S., Milliron D. J., Vertruyen B., Cloots R.. Solvothermally-Synthesized Tin-Doped Indium Oxide Plasmonic Nanocrystals Spray-Deposited onto Glass as near-Infrared Electrochromic Films. Sol. Energy Mater. Sol. Cells. 2019;200:110014. doi: 10.1016/j.solmat.2019.110014. DOI
Hyun J. K., Couillard M., Rajendran P., Liddell C. M., Muller D. A.. Measuring Far-Ultraviolet Whispering Gallery Modes with High Energy Electrons. Appl. Phys. Lett. 2008;93:243106. doi: 10.1063/1.3046731. DOI
Le Thomas N., Alexander D. T. L., Cantoni M., Sigle W., Houdré R., Hébert C.. Imaging of High-Q Cavity Optical Modes by Electron Energy-Loss Microscopy. Phys. Rev. B. 2013;87:155314. doi: 10.1103/PhysRevB.87.155314. DOI
Bézard M., Si Hadj Mohand I., Ruggierio L., Le Roux A., Auad Y., Baroux P., Tizei L. H. G., Checoury X., Kociak M.. High-Efficiency Coupling of Free Electrons to Sub-λ3 Modal Volume, High-Q Photonic Cavities. ACS Nano. 2024;18:10417–10426. doi: 10.1021/acsnano.3c11211. PubMed DOI
Woo S. Y., Shao F., Arora A., Schneider R., Wu N., Mayne A. J., Ho C.-H., Och M., Mattevi C., Reserbat-Plantey A., Moreno Á., Sheinfux H. H., Watanabe K., Taniguchi T., Michaelis de Vasconcellos S., Koppens F. H. L., Niu Z., Stéphan O., Kociak M., García de Abajo F. J., Bratschitsch R., Konečná A., Tizei L. H. G.. Engineering 2D Material Exciton Line Shape with Graphene/ h-BN Encapsulation. Nano Lett. 2024;24:3678–3685. doi: 10.1021/acs.nanolett.3c05063. PubMed DOI
Yankovich A. B., Munkhbat B., Baranov D. G., Cuadra J., Olsén E., Lourenço-Martins H., Tizei L. H. G., Kociak M., Olsson E., Shegai T.. Visualizing Spatial Variations of Plasmon-Exciton Polaritons at the Nanoscale Using Electron Microscopy. Nano Lett. 2019;19:8171–8181. doi: 10.1021/acs.nanolett.9b03534. PubMed DOI
Tizei L. H. G., Mkhitaryan V., Lourenço-Martins H., Scarabelli L., Watanabe K., Taniguchi T., Tencé M., Blazit J.-D., Li X., Gloter A., Zobelli A., Schmidt F.-P., Liz-Marzán L. M., García de Abajo F. J., Stéphan O., Kociak M.. Tailored Nanoscale Plasmon-Enhanced Vibrational Electron Spectroscopy. Nano Lett. 2020;20:2973–2979. doi: 10.1021/acs.nanolett.9b04659. PubMed DOI PMC
Lourenço-Martins H., Gérard D., Kociak M.. Optical Polarization Analogue in Free Electron Beams. Nat. Phys. 2021;17:598–603. doi: 10.1038/s41567-021-01163-w. DOI
Guzzinati G., Béché A., Lourenço-Martins H., Martin J., Kociak M., Verbeeck J.. Probing the Symmetry of the Potential of Localized Surface Plasmon Resonances with Phase-Shaped Electron Beams. Nat. Commun. 2017;8:14999. doi: 10.1038/ncomms14999. PubMed DOI PMC
Kumar V., Camden J. P.. Imaging Vibrational Excitations in the Electron Microscope. J. Phys. Chem. C. 2022;126:16919–16927. doi: 10.1021/acs.jpcc.2c05108. DOI
Lagos M. J., Trügler A., Hohenester U., Batson P. E.. Mapping Vibrational Surface and Bulk Modes in a Single Nanocube. Nature. 2017;543:529–532. doi: 10.1038/nature21699. PubMed DOI
Li X., Haberfehlner G., Hohenester U., Stéphan O., Kothleitner G., Kociak M.. Three-Dimensional Vectorial Imaging of Surface Phonon Polaritons. Science. 2021;371:1364–1367. doi: 10.1126/science.abg0330. PubMed DOI
Boersch H., Geiger J., Stickel W.. Interaction of 25-keV Electrons with Lattice Vibrations in LiF. Experimental Evidence for Surface Modes of Lattice Vibration. Phys. Rev. Lett. 1966;17:379–381. doi: 10.1103/PhysRevLett.17.379. DOI
Lagos M. J., Batson P. E.. Thermometry with Subnanometer Resolution in the Electron Microscope Using the Principle of Detailed Balancing. Nano Lett. 2018;18:4556–4563. doi: 10.1021/acs.nanolett.8b01791. PubMed DOI
Hachtel J. A., Huang J., Popovs I., Jansone-Popova S., Keum J. K., Jakowski J., Lovejoy T. C., Dellby N., Krivanek O. L., Idrobo J. C.. Identification of Site-Specific Isotopic Labels by Vibrational Spectroscopy in the Electron Microscope. Science. 2019;363:525–528. doi: 10.1126/science.aav5845. PubMed DOI
Hage F. S., Radtke G., Kepaptsoglou D. M., Lazzeri M., Ramasse Q. M.. Single-Atom Vibrational Spectroscopy in the Scanning Transmission Electron Microscope. Science. 2020;367:1124–1127. doi: 10.1126/science.aba1136. PubMed DOI
Senga R., Suenaga K., Barone P., Morishita S., Mauri F., Pichler T.. Position and Momentum Mapping of Vibrations in Graphene Nanostructures. Nature. 2019;573:247–250. doi: 10.1038/s41586-019-1477-8. PubMed DOI
Castioni F., Auad Y., Blazit J.-D., Li X., Woo S. Y., Watanabe K., Taniguchi T., Ho C.-H., Stéphan O., Kociak M., Tizei L. H. G.. Nanosecond Nanothermometry in an Electron Microscope. Nano Lett. 2025;25:1601–1608. doi: 10.1021/acs.nanolett.4c05692. PubMed DOI
Ramasse Q., Kepaptsoglou D., Castellanos-Reyes J.-A., Zeiger P., El Hajraoui K., Alves do Nascimento J., Lazarov V., Bergman A., Rusz J.. Beyond Vibrational Spectroscopy: Hunting the Signature of Elusive Quasiparticles with Monochromated STEM-EELS. Microsc. Microanal. 2024;30:1494. doi: 10.1093/mam/ozae044.738. DOI
Meuret S., Solà Garcia M., Coenen T., Kieft E., Zeijlemaker H., Lätzel M., Christiansen S., Woo S. Y., Ra Y. H., Mi Z., Polman A.. Complementary Cathodoluminescence Lifetime Imaging Configurations in a Scanning Electron Microscope. Ultramicroscopy. 2019;197:28–38. doi: 10.1016/j.ultramic.2018.11.006. PubMed DOI
Weppelman I. G. C., Moerland R. J., Hoogenboom J. P., Kruit P.. Concept and Design of a Beam Blanker with Integrated Photoconductive Switch for Ultrafast Electron Microscopy. Ultramicroscopy. 2018;184:8–17. doi: 10.1016/j.ultramic.2017.10.002. PubMed DOI
Solà Garcia M., Meuret S., Coenen T., Polman A.. Electron-Induced State Conversion in Diamond NV-Centers Measured with Pump-Probe Cathodoluminescence Spectroscopy. ACS Photonics. 2020;7:232–240. doi: 10.1021/acsphotonics.9b01463. PubMed DOI PMC
Merano M.. et al. Probing Carrier Dynamics in Nanostructures by Picosecond Cathodoluminescence. Nature. 2005;438:479–482. doi: 10.1038/nature04298. PubMed DOI
Loeto K.. Uncovering the Carrier Dynamics of AlInGaN Semiconductors using Time-Resolved Cathodoluminescence. Mater. Sci. Technol. 2022;38:780–793. doi: 10.1080/02670836.2022.2064635. DOI
Meuret S., Tizei L. H. G., Houdellier F., Weber S., Auad Y., Tencé M., Chang H.-C., Kociak M., Arbouet A.. Time-Resolved Cathodoluminescence in an Ultrafast Transmission Electron Microscope. Appl. Phys. Lett. 2021;119:062106. doi: 10.1063/5.0057861. DOI
Meuret S., Tizei L. H. G., Cazimajou T., Bourrellier R., Chang H. C., Treussart F., Kociak M.. Photon Bunching in Cathodoluminescence. Phys. Rev. Lett. 2015;114:197401. doi: 10.1103/PhysRevLett.114.197401. PubMed DOI
Sola-Garcia M., Mauser K. W., Liebtrau M., Coenen T., Christiansen S., Meuret S., Polman A.. Photon Statistics of Incoherent Cathodoluminescence with Continuous and Pulsed Electron beams. ACS Photonics. 2021;8:916–925. doi: 10.1021/acsphotonics.0c01939. PubMed DOI PMC
Varkentina N., Auad Y., Woo S. Y., Castioni F., Blazit J.-D., Tence M., Chang H.-C., Chen J., Watanabe K., Taniguchi T., Kociak M., Tizei L. H. G.. Excitation Lifetime Extracted from Electron−Photon (EELS-CL) Nanosecond-Scale Temporal Coincidences. Appl. Phys. Lett. 2023;123:223502. doi: 10.1063/5.0165473. DOI
Brenny B. J. M., Coenen T., Polman A.. Quantifying Coherent and Incoherent Cathodoluminescence in Semiconductors and Metals. J. Appl. Phys. 2014;115:244307. doi: 10.1063/1.4885426. DOI
Auad Y.. et al. Unveiling the Coupling of Single Metallic Nanoparticles to Whispering-Gallery Microcavities. Nano Lett. 2022;22:319–327. doi: 10.1021/acs.nanolett.1c03826. PubMed DOI
van Nielen N., Schilder N., Hentschel M., Giessen H., Polman A., Talebi N.. Electrons Generate Self-Complementary Broadband Vortex Light Beams using Chiral Photon Sieves. Nano Lett. 2020;20:5975–5981. doi: 10.1021/acs.nanolett.0c01964. PubMed DOI
Brenny B. J. M., Polman A., García de Abajo F. J.. Femtosecond Plasmon and Photon Wave Packets excited by a High-Energy Electron on a Metal or Dielectric Surface. Phys. Rev. B. 2016;94:155412. doi: 10.1103/PhysRevB.94.155412. DOI
Smith S. J., Purcell E. M.. Visible Light from Localized Surface Charges Moving Across a Grating. Phys. Rev. 1953;92:1069. doi: 10.1103/PhysRev.92.1069. DOI
Karnieli A., Roitman D., Liebtrau M., Tsesses S., van Nielen N., Kaminer I., Arie A., Polman A.. Cylindrical Metalens For Generation and Focusing of Free-Electron Radiation. Nano Lett. 2022;22:5641–5650. doi: 10.1021/acs.nanolett.1c04556. PubMed DOI PMC
Liebtrau M., Polman A.. Angular Dispersion of Free-Electron-Light Coupling in an Optical Fibre-Integrated Metagrating. ACS Photonics. 2024;11:1125–1136. doi: 10.1021/acsphotonics.3c01574. PubMed DOI PMC
Akerboom E., Di Giulio V., Schilder N. J., García de Abajo F. J., Polman A.. Free Electron-Plasmon Coupling Strength and Near-Field Retrieval through Electron-Energy-Dependent Cathodoluminescence Spectroscopy. ACS Nano. 2024;18:13560–13567. doi: 10.1021/acsnano.3c12972. PubMed DOI PMC
Di Giulio V., Akerboom E., Polman A., García de Abajo F. J.. Toward Optimum Coupling between Free Electrons and Confined Optical Modes. ACS Nano. 2024;18:14255–14275. doi: 10.1021/acsnano.3c12977. PubMed DOI PMC
Schilder N., Agrawal H., Garnett E. C., Polman A.. Phase-Resolved Surface Plasmon Scattering probed by Cathodoluminescence Holography. ACS Photonics. 2020;7:1476–1482. doi: 10.1021/acsphotonics.0c00209. PubMed DOI PMC
Taleb M., Hentschel M., Rossnagel K., Giessen H., Talebi N.. Phase-Locked Photon−Electron Interaction without a Laser. Nat. Phys. 2023;19:869–876. doi: 10.1038/s41567-023-01954-3. DOI
Mauser K. W., Sola-Garcia M., Liebtrau M., Damilano B., Coulon P.-M., Vezian S., Shields P. A., Meuret S., Polman A.. Employing Cathodoluminescence for Nanothermometry and Thermal Transport Measurements in Semiconductor Nanowires. ACS Nano. 2021;15:11385–11395. doi: 10.1021/acsnano.1c00850. PubMed DOI PMC
Yamamoto N., Suzuki T.. Conversion of Surface Plasmon Polaritons to Light by a Surface Step. Appl. Phys. Lett. 2008;93:093114. doi: 10.1063/1.2978248. DOI
Suzuki T., Yamamoto N.. Cathodoluminescent Spectroscopic Imaging of Surface Plasmon Polaritons in a 1-Dimensional Plasmonic Crystal. Opt. Express. 2009;17:23664–23671. doi: 10.1364/OE.17.023664. PubMed DOI
Coenen T., Vesseur E. J. R., Polman A.. Angle-Resolved Cathodoluminescence Spectroscopy. Appl. Phys. Lett. 2011;99:143103. doi: 10.1063/1.3644985. PubMed DOI
Saito H., Yamamoto N., Sannomiya T.. Waveguide Bandgap in Crystalline Bandgap Slows Down Surface Plasmon Polariton. ACS Photonics. 2017;4:1361–1370. doi: 10.1021/acsphotonics.6b00943. DOI
Thollar Z., Wadell C., Matsukata T., Yamamoto N., Sannomiya T.. Three-Dimensional Multipole Rotation in Spherical Silver Nanoparticles Observed by Cathodoluminescence. ACS Photonics. 2018;5:2555–2560. doi: 10.1021/acsphotonics.7b01293. DOI
Ritchie R.. Plasma Losses by Fast Electrons in Thin Films. Phys. Rev. 1957;106:874–881. doi: 10.1103/PhysRev.106.874. DOI
Yasuhara A., Shibata M., Yamamoto W., Machfuudzoh I., Yanagimoto S., Sannomiya T.. Momentum-Resolved EELS and CL Study on 1D-Plasmonic Crystal Prepared by FIB Method. Microscopy. 2024;73:473–480. doi: 10.1093/jmicro/dfae022. PubMed DOI PMC
Matsukata T., García de Abajo F. J., Sannomiya T.. Chiral Light Emission from a Sphere Revealed by Nanoscale Relative-Phase Mapping. ACS Nano. 2021;15:2219–2228. doi: 10.1021/acsnano.0c05624. PubMed DOI PMC
Matsukata T., Ogura S., García de Abajo F. J., Sannomiya T.. Simultaneous Nanoscale Excitation and Emission Mapping by Cathodoluminescence. ACS Nano. 2022;16:21462–21470. doi: 10.1021/acsnano.2c09973. PubMed DOI PMC
Liu A., Davis T., Coenen T., Hari S., Voortman L., Xu Z., Yuan G., Ballard P., Funston A., Etheridge J.. Modulation of Cathodoluminescence by Surface Plasmons in Silver Nanowires. Small. 2023;19:2207747. doi: 10.1002/smll.202207747. PubMed DOI
Meuret S., Coenen T., Woo S., Ra Y., Mi Z., Polman A.. Nanoscale Relative Emission Efficiency Mapping Using Cathodoluminescence g(2) Imaging. Nano Lett. 2018;18:2288–2293. doi: 10.1021/acs.nanolett.7b04891. PubMed DOI PMC
Yanagimoto S., Yamamoto N., Sannomiya T., Akiba K.. Purcell Effect of Nitrogen-Vacancy Centers in Nanodiamond Coupled to Propagating and Localized Surface Plasmons Revealed by Photon-Correlation Cathodoluminescence. Phys. Rev. B. 2021;103:205418. doi: 10.1103/PhysRevB.103.205418. DOI
Yuge T., Yamamoto N., Sannomiya T., Akiba K.. Superbunching in Cathodoluminescence: A Master Equation Approach. Phys. Rev. B. 2023;107:165303. doi: 10.1103/PhysRevB.107.165303. DOI
Yanagimoto S., Yamamoto N., Yuge T., Sannomiya T., Akiba K.. Unveiling the Nature of Cathodoluminescence from Photon Statistics. Commun. Phys. 2025;8:56. doi: 10.1038/s42005-025-01978-6. DOI
Kfir O.. Entanglements of Electrons and Cavity Photons in the Strong-Coupling Regime. Phys. Rev. Lett. 2019;123:103602. doi: 10.1103/PhysRevLett.123.103602. PubMed DOI
Fishman T., Haeusler U., Dahan R., Yannai M., Adiv Y., Abudi T., Shiloh R., Eyal O., Yousefi P., Eisenstein G., Hommelhoff P., Kaminer I.. Imaging the Field Inside Nanophotonic Accelerators. Nat. Commun. 2023;14:3687. doi: 10.1038/s41467-023-38857-z. PubMed DOI PMC
Kruit P., Hobbs R., Kim C., Yang Y., Manfrinato V., Hammer J., Thomas S., Weber P., Klopfer B., Kohstall C., Juffmann T., Kasevich M., Hommelhoff P., Berggren K.. Designs for a Quantum Electron Microscope. Ultramicroscopy. 2016;164:31–45. doi: 10.1016/j.ultramic.2016.03.004. PubMed DOI
Varkentina N., Auad Y., Woo S. Y., Zobelli A., Bocher L., Blazit J.-D., Li X. Y., Tencé M., Watanabe K., Taniguchi T., Stéphan O., Kociak M., Tizei L. H. G.. Cathodoluminescence Excitation Spectroscopy: Nanoscale Imaging of Excitation Pathways. Sci. Adv. 2022;8:eabq4947. doi: 10.1126/sciadv.abq4947. PubMed DOI PMC
Yanagimoto S., Yamamoto N., Yuge T., Saito H., Akiba K., Sannomiya T.. Time-Correlated Electron and Photon Counting Microscopy. Commun. Phys. 2023;6:260. doi: 10.1038/s42005-023-01371-1. DOI
Kazakevich E., Aharon H., Kfir O.. Spatial Electron-Photon Entanglement. Phys. Rev. Res. 2024;6:043010. doi: 10.1103/PhysRevResearch.6.043033. DOI
Boitier F., Godard A., Rosencher E., Fabre C.. Measuring Photon Bunching at Ultrafast Timescales by Two-Photon Absorption in Semiconductors. Nat. Phys. 2009;5:267–270. doi: 10.1038/nphys1218. DOI
Sannomiya T., Konecna A., Matsukata T., Thollar Z., Okamoto T., García de Abajo F. J., Yamamoto N.. Cathodoluminescence Phase Extraction of the Coupling Between Nanoparticles and Surface Plasmon Polaritons. Nano Lett. 2020;20:592–598. doi: 10.1021/acs.nanolett.9b04335. PubMed DOI
Kociak M., Gloter A., Stéphan O.. A Spectromicroscope for Nanophysics. Ultramicroscopy. 2017;180:81–92. doi: 10.1016/j.ultramic.2017.02.008. PubMed DOI
Lagos M. J., Bicket I. C., Mousavi M. S. S., Botton G. A.. Advances in Ultrahigh-Energy Resolution EELS: Phonons, Infrared Plasmons and Strongly Coupled Modes. Microscopy. 2022;71:I174–I199. doi: 10.1093/jmicro/dfab050. PubMed DOI
Bonnet N., Lee H. Y., Shao F., Woo S. Y., Blazit J.-D., Watanabe K., Taniguchi T., Zobelli A., Stéphan O., Kociak M., Gradečak S., Tizei L. H. G.. Nanoscale Modification of WS2 Trion Emission by Its Local Electromagnetic Environment. Nano Lett. 2021;21:10178–10185. doi: 10.1021/acs.nanolett.1c02600. PubMed DOI
Zheng S., So J. K., Liu F., Liu Z., Zheludev N., Fan H. J.. Giant Enhancement of Cathodoluminescence of Monolayer Transitional Metal Dichalcogenides Semiconductors. Nano Lett. 2017;17:6475–6480. doi: 10.1021/acs.nanolett.7b03585. PubMed DOI
Asenjo-Garcia A., García de Abajo F. J.. Plasmon Electron Energy-Gain Spectroscopy. New J. Phys. 2013;15:103021. doi: 10.1088/1367-2630/15/10/103021. DOI
Pomarico E., Madan I., Berruto G., Vanacore G. M., Wang K., Kaminer I., García de Abajo F. J., Carbone F.. meV Resolution in Laser-Assisted Energy-Filtered Transmission Electron Microscopy. ACS Photonics. 2018;5:759–764. doi: 10.1021/acsphotonics.7b01393. DOI
Boersch H.. Experimentelle Bestimmung der Energieverteilung in thermisch ausgelösten Elektronenstrahlen. Z. Phys. 1954;139:115–146. doi: 10.1007/BF01375256. DOI
Wang K., Dahan R., Shentcis M., Kauffmann Y., Ben Hayun A., Reinhardt O., Tsesses S., Kaminer I.. Coherent Interaction between Free Electrons and a Photonic Cavity. Nature. 2020;582:50–54. doi: 10.1038/s41586-020-2321-x. PubMed DOI
Kfir O., Lourenço-Martins H., Storeck G., Sivis M., Harvey T. R., Kippenberg T. J., Feist A., Ropers C.. Controlling Free Electrons with Optical Whispering-Gallery Modes. Nature. 2020;582:46–49. doi: 10.1038/s41586-020-2320-y. PubMed DOI
Müller N., Kabil S., Vosse G., Hansen L., Rathje C., Schäfer S.. Spectrally Resolved Free Electron-Light Coupling Strength in a Transition Metal Dichalcogenide. arXiv:2405.12017 [cond-mat.mes-hall] 2024:na. doi: 10.48550/arXiv.2405.12017. DOI
Das P., Blazit J. D., Tencé M., Zagonel L. F., Auad Y., Lee Y. H., Ling X. Y., Losquin A., Colliex C., Stéphan O., García de Abajo F. J., Kociak M.. Stimulated Electron Energy Loss and Gain in an Electron Microscope without a Pulsed Electron Gun. Ultramicroscopy. 2019;203:44–51. doi: 10.1016/j.ultramic.2018.12.011. PubMed DOI
Liu C., Wu Y., Hu Z., Busche J. A., Beutler E. K., Montoni N. P., Moore T. M., Magel G. A., Camden J. P., Masiello D. J., Duscher G., Rack P. D.. Continuous Wave Resonant Photon Stimulated Electron Energy-Gain and Electron Energy-Loss Spectroscopy of Individual Plasmonic Nanoparticles. ACS Photonics. 2019;6:2499–2508. doi: 10.1021/acsphotonics.9b00830. DOI
Yang Y., Henke J. W., Raja A. S., Kappert F. J., Huang G., Arend G., Qiu Z., Feist A., Wang R. N., Tusnin A., Tikan A., Ropers C., Kippenberg T. J.. Free-Electron Interaction with Nonlinear Optical States in Microresonators. Science. 2024;383:168–173. doi: 10.1126/science.adk2489. PubMed DOI
Arbouet, A. ; Caruso, G. M. ; Houdellier, F. . Ultrafast Transmission Electron Microscopy: Historical Development, Instrumentation, and Applications. Advances in Imaging and Electron Physics; Elsevier Inc., 2018; pp 1−72.
Zewail A. H.. Four-Dimensional Electron Microscopy. Science. 2010;328(5975):187–193. doi: 10.1126/science.1166135. PubMed DOI
Piazza L., Lummen T. T. A., Quiñonez E., Murooka Y., Reed B. W., Barwick B., Carbone F.. Simultaneous Observation of the Quantization and the Interference Pattern of a Plasmonic Near-Field. Nat. Commun. 2015;6:6407. doi: 10.1038/ncomms7407. PubMed DOI PMC
Feist A., Bach N., Rubiano da Silva N., Danz T., Möller M., Priebe K. E., Domröse T., Gatzmann J. G., Rost S., Schauss J., Strauch S., Bormann R., Sivis M., Schäfer S., Ropers C.. Ultrafast Transmission Electron Microscopy Using a Laser-Driven Field Emitter: Femtosecond Resolution with a High Coherence Electron Beam. Ultramicroscopy. 2017;176:63–73. doi: 10.1016/j.ultramic.2016.12.005. PubMed DOI
Houdellier F., Caruso G. M., Weber S., Kociak M., Arbouet A.. Development of a High Brightness Ultrafast Transmission Electron Microscope Based on a Laser-Driven Cold Field Emission Source. Ultramicroscopy. 2018;186:128–138. doi: 10.1016/j.ultramic.2017.12.015. PubMed DOI
Schröder A., Wendeln A., Weber J. T., Mukai M., Kohno Y., Schäfer S.. Laser-Driven Cold Field Emission Source for Ultrafast Transmission Electron Microscopy. Ultramicroscopy. 2025;275:114158. doi: 10.1016/j.ultramic.2025.114158. PubMed DOI
Zhu C., Zheng D., Wang H., Zhang M., Li Z., Sun S., Xu P., Tian H., Li Z., Yang H., Li J.. Development of Analytical Ultrafast Transmission Electron Microscopy Based on Laser-Driven Schottky Field Emission. Ultramicroscopy. 2020;209:112887. doi: 10.1016/j.ultramic.2019.112887. PubMed DOI
Najafi E., Scarborough T. D., Tang J., Zewail A.. Four-Dimensional Imaging of Carrier Interface Dynamics in p-n Junctions. Science. 2015;347:164–167. doi: 10.1126/science.aaa0217. PubMed DOI
Shiloh R., Chlouba T., Hommelhoff P.. Quantum-Coherent Light-Electron Interaction in a Scanning Electron Microscope. Phys. Rev. Lett. 2022;128:235301. doi: 10.1103/PhysRevLett.128.235301. PubMed DOI
Fu X., Wang E., Zhao Y., Liu A., Montgomery E., Gokhale V. J., Gorman J. J., Jing C., Lau J. W., Zhu Y.. Direct Visualization of Electromagnetic Wave Dynamics by Laser-Free Ultrafast Electron Microscopy. Sci. Adv. 2020;6:eabc3456. doi: 10.1126/sciadv.abc3456. PubMed DOI PMC
Garming M. W. H., Bolhuis M., Conesa-Boj S., Kruit P., Hoogenboom J. P.. Lock-in Ultrafast Electron Microscopy Simultaneously Visualizes Carrier Recombination and Interface-Mediated Trapping. J. Phys. Chem. Lett. 2020;11:8880–8886. doi: 10.1021/acs.jpclett.0c02345. PubMed DOI PMC
Borrelli S., De Raadt T. C. H., Van Der Geer S. B., Mutsaers P. H. A., Van Leeuwen K. A. H., Luiten O. J.. Direct Observation of Sub-Poissonian Temporal Statistics in a Continuous Free-Electron Beam with Subpicosecond Resolution. Phys. Rev. Lett. 2024;132:115001. doi: 10.1103/PhysRevLett.132.115001. PubMed DOI
Danz T., Domröse T., Ropers C.. Ultrafast Nanoimaging of the Order Parameter in a Structural Phase Transition. Science. 2021;371:371–374. doi: 10.1126/science.abd2774. PubMed DOI
Kim Y.-J., Nho H.-W., Ji S., Lee H., Ko H., Weissenrieder J., Kwon O.-H.. Femtosecond-Resolved Imaging of a Single-Particle Phase Transition in Energy-Filtered Ultrafast Electron Microscopy. Sci. Adv. 2023;9:eadd5375. doi: 10.1126/sciadv.add5375. PubMed DOI PMC
Yurtsever A., Zewail A. H.. 4D Nanoscale Diffraction Observed by Convergent-Beam Ultrafast Electron Microscopy. Science. 2009;326:708–712. doi: 10.1126/science.1179314. PubMed DOI
Feist A., Rubiano da Silva N., Liang W., Ropers C., Schäfer S.. Nanoscale Diffractive Probing of Strain Dynamics in Ultrafast Transmission Electron Microscopy. Struct. Dyn. 2018;5:014302. doi: 10.1063/1.5009822. PubMed DOI PMC
McKenna A. J., Eliason J. K., Flannigan D. J.. Spatiotemporal Evolution of Coherent Elastic Strain Waves in a Single MoS2 Flake. Nano Lett. 2017;17(6):3952–3958. doi: 10.1021/acs.nanolett.7b01565. PubMed DOI
Nakamura A., Shimojima T., Chiashi Y., Kamitani M., Sakai H., Ishiwata S., Li H., Ishizaka K.. Nanoscale Imaging of Unusual Photoacoustic Waves in Thin Flake VTe2. Nano Lett. 2020;20:4932–4938. doi: 10.1021/acs.nanolett.0c01006. PubMed DOI
Barantani F., Claude R., Iyikanat F., Madan I., Sapozhnik A. A., Puppin M., Weaver B., LaGrange T., García de Abajo F. J., Carbone F.. Ultrafast Momentum-Resolved Visualization of the Interplay between Phonon-Mediated Scattering and Plasmons in Graphite. Sci. Adv. 2025;11:adu1001. doi: 10.1126/sciadv.adu1001. PubMed DOI PMC
Rubiano da Silva N., Möller M., Feist A., Ulrichs H., Ropers C., Schäfer S.. Nanoscale Mapping of Ultrafast Magnetization Dynamics with Femtosecond Lorentz Microscopy. Phys. Rev. X. 2018;8:031052. doi: 10.1103/PhysRevX.8.031052. DOI
Berruto G., Madan I., Murooka Y., Vanacore G. M., Pomarico E., Rajeswari J., Lamb R., Huang P., Kruchkov A. J., Togawa Y., LaGrange T., McGrouther D., Ro̷nnow H. M., Carbone F.. Laser-Induced Skyrmion Writing and Erasing in an Ultrafast Cryo-Lorentz Transmission Electron Microscope. Phys. Rev. Lett. 2018;120:117201. doi: 10.1103/PhysRevLett.120.117201. PubMed DOI
Kurman Y., Dahan R., Sheinfux H. H., Wang K., Yannai M., Adiv Y., Reinhardt O., Tizei L. H. G., Woo S. Y., Li J., Edgar J. H., Kociak M., Koppens F. H. L., Kaminer I.. Spatiotemporal Imaging of 2D Polariton Wave Packet Dynamics Using Free Electrons. Science. 2021;372:1181–1186. doi: 10.1126/science.abg9015. PubMed DOI
Eggebrecht T., Möller M., Gatzmann J. G., Rubiano da Silva N., Feist A., Martens U., Ulrichs H., Münzenberg M., Ropers C., Schäfer S.. Light-Induced Metastable Magnetic Texture Uncovered by in Situ Lorentz Microscopy. Phys. Rev. Lett. 2017;118:097203. doi: 10.1103/PhysRevLett.118.097203. PubMed DOI
Möller M., Gaida J. H., Schäfer S., Ropers C.. Few-Nm Tracking of Current-Driven Magnetic Vortex Orbits Using Ultrafast Lorentz Microscopy. Commun. Phys. 2020;3:36. doi: 10.1038/s42005-020-0301-y. DOI
Voss J. M., Harder O. F., Olshin P. K., Drabbels M., Lorenz U. J.. Rapid Melting and Revitrification as an Approach to Microsecond Time-Resolved Cryo-Electron Microscopy. Chem. Phys. Lett. 2021;778:138812. doi: 10.1016/j.cplett.2021.138812. DOI
de La Torre A., Kennes D. M., Claassen M., Gerber S., McIver J. W., Sentef M. A.. Colloquium: Nonthermal Pathways to Ultrafast Control in Quantum Materials. Rev. Mod. Phys. 2021;93:041002. doi: 10.1103/RevModPhys.93.041002. DOI
Leitenstorfer A.. et al. Terahertz Science and Technology Roadmap. J. Phys. D: Appl. Phys. 2023;56:223001. doi: 10.1088/1361-6463/acbe4c. DOI
Zong A., Nebgen B. R., Lin S.-C., Spies J. A., Zuerch M.. Emerging Ultrafast Techniques for Studying Quantum Materials. Nat. Rev. Mater. 2023;8:224–240. doi: 10.1038/s41578-022-00530-0. DOI
Buzzi M., Först M., Mankowsky R., Cavalleri C.. Probing Dynamics in Quantum Materials with Femtosecond X-rays. Nat. Rev. Mater. 2018;3:299–311. doi: 10.1038/s41578-018-0024-9. DOI
Lobastov V. A., Srinivasan R., Zewail A. H.. Four-Dimensional Ultrafast Electron Microscopy. Proc. Natl. Acad. Sci. U. S. A. 2005;102:7069–7073. doi: 10.1073/pnas.0502607102. PubMed DOI PMC
Aidelsburger M., Kirchner F. O., Krausz F., Baum P.. Single-Electron Pulses for Ultrafast Diffraction. Proc. Natl. Acad. Sci. U. S. A. 2010;107:19714–19719. doi: 10.1073/pnas.1010165107. PubMed DOI PMC
Baum P., Zewail A. H.. Attosecond Electron Pulses for 4D Diffraction and Microscopy. Proc. Natl. Acad. Sci. U. S. A. 2007;104:18409–18414. doi: 10.1073/pnas.0709019104. PubMed DOI PMC
Priebe K. E., Rathje C., Yalunin S. V., Hohage T., Feist A., Schäfer S., Ropers C.. Attosecond Electron Pulse Trains and Quantum State Reconstruction in Ultrafast Transmission Electron Microscopy. Nat. Phot. 2017;11:793–797. doi: 10.1038/s41566-017-0045-8. DOI
Baum P., Zewail A. H.. 4D Attosecond Imaging with Free Electrons: Diffraction Methods and Potential Applications. Chem. Phys. 2009;366:2–8. doi: 10.1016/j.chemphys.2009.07.013. DOI
Tsarev M., Thurner J. W., Baum P.. Nonlinear-Optical Quantum Control of Free-Electron Matter Waves. Nat. Phys. 2023;19:1350–1354. doi: 10.1038/s41567-023-02092-6. DOI
Ryabov A., Baum P.. Electron Microscopy of Electromagnetic Waveforms. Science. 2016;353:374–377. doi: 10.1126/science.aaf8589. PubMed DOI
Gliserin A., Walbran M., Krausz F., Baum P.. Sub-Phonon-Period Compression of Electron Pulses for Atomic Diffraction. Nat. Commun. 2015;6:8723. doi: 10.1038/ncomms9723. PubMed DOI PMC
Lahme S., Kealhofer C., Krausz F., Baum P.. Femtosecond Single-Electron Diffraction. Struct. Dyn. 2014;1:034303. doi: 10.1063/1.4884937. PubMed DOI PMC
Baum P.. On the Physics of Ultrashort Single-Electron Pulses for Time-Resolved Microscopy and Diffraction. Chem. Phys. 2013;423:55–61. doi: 10.1016/j.chemphys.2013.06.012. DOI
Pasmans P. L. E. M., van den Ham G. B., Dal Conte S. F. P., van der Geer S. B., Luiten O. J.. Microwave TM010 Cavities as Versatile 4D Electron Optical Elements. Ultramicroscopy. 2013;127:19–24. doi: 10.1016/j.ultramic.2012.07.011. PubMed DOI
Kealhofer C., Schneider W., Ehberger D., Ryabov A., Krausz F., Baum P.. All-Optical Control and Metrology of Electron Pulses. Science. 2016;352:429–433. doi: 10.1126/science.aae0003. PubMed DOI
Kirchner F. O., Gliserin A., Krausz F., Baum P.. Laser Streaking of Free Electrons at 25 keV. Nat. Phot. 2014;8:52–57. doi: 10.1038/nphoton.2013.315. DOI
Morimoto Y., Baum P.. Attosecond Control of Electron Beams at Dielectric and Absorbing Membranes. Phys. Rev. A. 2018;97:033815. doi: 10.1103/PhysRevA.97.033815. DOI
Fang Y., Kuttruff J., Nabben D., Baum P.. Structured Electrons with Chiral Mass and Charge. Science. 2024;385:183–187. doi: 10.1126/science.adp9143. PubMed DOI
Morimoto Y., Baum P.. Single-Cycle Optical Control of Beam Electrons. Phys. Rev. Lett. 2020;125:193202. doi: 10.1103/PhysRevLett.125.193202. PubMed DOI
Kozák M.. All-Optical Scheme for Generation of Isolated Attosecond Electron Pulses. Phys. Rev. Lett. 2019;123:203202. doi: 10.1103/PhysRevLett.123.203202. PubMed DOI
Kim H. Y., Garg M., Mandal S., Seiffert L., Fennel T., Goulielmakis E.. Attosecond Field Emission. Nature. 2023;613:662–666. doi: 10.1038/s41586-022-05577-1. PubMed DOI PMC
Reinhardt O., Mechel C., Lynch M., Kaminer I.. Free-Electron Qubits. Ann. Phys. 2021;533:2000254. doi: 10.1002/andp.202000254. DOI
Tsarev M., Ryabov A., Baum P.. Free-Electron Qubits and Maximum-Contrast Attosecond Pulses via Temporal Talbot Revivals. Phys. Rev. Research. 2021;3:043033. doi: 10.1103/PhysRevResearch.3.043033. DOI
Mohler K. J., Ehberger D., Gronwald I., Lange C., Huber R., Baum P.. Ultrafast Electron Diffraction from Nanophotonic Waveforms Via Dynamical Aharonov-Bohm phases. Sci. Adv. 2020;6:eabc8804. doi: 10.1126/sciadv.abc8804. PubMed DOI PMC
Yakovlev V. S., Stockman M. I., Krausz F., Baum P.. Atomic-Scale Diffractive Imaging of Sub-Cycle Electron Dynamics in Condensed Matter. Sci. Rep. 2015;5:14581. doi: 10.1038/srep14581. PubMed DOI PMC
Baum P., Ropers C.. Comment on “Attosecond Electron Microscopy and Diffraction”. arXiv:2411.14518 [cond-mat.mtrl-sci] 2024:na.
Baum P., Krausz F.. Capturing Atomic-Acale Carrier Dynamics with Electrons. Chem. Phys. Lett. 2017;683:57–61. doi: 10.1016/j.cplett.2017.03.073. DOI
Yurtsever A., van der Veen R. M., Zewail A. H.. Subparticle Ultrafast Spectrum Imaging in 4D Electron Microscopy. Science. 2012;335:59–64. doi: 10.1126/science.1213504. PubMed DOI
Harvey T. R., Henke J.-W., Kfir O., Lourenço-Martins H., Feist A., García de Abajo F. J., Ropers C.. Probing Chirality with Inelastic Electron-Light Scattering. Nano Lett. 2020;20:4377–4383. doi: 10.1021/acs.nanolett.0c01130. PubMed DOI
Liebtrau M., Sivis M., Feist A., Lourenço-Martins H., Pazos-Pérez N., Alvarez-Puebla R. A., García de Abajo F. J., Polman A., Ropers C.. Spontaneous and Stimulated Electron−Photon Interactions in Nanoscale Plasmonic Near Fields. Light Sci. Appl. 2021;10:82. doi: 10.1038/s41377-021-00511-y. PubMed DOI PMC
Madan I., Vanacore G. M., Pomarico E., Berruto G., Lamb R. J., McGrouther D., Lummen T. T. A., Latychevskaia T., García de Abajo F. J., Carbone F.. Holographic Imaging of Electromagnetic Fields via Electron-Light Quantum Interference. Sci. Adv. 2019;5:eaav8358. doi: 10.1126/sciadv.aav8358. PubMed DOI PMC
Chirita Mihaila M. C., Weber P., Schneller M., Grandits L., Nimmrichter S., Juffmann T.. Transverse Electron-Beam Shaping with Light. Phys. Rev. X. 2022;12:031043. doi: 10.1103/PhysRevX.12.031043. DOI
Vanacore G. M., Berruto G., Madan I., Pomarico E., Biagioni P., Lamb R. J., McGrouther D., Reinhardt O., Kaminer I., Barwick B., Larocque H., Grillo V., Karimi E., García de Abajo F. J., Carbone F.. Ultrafast Generation and Control of an Electron Vortex Beam Via Chiral Plasmonic Near Fields. Nat. Mater. 2019;18:573–579. doi: 10.1038/s41563-019-0336-1. PubMed DOI
Feist A., Yalunin S. V., Schäfer S., Ropers C.. High-Purity Free-Electron Momentum States Prepared by Three-Dimensional Optical Phase Modulation. Phys. Rev. Research. 2020;2:043227. doi: 10.1103/PhysRevResearch.2.043227. DOI
Gaida J. H., Lourenço-Martins H., Yalunin S. V., Feist A., Sivis M., Hohage T., García de Abajo F. J., Ropers C.. Lorentz Microscopy of Optical Fields. Nat. Commun. 2023;14:6545. doi: 10.1038/s41467-023-42054-3. PubMed DOI PMC
Echternkamp K. E., Feist A., Schäfer S., Ropers C.. Ramsey-Type Phase Control of Free-Electron Beams. Nat. Phys. 2016;12:1000–1004. doi: 10.1038/nphys3844. DOI
Kozák M., McNeur J., Leedle K. J., Deng H., Schönenberger N., Ruehl A., Hartl I., Harris J. S., Byer R. L., Hommelhoff P.. Optical Gating and Streaking of Free Electrons with Sub-Optical Cycle Precision. Nat. Commun. 2017;8:14342. doi: 10.1038/ncomms14342. PubMed DOI PMC
Kozák M., Schönenberger N., Hommelhoff P.. Ponderomotive Generation and Detection of Attosecond Free-Electron Pulse Trains. Phys. Rev. Lett. 2018;120:103203. doi: 10.1103/PhysRevLett.120.103203. PubMed DOI
Shi C., Ropers C., Hohage T.. Density Matrix Reconstructions in Ultrafast Transmission Electron Microscopy: Uniqueness, Stability, and Convergence Rates. Inverse Probl. 2020;36:025005. doi: 10.1088/1361-6420/ab539a. DOI
Ryabov A., Thurner J. W., Nabben D., Tsarev M. V., Baum P.. Attosecond Metrology in a Continuous-Beam Transmission Electron Microscope. Sci. Adv. 2020;6:eabb1393. doi: 10.1126/sciadv.abb1393. PubMed DOI PMC
Pijper F. J., Kruit P.. Detection of Energy-Selected Secondary Electrons in Coincidence with Energy-Loss Events in Thin Carbon Foils. Phys. Rev. B. 1991;44:9192–9200. doi: 10.1103/PhysRevB.44.9192. PubMed DOI
Kruit P., Shuman H., Somlyo A. P.. Detection of X-Rays and Electron Energy Loss Events in Time Coincidence. Ultramicroscopy. 1984;13:205–213. doi: 10.1016/0304-3991(84)90199-2. PubMed DOI
Graham R. J., Spence J. C. H., Alexander H.. Infrared Cathodoluminescence Studies from Dislocations in Silicon in tem, a Fourier Transform Spectrometer for Cl in TEM and ELS/CL Coincidence Measurements of Lifetimes in Semiconductors. MRS Online Proceedings Library. 1986;82:235–245. doi: 10.1557/PROC-82-235. DOI
Haak H. W., Sawatzky G. A., Ungier L., Gimzewski J. K., Thomas T. D.. Core-Level Electron−Electron Coincidence Spectroscopy. Rev. Sci. Instrum. 1984;55:696–711. doi: 10.1063/1.1137823. DOI
Ungier L., Thomas T. D.. Near threshold excitation of KVV Auger Spectra in Carbon Monoxide Using Electron−Electron Coincidence Spectroscopy. J. Chem. Phys. 1985;82:3146–3151. doi: 10.1063/1.448212. DOI
Kociak M., Zagonel L. F.. Cathodoluminescence in the Scanning Transmission Electron Microscope. Ultramicroscopy. 2017;176:112–131. doi: 10.1016/j.ultramic.2017.03.014. PubMed DOI
Jannis D., Müller-Caspary K., Béché A., Oelsner A., Verbeeck J.. Spectroscopic Coincidence Experiments in Transmission Electron Microscopy. Appl. Phys. Lett. 2019;114:143101. doi: 10.1063/1.5092945. DOI
Jannis D., Müller-Caspary K., Béché A., Verbeeck J.. Coincidence Detection of EELS and EDX Spectral Events in the Electron Microscope. Appl. Sci. 2021;11:9058. doi: 10.3390/app11199058. DOI
Arend G., Huang G., Feist A., Yang Y., Henke J.-W., Qiu Z., Jeng H., Raja A. S., Haindl R., Wang R. N., Kippenberg T. J., Ropers C.. Electrons Herald Nonclassical Light. arXiv:2409.11300 [quant-ph] 2024:na. doi: 10.48550/arXiv.2409.11300. DOI
Preimesberger A., Bogdanov B., Bicket I. C., Rembold P., Haslinger P.. Experimental Verification of Electron-Photon Entanglement. arXiv:2504.13163 [quant-ph] 2025:na. doi: 10.48550/arXiv.2504.13163. DOI
Henke J.-W., Jeng H., Sivis M., Ropers C.. Observation of Quantum Entanglement between Free Electrons and Photons. arXiv:2504.13047 [quant-ph] 2025:na. doi: 10.48550/arXiv.2504.13047. DOI
Schwartz O., Axelrod J. J., Campbell S. L., Turnbaugh C., Glaeser R. M., Müller H.. Laser Phase Plate for Transmission Electron Microscopy. Nat. Methods. 2019;16:1016–1020. doi: 10.1038/s41592-019-0552-2. PubMed DOI PMC
Konečná A., Rotunno E., Grillo V., García de Abajo F. J., Vanacore G. M.. Single-Pixel Imaging in Space and Time with Optically Modulated Free Electrons. ACS Photonics. 2023;10:1463–1472. doi: 10.1021/acsphotonics.3c00047. PubMed DOI PMC
Rosi P., Viani L., Rotunno E., Frabboni S., Tavabi A. H., Dunin-Borkowski R. E., Roncaglia A., Grillo V.. Increasing the Resolution of Transmission Electron Microscopy by Computational Ghost Imaging. Phys. Rev. Lett. 2024;133:123801. doi: 10.1103/PhysRevLett.133.123801. PubMed DOI
Yu C.-P., Vega Ibañez F., Béché A., Verbeeck J.. Quantum Wavefront Shaping with a 48-Element Programmable Phase Plate for Electrons. SciPost Phys. 2023;15:223. doi: 10.21468/SciPostPhys.15.6.223. DOI
Kozák M., Eckstein T., Schönenberger N., Hommelhoff P.. Inelastic Ponderomotive Scattering of Electrons at a High-Intensity Optical Travelling Wave in Vacuum. Nat. Phys. 2018;14:121–125. doi: 10.1038/nphys4282. DOI
Konečná A., García de Abajo F. J.. Electron Beam Aberration Correction Using Optical Near Fields. Phys. Rev. Lett. 2020;125:030801. doi: 10.1103/PhysRevLett.125.030801. PubMed DOI
Dahan R., Gorlach A., Haeusler U., Karnieli A., Eyal O., Yousefi P., Segev M., Arie A., Eisenstein G., Hommelhoff P., Kaminer I.. Imprinting the Quantum Statistics of Photons on Free Electrons. Science. 2021;373:eabj7128. doi: 10.1126/science.abj7128. PubMed DOI
Talebi N., Lienau C.. Interference between Quantum Paths in Coherent Kapitza−Dirac Effect. New J. Phys. 2019;21:093016. doi: 10.1088/1367-2630/ab3ce3. DOI
Quesnel B., Mora P.. Theory and Simulation of the Interaction of Ultraintense Laser Pulses with Electrons in Vacuum. Phys. Rev. E. 1998;58:3719–3732. doi: 10.1103/PhysRevE.58.3719. DOI
Uesugi Y., Kozawa Y., Sato S.. Electron Round Lenses with Negative Spherical Aberration by a Tightly Focused Cylindrically Polarized Light Beam. Phys. Rev. Appl. 2021;16:223. doi: 10.1103/PhysRevApplied.16.L011002. DOI
Uesugi Y., Kozawa Y., Sato S.. Properties of Electron Lenses Produced by Ponderomotive Potential with Bessel and Laguerre−Gaussian Beams. J. Opt. 2022;24:054013. doi: 10.1088/2040-8986/ac6524. DOI
Ebel S., Talebi N.. Inelastic Electron Scattering at a Single-Beam Structured Light Wave. Commun. Phys. 2023;6:179. doi: 10.1038/s42005-023-01300-2. PubMed DOI PMC
Yalunin S. V., Feist A., Ropers C.. Tailored High-Contrast Attosecond Electron Pulses for Coherent Excitation and Scattering. Phys. Rev. Research. 2021;3:L032036. doi: 10.1103/PhysRevResearch.3.L032036. DOI
García de Abajo F. J., Ropers C.. Spatiotemporal Electron Beam Focusing through Parallel Interactions with Shaped Optical Fields. Phys. Rev. Lett. 2023;130:246901. doi: 10.1103/PhysRevLett.130.246901. PubMed DOI
Uchida M., Tonomura A.. Generation of Electron Beams Carrying Orbital Angular Momentum. Nature. 2010;464:737–739. doi: 10.1038/nature08904. PubMed DOI
Lloyd S. M., Babiker M., Thirunavukkarasu G., Yuan J.. Electron Vortices: Beams with Orbital Angular Momentum. Rev. Mod. Phys. 2017;89:035004. doi: 10.1103/RevModPhys.89.035004. DOI
Verbeeck J., Béché A., Müller-Caspary K., Guzzinati G., Luong M. A., Den Hertog M.. Demonstration of a 2 × 2 Programmable Phase Plate for Electrons. Ultramicroscopy. 2018;190:58–65. doi: 10.1016/j.ultramic.2018.03.017. PubMed DOI
Tavabi A. H., Rosi P., Rotunno E., Roncaglia A., Belsito L., Frabboni S., Pozzi G., Gazzadi G. C., Lu P.-H., Nijland R., Ghosh M., Tiemeijer P., Karimi E., Dunin-Borkowski R. E., Grillo V.. Experimental Demonstration of an Electrostatic Orbital Angular Momentum Sorter for Electron Beams. Phys. Rev. Lett. 2021;126:094802. doi: 10.1103/PhysRevLett.126.094802. PubMed DOI
Vanacore G. M., Madan I., Berruto G., Wang K., Pomarico E., Lamb R. J., McGrouther D., Kaminer I., Barwick B., García de Abajo F. J., Carbone F.. Attosecond Coherent Control of Free-Electron Wave Functions Using Semi-Infinite Light Fields. Nat. Commun. 2018;9:2694. doi: 10.1038/s41467-018-05021-x. PubMed DOI PMC
Tsesses S., Dahan R., Wang K., Bucher T., Cohen K., Reinhardt O., Bartal G., Kaminer I.. Tunable Photon-Induced Spatial Modulation of Free Electrons. Nat. Mater. 2023;22:345–352. doi: 10.1038/s41563-022-01449-1. PubMed DOI
Madan I., Leccese V., Mazur A., Barantani F., LaGrange T., Sapozhnik A., Tengdin P. M., Gargiulo S., Rotunno E., Olaya J.-C., Kaminer I., Grillo V., García de Abajo F. J., Carbone F., Vanacore G. M.. Ultrafast Transverse Modulation of Free Electrons by Interaction with Shaped Optical Fields. ACS Photonics. 2022;9:3215–3224. doi: 10.1021/acsphotonics.2c00850. PubMed DOI PMC
Ferrari B. M., Duncan C. J. R., Yannai M., Dahan R., Rosi P., Ostroman I., Bravi M. G., Niedermayr A., Abudi T. L., Adiv Y., Fishman T., Park S. T., Masiel D., Lagrange T., Carbone F., Grillo F., García de Abajo F. J., Kaminer I., Vanacore G. M.. Realization of a Pre-Sample Photonic-based Free-Electron Modulator in Ultrafast Transmission Electron Microscopes. arXiv:2503.11313 [physics.optics] 2025:na. doi: 10.48550/arXiv.2503.11313. DOI
Vanacore G. M., Madan I., Carbone F.. Spatio-Temporal Shaping of a Free-Electron Wave Function Via Coherent Light−Electron Interaction. Riv. Nuovo Cimento. 2020;43:567–597. doi: 10.1007/s40766-020-00012-5. DOI
Basov D. N., Averitt R. D., Hsieh D.. Towards Properties on Demand in Quantum Materials. Nat. Mater. 2017;16:1077–1088. doi: 10.1038/nmat5017. PubMed DOI
Mitrano M., Cantaluppi A., Nicoletti D.. et al. Possible Light-Induced Superconductivity in K3C60 at High Temperature. Nature. 2016;530:461–464. doi: 10.1038/nature16522. PubMed DOI PMC
Ruimy R., Gorlach A., Baranes G., Kaminer I.. Superradiant Electron Energy Loss Spectroscopy. Nano Lett. 2023;23:779–787. doi: 10.1021/acs.nanolett.2c03396. PubMed DOI
Gorlach A., Reinhardt O., Pizzi A., Ruimy R., Baranes G., Rivera N., Kaminer I.. Double-Superradiant Cathodoluminescence. Phys. Rev. A. 2024;109:023722. doi: 10.1103/PhysRevA.109.023722. DOI
Kallepalli A., Viani L., Stellinga D., Rotunno E., Bowman R., Gibson G. M., Sun M. J., Rosi P., Frabboni S., Balboni R., Migliori A., Grillo V., Padgett M. J.. Challenging Point Scanning across Electron Microscopy and Optical Imaging using Computational Imaging. Intell. Comput. 2022;2022:0001. doi: 10.34133/icomputing.0001. DOI
Chirita Mihaila M. C., Kozák M.. Design for Light-Based Spherical Aberration Correction of Ultrafast Electron Microscopes. Opt. Express. 2025;33:758–775. doi: 10.1364/OE.542930. PubMed DOI
Madan I., Dias E. J. C., Gargiulo S., Barantani F., Yannai M., Berruto G., LaGrange T., Piazza L., Lummen T. T. A., Dahan R., Kaminer I., Vanacore G. M., García de Abajo F. J., Carbone F.. Charge Dynamics Electron Microscopy: Nanoscale Imaging of Femtosecond Plasma Dynamics. ACS Nano. 2023;17:3657–3665. doi: 10.1021/acsnano.2c10482. PubMed DOI PMC
Scheel S., Buhmann S. Y.. Macroscopic QED−Concepts and Applications. Acta Phys. Slovaca. 2008;58:675–809. doi: 10.2478/v10155-010-0092-x. DOI
Rivera N., Kaminer I.. Light-Matter Interactions with Photonic Quasiparticles. Nat. Rev. Phys. 2020;2:538–561. doi: 10.1038/s42254-020-0224-2. DOI
Shiloh F.. et al. Miniature Light-Driven Nanophotonic Electron Acceleration and Control. Adv. Opt. Photon. 2022;14:862–932. doi: 10.1364/AOP.461142. DOI
Pines D.. Collective Energy Losses in Solids. Rev. Mod. Phys. 1956;28:184–196. doi: 10.1103/RevModPhys.28.184. DOI
Ginzburg V. L.. Radiation by Uniformly Moving Sources: Vavilov−Cherenkov Effect, Doppler Effect in a Medium, Transition Radiation and Associated Phenomena. Prog. Opt. 1993;32:267–312. doi: 10.1016/S0079-6638(08)70165-3. DOI
Kaminer I.. et al. Quantum Čerenkov Radiation: Spectral Cutoffs and the Role of Spin and Orbital Angular Momentum. Phys. Rev. X. 2016;6:011006. doi: 10.1103/PhysRevX.6.011006. DOI
Huang S., Duan R., Pramanik N., Herrin J. S., Boothroyd C., Liu Z., Wong L. J.. Quantum recoil in free-electron interactions with atomic lattices. Nat. Photonics. 2023;17:224–230. doi: 10.1038/s41566-022-01132-6. DOI
Dahan R., Baranes G., Gorlach H., Ruimy R., Rivera N., Kaminer I.. Creation of Optical Cat and GKP States Using Shaped Free Electrons. Phys. Rev. X. 2023;13:031001. doi: 10.1103/PhysRevX.13.031001. DOI
Adiv Y., Hu H., Tsesses S., Dahan R., Wang K., Kurman Y., Gorlach A., Chen H., Lin X., Bartal G., Kaminer I.. Observation of 2D Cherenkov Radiation. Phys. Rev. X. 2023;13:011002. doi: 10.1103/PhysRevX.13.011002. DOI
Dahan R.. et al. Resonant Phase-Matching Between a Light Wave and a Free-Electron Wavefunction. Nat. Phys. 2020;16:1123–1131. doi: 10.1038/s41567-020-01042-w. DOI
Dahan R., Gorlach A., Haeusler U., Karnieli A., Eyal O., Yousefi P., Segev M., Arie A., Eisenstein G., Hommelhoff P., Kaminer I.. Imprinting the Quantum Statistics of Photons on Free Electrons. Science. 2021;373:eabj7128. doi: 10.1126/science.abj7128. PubMed DOI
Gorlach A., Malka S., Karnieli A., Dahan R., Cohen E., Pe'er A., Kaminer I.. Photonic Quantum State Tomography Using Free Electrons. Phys. Rev. Lett. 2024;133:250801. doi: 10.1103/PhysRevLett.133.250801. PubMed DOI
Reinhardt O., Kaminer I.. Theory of Shaping Electron Wavepackets with Light. ACS Photonics. 2020;7(10):2859–2870. doi: 10.1021/acsphotonics.0c01133. DOI
Lamb W. E., Retherford R. C.. Fine Structure of the Hydrogen Atom by a Microwave Method. Phys. Rev. 1947;72:241–243. doi: 10.1103/PhysRev.72.241. DOI
Di Giulio V., García de Abajo F. J.. Electron Diffraction by Vacuum Fluctuations. New J. Phys. 2020;22:103057. doi: 10.1088/1367-2630/abbddf. DOI
Ruimy R., Tziperman O., Gorlach A., Mølmer K., Kaminer I.. Many-Body Entanglement via ‘Which-Path’ Information. npj Quantum Inf. 2024;10:121. doi: 10.1038/s41534-024-00899-6. DOI
Di Giulio V., García de Abajo F. J.. Optical-Cavity Mode Squeezing by Free Electrons. Nanophotonics. 2022;11:4659–4670. doi: 10.1515/nanoph-2022-0481. PubMed DOI PMC
Tizei L. H. G., Kociak M.. Spatially Resolved Quantum Nano-Optics of Single Photons Using an Electron Microscope. Phys. Rev. Lett. 2013;110:153604. doi: 10.1103/PhysRevLett.110.153604. PubMed DOI
Rasmussen T. P., Rodríguez Echarri A., Cox J. D., García de Abajo F. J.. Generation of Entangled Waveguided Photon Pairs by Free Electrons. Sci. Adv. 2024;10:eadn6312. doi: 10.1126/sciadv.adn6312. PubMed DOI
Koppell S. A., Simonaitis J. W., Krielaart M. A. R., Putnam W. P., Berggren K. K., Keathley P. D.. Analysis and Applications of a Heralded Electron Source. New J. Phys. 2025;27:023012. doi: 10.1088/1367-2630/ada8d0. DOI
Franssen J. G. H., de Raadt T. C. H., van Ninhuijs M. A. W., Luiten O. J.. Compact ultracold electron source based on a grating magneto-optical trap. Phys. Rev. Accel. Beams. 2019;22:023401. doi: 10.1103/PhysRevAccelBeams.22.023401. DOI
Gover A., Yariv A.. Free-Electron−Bound-Electron Resonant Interaction. Phys. Rev. Lett. 2020;124:064801. doi: 10.1103/PhysRevLett.124.064801. PubMed DOI
Preimesberger A., Hornof D., Dorfner T., Schachinger T., Hrtoň M., Konečná A., Haslinger P.. Exploring Single-Photon Recoil on Free Electrons. Phys. Rev. Lett. 2025;134:096901. doi: 10.1103/PhysRevLett.134.096901. PubMed DOI
Zhao Z.. Upper Bound for the Quantum Coupling Between Free Electrons and Photons. Phys. Rev. Lett. 2025;134:0439804. doi: 10.1103/PhysRevLett.134.043804. PubMed DOI
Xie Z., Chen Z., Li H., Yan Q., Chen H., Lin X., Kaminer I., Miller O. D., Yang Y.. Maximal Quantum Interaction Between Free Electrons and Photons. Phys. Rev. Lett. 2025;134:043803. doi: 10.1103/PhysRevLett.134.043803. PubMed DOI
Ates O. E., Slayton B. J., Putnam W. P.. Subwavelength-Modulated Silicon Photonics for Low-Energy Free-Electron-Photon Interactions. Optics Expr. 2024;32:41892–41904. doi: 10.1364/OE.537296. PubMed DOI
Hughes T., Veronis G., Wootton K. P., England R. J., Fan S.. Method for Computationally Efficient Design of Dielectric Laser Accelerator Structures. Opt. Express. 2017;25:15414–15427. doi: 10.1364/OE.25.015414. PubMed DOI
Haeusler U., Seidling M., Yousefi P., Hommelhoff P.. Boosting the Efficiency of Smith−Purcell Radiators Using Nanophotonic Inverse Design. ACS Photonics. 2022;9:664–671. doi: 10.1021/acsphotonics.1c01687. DOI
Zimmermann R., Seidling M., Hommelhoff P.. Charged Particle Guiding and Beam Splitting With Auto-Ponderomotive Potentials on a Chip. Nat. Commun. 2021;12:390. doi: 10.1038/s41467-020-20592-4. PubMed DOI PMC
England R. J., Noble R. J., Bane K., Dowell D. H., Ng C. K., Spencer J. E., Tantawi S., Wu Z., Byer R. L., Peralta E., Soong K.. et al. Dielectric Laser Accelerators. Rev. Mod. Phys. 2014;86:1337–1389. doi: 10.1103/RevModPhys.86.1337. DOI
Niedermayer U., Egenolf T., Boine-Frankenheim O., Hommelhoff P.. Alternating-Phase Focusing for Dielectric-Laser Acceleration. Phys. Rev. Lett. 2018;121:214801. doi: 10.1103/PhysRevLett.121.214801. PubMed DOI
Shiloh R., Illmer J., Chlouba T., Yousefi P., Schönenberger N., Niedermayer U., Mittelbach A., Hommelhoff P.. Electron Phase-Space Control in Photonic Chip-Based Particle Acceleration. Nature. 2021;597:498–502. doi: 10.1038/s41586-021-03812-9. PubMed DOI
Chlouba T., Shiloh R., Kraus S., Brückner L., Litzel J., Hommelhoff P.. Coherent Nanophotonic Electron Accelerator. Nature. 2023;622:476–480. doi: 10.1038/s41586-023-06602-7. PubMed DOI
Broaddus P., Egenolf T., Black D. S., Murillo M., Woodahl C., Miao Y., Niedermayer U., Byer R. L., Leedle K. J., Solgaard O.. Subrelativistic Alternating Phase Focusing Dielectric Laser Accelerators. Phys. Rev. Lett. 2024;132:085001. doi: 10.1103/PhysRevLett.132.085001. PubMed DOI
Schönenberger N., Mittelbach A., Yousefi P., McNeur J., Niedermayer U., Hommelhoff P.. Generation and Characterization of Attosecond Microbunched Electron Pulse Trains via Dielectric Laser Acceleration. Phys. Rev. Lett. 2019;123:264803. doi: 10.1103/PhysRevLett.123.264803. PubMed DOI
Black D. S., Niedermayer U., Miao Y., Zhao Z., Solgaard O., Byer R. L., Leedle K. J.. Net Acceleration and Direct Measurement of Attosecond Electron Pulses in a Silicon Dielectric Laser Accelerator. Phys. Rev. Lett. 2019;123:264802. doi: 10.1103/PhysRevLett.123.264802. PubMed DOI
Leedle K. J., Pease R. F., Byer R. L., Harris J. S.. Laser Acceleration and Deflection of 96.3 keV Electrons With a Silicon Dielectric Structure. Optica. 2015;2:158–161. doi: 10.1364/OPTICA.2.000158. PubMed DOI
Yousefi P., McNeur J., Kozák M., Niedermayer U., Gannott F., Lohse O., Boine-Frankenheim O., Hommelhoff P.. Silicon Dual Pillar Structure With a Distributed Bragg Reflector for Dielectric Laser Accelerators: Design and Fabrication. Nucl. Instrum. Meth. Phys. Res. A. 2018;909:221–223. doi: 10.1016/j.nima.2018.01.065. DOI
Niedermayer U., Egenolf T., Boine-Frankenheim O.. Three-Dimensional Alternating-Phase Focusing for Dielectric-Laser Electron Accelerators. Phys. Rev. Lett. 2020;125:164801. doi: 10.1103/PhysRevLett.125.164801. PubMed DOI
Zhao Z., Black D. S., England R. J., Hughes T. W., Miao Y., Solgaard O., Byer R. L., Fan S.. Design of a Multichannel Photonic Crystal Dielectric Laser Accelerator. Photonics Res. 2020;8:1586–1598. doi: 10.1364/PRJ.394127. DOI
Brückner L., Nauk C., Dienstbier P., Gerner C., Löhrl B., Paschen T., Hommelhoff P.. A Gold Needle Tip Array Ultrafast Electron Source with High Beam Quality. Nano Lett. 2024;24:5018–5023. doi: 10.1021/acs.nanolett.4c00870. PubMed DOI
Freimund D. L., Batelaan H.. Bragg Scattering of Free Electrons Using the Kapitza−Dirac Effect. Phys. Rev. Lett. 2002;89:283602. doi: 10.1103/PhysRevLett.89.283602. PubMed DOI
Streshkova N. L., Koutensky P., Kozák M.. Electron Vortex Beams for Chirality Probing at the Nanoscale. Phys. Rev. Appl. 2024;22:054017. doi: 10.1103/PhysRevApplied.22.054017. DOI
Streshkova N. L., Koutensky P., Novotny T., Kozák M.. Monochromatization of Electron Beams with Spatially and Temporally Modulated Optical Fields. Phys. Rev. Lett. 2024;133:213801. doi: 10.1103/PhysRevLett.133.213801. PubMed DOI
Morimoto Y., Hommelhoff P., Madsen L. B.. Coherent Scattering of an Optically Modulated Electron Beam by Atoms. Phys. Rev. A. 2021;103:043110. doi: 10.1103/PhysRevA.103.043110. DOI
Morimoto Y., Hommelhoff P., Madsen L. B.. Scattering-Asymmetry Control with Ultrafast Electron Wave Packet Shaping. arXiv:2203.13425 [physics.atom-ph] 2022:na. doi: 10.48550/arXiv.2203.13425. DOI
Morimoto Y., Madsen L. B.. Scattering of Ultrashort Electron Wave Packets: Optical Theorem, Differential Phase Contrast and Angular Asymmetries. New J. Phys. 2024;26:053012. doi: 10.1088/1367-2630/ad438b. DOI
Wang Y. H., Steinberg H., Jarillo-Herrero P., Gedik N.. Observation of Floquet-Bloch States on the Surface of a Topological Insulator. Science. 2013;342:453–457. doi: 10.1126/science.1239834. PubMed DOI
McIver J. W., Schulte B., Stein F.-U., Matsuyama T., Jotzu G., Meier G., Cavalleri A.. Light-Induced Anomalous Hall Effect in Graphene. Nat. Phys. 2020;16:38–41. doi: 10.1038/s41567-019-0698-y. PubMed DOI PMC
Wintersperger K., Braun C., Ünal F. N., Eckardt A., Liberto M. D., Goldman N., Bloch I., Aidelsburger M.. Realization of an Anomalous Floquet Topological System with Ultracold Atoms. Nat. Phys. 2020;16:1058–1063. doi: 10.1038/s41567-020-0949-y. DOI
Zhou S., Bao C., Fan B., Zhou H., Gao Q., Zhong H., Lin T., Liu H., Yu P., Tang P., Meng S., Duan W., Zhou S.. Pseudospin-Selective Floquet Band Engineering in Black Phosphorus. Nature. 2023;614:75–80. doi: 10.1038/s41586-022-05610-3. PubMed DOI
Arqué López E., Di Giulio V., García de Abajo F. J.. Atomic Floquet Physics Revealed by Free Electrons. Phys. Rev. Research. 2022;4:013241. doi: 10.1103/PhysRevResearch.4.013241. DOI
Halperin B. I., Rice T. M.. Possible Anomalies at a Semimetal-Semiconductor Transistion. Rev. Mod. Phys. 1968;40:755–766. doi: 10.1103/RevModPhys.40.755. DOI
Cercellier H., Monney C., Clerc F., Battaglia C., Despont L., Garnier M. G., Beck H., Aebi P., Patthey L., Berger H., Forró L.. Evidence for an Excitonic Insulator Phase in 1T-TiSe2 . Phys. Rev. Lett. 2007;99:146403. doi: 10.1103/PhysRevLett.99.146403. PubMed DOI
Wakisaka Y., Sudayama T., Takubo K., Mizokawa T., Arita M., Namatame H., Taniguchi M., Katayama N., Nohara M., Takagi H.. Excitonic Insulator State in Ta2NiSe5 Probed by Photoemission Spectroscopy. Phys. Rev. Lett. 2009;103:026402. doi: 10.1103/PhysRevLett.103.026402. PubMed DOI
Kogar A., Rak M. S., Vig S., Husain A. A., Flicker F., Joe Y. I., Venema L., MacDougall G. J., Chiang T. C., Fradkin E., van Wezel J., Abbamonte P.. Signatures of Exciton Condensation in a Transition Metal Dichalcogenide. Science. 2017;358:1314–1317. doi: 10.1126/science.aam6432. PubMed DOI
Jia Y., Wang P., Chiu C.-L., Song Z., Yu G., Jäck B., Lei S., Klemenz S., Cevallos F. A., Onyszczak M., Fishchenko N., Liu X., Farahi G., Xie F., Xu Y., Watanabe K., Taniguchi T., Bernevig B. A., Cava R. J., Schoop L. M., Yazdani A., Wu S.. Evidence for a Monolayer Excitonic Insulator. Nat. Phys. 2022;18:87–93. doi: 10.1038/s41567-021-01422-w. DOI
Baldini E., Zong A., Choi D., Lee C., Michael M. H., Windgaetter L., Mazin I. I., Latini S., Azoury D., Lv B., Kogar A., Su Y., Wang Y., Lu Y., Takayama T., Takagi H., Millis A. J., Rubio A., Demler E., Gedik N.. The Spontaneous Symmetry Breaking in Ta2NiSe5 Is Structural in Nature. Proc. Natl. Acad. Sci. U. S. A. 2023;120:e2221688120. doi: 10.1073/pnas.2221688120. PubMed DOI PMC
Little W. A.. Possibility of Synthesizing an Organic Superconductor. Phys. Rev. 1964;134:A1416–A1424. doi: 10.1103/PhysRev.134.A1416. DOI
Allender D., Bray J., Bardeen J.. Model for an Exciton Mechanism of Superconductivity. Phys. Rev. B. 1973;7:1020–1029. doi: 10.1103/PhysRevB.7.1020. DOI
Barantani F., Tran M. K., Madan I., Kapon I., Bachar N., Asmara T. C., Paris E., Tseng Y., Zhang W., Hu Y., Giannini E., Gu G., Devereaux T. P., Berthod C., Carbone F., Schmitt T., van der Marel D.. Resonant Inelastic X-Ray Scattering Study of Electron-Exciton Coupling in High-Tc Cuprates. Phys. Rev. X. 2022;12:021068. doi: 10.1103/PhysRevX.12.021068. DOI
Kang S., Kim K., Kim B. H., Kim J., Sim K. I., Lee J.-U., Lee S., Park K., Yun S., Kim T., Nag A., Walters A., Garcia-Fernandez M., Li J., Chapon L., Zhou K.-J., Son Y.-W., Kim J. H., Cheong H., Park J.-G.. Coherent Many-Body Exciton in van Der Waals Antiferromagnet NiPS3. Nature. 2020;583:785–789. doi: 10.1038/s41586-020-2520-5. PubMed DOI
Belvin C. A., Baldini E., Ozel I. O., Mao D., Po H. C., Allington C. J., Son S., Kim B. H., Kim J., Hwang I., Kim J. H., Park J.-G., Senthil T., Gedik N.. Exciton-Driven Antiferromagnetic Metal in a Correlated van Der Waals Insulator. Nat. Commun. 2021;12:4837. doi: 10.1038/s41467-021-25164-8. PubMed DOI PMC
Occhialini C. A., Tseng Y., Elnaggar H., Song Q., Blei M., Tongay S. A., Bisogni V., de Groot F. M. F., Pelliciari J., Comin R.. Nature of Excitons and Their Ligand-Mediated Delocalization in Nickel Dihalide Charge-Transfer Insulators. Phys. Rev. X. 2024;14:031007. doi: 10.1103/PhysRevX.14.031007. DOI
He W., Shen Y., Wohlfeld K., Sears J., Li J., Pelliciari J., Walicki M., Johnston S., Baldini E., Bisogni V., Mitrano M., Dean M. P. M.. Magnetically Propagating Hund’s Exciton in van Der Waals Antiferromagnet NiPS3. Nat. Commun. 2024;15:3496. doi: 10.1038/s41467-024-47852-x. PubMed DOI PMC
Morimoto Y.. Attosecond Electron-Beam Technology: A Review of Recent Progress. Microscopy. 2023;72:2–17. doi: 10.1093/jmicro/dfac054. PubMed DOI
Kazimierczuk T., Fröhlich D., Scheel S., Stolz H., Bayer M.. Giant Rydberg Excitons in the Copper Oxide Cu2O. Nature. 2014;514:343–347. doi: 10.1038/nature13832. PubMed DOI
Orfanakis K., Rajendran S. K., Walther V., Volz T., Pohl T., Ohadi H.. Rydberg Exciton−Polaritons in a Cu2O Microcavity. Nat. Mater. 2022;21:767–772. doi: 10.1038/s41563-022-01230-4. PubMed DOI
Woo S. Y., Tizei L. H. G.. Nano-Optics of Transition Metal Dichalcogenides and Their van Der Waals Heterostructures with Electron Spectroscopies. 2D Mater. 2025;12:012001. doi: 10.1088/2053-1583/ad97c8. DOI
Coenen T., Haegel N. M.. Cathodoluminescence for the 21st Century: Learning More from Light. Appl. Phys. Rev. 2017;4:031103. doi: 10.1063/1.4985767. DOI
Chahshouri F., Taleb M., Diekmann F. K., Rossnagel K., Talebi N.. Interaction of Excitons with Cherenkov Radiation in WSe 2 beyond the Non-Recoil Approximation. J. Phys. D . Appl. Phys. 2022;55:145101. doi: 10.1088/1361-6463/ac453a. DOI
Taleb M., Davoodi F., Diekmann F. K., Rossnagel K., Talebi N.. Charting the Exciton−Polariton Landscape of WSe 2 Thin Flakes by Cathodoluminescence Spectroscopy. Adv. Photonics Res. 2022;3:2100124. doi: 10.1002/adpr.202100124. DOI
Tizei L. H. G., Lin Y.-C., Lu A.-Y., Li L.-J., Suenaga K.. Electron Energy Loss Spectroscopy of Excitons in Two-Dimensional-Semiconductors as a Function of Temperature. Appl. Phys. Lett. 2016;108:163107. doi: 10.1063/1.4947058. DOI
Guthrey H., Moseley J.. A Review and Perspective on Cathodoluminescence Analysis of Halide Perovskites. Adv. Energy Mater. 2020;10:1903840. doi: 10.1002/aenm.201903840. DOI
Shahmohammadi M., Jacopin G., Fu X., Ganière J.-D., Yu D., Deveaud B.. Exciton Hopping Probed by Picosecond Time-Resolved Cathodoluminescence. Appl. Phys. Lett. 2015;107:1411001. doi: 10.1063/1.4932098. DOI
Rossouw D., Botton G. A., Najafi E., Lee V., Hitchcock A. P.. Metallic and Semiconducting Single-Walled Carbon Nanotubes: Differentiating Individual SWCNTs by Their Carbon 1s Spectra. ACS Nano. 2012;6:10965–10972. doi: 10.1021/nn3045227. PubMed DOI
Tizei L. H. G., Lin Y.-C., Mukai M., Sawada H., Lu A.-Y., Li L.-J., Kimoto K., Suenaga K.. Exciton Mapping at Subwavelength Scales in Two-Dimensional Materials. Phys. Rev. Lett. 2015;114:107601. doi: 10.1103/PhysRevLett.114.107601. PubMed DOI
Corfdir P., Ristić J., Lefebvre P., Zhu T., Martin D., Dussaigne A., Ganière J. D., Grandjean N., Deveaud-Plédran B.. Low-Temperature Time-Resolved Cathodoluminescence Study of Exciton Dynamics Involving Basal Stacking Faults in a-Plane GaN. Appl. Phys. Lett. 2009;94:201115. doi: 10.1063/1.3142396. DOI
Kim Y.-J., Kwon O.-H.. Cathodoluminescence in Ultrafast Electron Microscopy. ACS Nano. 2021;15:19480–19489. doi: 10.1021/acsnano.1c06260. PubMed DOI
Talebi N.. Spectral Interferometry with Electron Microscopes. Sci. Rep. 2016;6:33874. doi: 10.1038/srep33874. PubMed DOI PMC
Talebi N., Meuret S., Guo S., Hentschel M., Polman A., Giessen H., van Aken P. A.. Merging Transformation Optics with Electron-Driven Photon Sources. Nat. Commun. 2019;10:599. doi: 10.1038/s41467-019-08488-4. PubMed DOI PMC
Ramsey N. F.. A Molecular Beam Resonance Method with Separated Oscillating Fields. Phys. Rev. 1950;78:695–699. doi: 10.1103/PhysRev.78.695. DOI
Raimond, J.-M. ; Haroche, S. . Monitoring the Decoherence of Mesoscopic Quantum Superpositions in a Cavity. Quantum Decoherence; Birkhäuser: Basel, 2006; pp 33−83.
Susarla S., Naik M. H., Blach D. D., Zipfel J., Taniguchi T., Watanabe K., Huang L., Ramesh R., da Jornada F. H., Louie S. G., Ercius P., Raja A.. Hyperspectral Imaging of Exciton Confinement within a Moiré Unit Cell with a Subnanometer Electron Probe. Science. 2022;378:1235–1239. doi: 10.1126/science.add9294. PubMed DOI
Borghi M. T. A., Wilson N. R.. Cathodoluminescence from Interlayer Excitons in a 2D Semiconductor Heterobilayer. Nanotechnology. 2024;35:465203. doi: 10.1088/1361-6528/ad70b3. PubMed DOI
Naito H., Makino Y., Zhang W., Ogawa T., Endo T., Sannomiya T., Kaneda M., Hashimoto K., Lim H. E., Nakanishi Y., Watanabe K., Taniguchi T., Matsuda K., Miyata Y.. High-Throughput Dry Transfer and Excitonic Properties of Twisted Bilayers Based on CVD-Grown Transition Metal Dichalcogenides. Nanoscale Adv. 2023;5:5115–5121. doi: 10.1039/D3NA00371J. PubMed DOI PMC
Ramsden H., Sarkar S., Wang Y., Zhu Y., Kerfoot J., Alexeev E. M., Taniguchi T., Watanabe K., Tongay S., Ferrari A. C., Chhowalla M.. Nanoscale Cathodoluminescence and Conductive Mode Scanning Electron Microscopy of van Der Waals Heterostructures. ACS Nano. 2023;17:11882–11891. doi: 10.1021/acsnano.3c03261. PubMed DOI PMC
Davoodi F., Taleb M., Diekmann F. K., Coenen T., Rossnagel K., Talebi N.. Tailoring the Band Structure of Plexcitonic Crystals by Strong Coupling. ACS Photonics. 2022;9:2473–2482. doi: 10.1021/acsphotonics.2c00586. DOI
Vu D. T., Matthaiakakis N., Sannomiya T.. Plasmonic Nanopyramid Array Enhancing Luminescence of MoS 2 Investigated by Cathodoluminescence. Adv. Opt. Mater. 2023;11:2300598. doi: 10.1002/adom.202300598. DOI
Fiedler S., Morozov S., Iliushyn L., Boroviks S., Thomaschewski M., Wang J., Booth T. J., Stenger N., Wolff C., Mortensen N. A.. Photon Superbunching in Cathodoluminescence of Excitons in WS 2 Monolayer. 2D Mater. 2023;10:021002. doi: 10.1088/2053-1583/acbf66. DOI
Maciel-Escudero C., Yankovich A. B., Munkhbat B., Baranov D. G., Hillenbrand R., Olsson E., Aizpurua J., Shegai T. O.. Probing Optical Anapoles with Fast Electron Beams. Nat. Commun. 2023;14:8478. doi: 10.1038/s41467-023-43813-y. PubMed DOI PMC
Gonçalves P. A. D., García de Abajo F. J.. Interrogating Quantum Nonlocal Effects in Nanoplasmonics through Electron-Beam Spectroscopy. Nano Lett. 2023;23:4242–4249. doi: 10.1021/acs.nanolett.3c00298. PubMed DOI
Milagres de Oliveira T., Albrecht W., González-Rubio G., Altantzis T., Lobato Hoyos I. P., Béché A., Van Aert S., Guerrero-Martínez A., Liz-Marzán L. M., Bals S.. 3D Characterization and Plasmon Mapping of Gold Nanorods Welded by Femtosecond Laser Irradiation. ACS Nano. 2020;14:12558–12570. doi: 10.1021/acsnano.0c02610. PubMed DOI
Song J. H., Raza S., van de Groep J., Kang J. H., Li Q., Kik P. G., Brongersma M. L.. Nanoelectromechanical modulation of a strongly-coupled plasmonic dimer. Nat. Commun. 2021;12:48. doi: 10.1038/s41467-020-20273-2. PubMed DOI PMC
Baldi A., Askes S. H. C.. Pulsed Photothermal Heterogeneous Catalysis. ACS Catal. 2023;13:3419–3432. doi: 10.1021/acscatal.2c05435. PubMed DOI PMC
Zhang F., Liu W.. Recent Progress of Operando Transmission Electron Microscopy in Heterogeneous Catalysis. Microstructures. 2024;4:2024041. doi: 10.20517/microstructures.2024.03. DOI
Swearer D. F., Bourgeois B. B., Angell D. K., Dionne J. A.. Advancing Plasmon-Induced Selectivity in Chemical Transformations with Optically Coupled Transmission Electron Microscopy. Acc. Chem. Res. 2021;54:3632–3642. doi: 10.1021/acs.accounts.1c00309. PubMed DOI
Yang W. D., Wang C., Fredin L. A., Lin P. A., Shimomoto L., Lezec H. J., Sharma R.. Site-Selective CO Disproportionation Mediated by Localized Surface Plasmon Resonance Excited by Electron Beam. Nat. Mater. 2019;18:614–619. doi: 10.1038/s41563-019-0342-3. PubMed DOI PMC
Miller B. K., Crozier P. A.. Linking Changes in Reaction Kinetics and Atomic-Level Surface Structures on a Supported Ru Catalyst for CO Oxidation. ACS Catal. 2021;11:1456–1463. doi: 10.1021/acscatal.0c03789. DOI
Shen T. H., Spillane L., Peng J., Shao-Horn Y., Tileli V.. Switchable Wetting of Oxygen-Evolving Oxide Catalysts. Nat. Catal. 2022;5:30–36. doi: 10.1038/s41929-021-00723-w. PubMed DOI PMC
Singla S., Joshi P., López-Morales G. I., Sarkar S., Sarkar S., Flick J., Chakraborty B.. Probing Correlation of Optical Emission and Defect Sites in Hexagonal Boron Nitride by High-Resolution STEM-EELS. Nano Lett. 2024;24:9212–9220. doi: 10.1021/acs.nanolett.4c01477. PubMed DOI
Curie D., Krogel J. T., Cavar L., Solanki A., Upadhyaya P., Li T., Pai Y. Y., Chilcote M., Iyer V., Puretzky A., Ivanov I., Du M. H., Reboredo F., Lawrie B.. Correlative Nanoscale Imaging of Strained hBN Spin Defects. ACS Appl. Mater. Interfaces. 2022;14:41361–41368. doi: 10.1021/acsami.2c11886. PubMed DOI
Angell D. K., Li S., Utzat H., Thurston M. L. S., Liu Y., Dahl J., Carlson R., Shen Z., Melosh N., Sinclair R., Dionne J. A.. Unravelling Sources of Emission Heterogeneity in Silicon Vacancy Color Centers with Cryo-Cathodoluminescence Microscopy. Proc. Natl. Acad. Sci. U. S. A. 2024;121:e2308247121. doi: 10.1073/pnas.2308247121. PubMed DOI PMC
Gale A., Li C., Chen Y., Watanabe K., Taniguchi T., Aharonovich I., Toth M.. Site-Specific Fabrication of Blue Quantum Emitters in Hexagonal Boron Nitride. ACS Photonics. 2022;9:2170–2177. doi: 10.1021/acsphotonics.2c00631. DOI
Egerton R. F., Watanabe M.. Characterization of Single-Atom Catalysts by EELS and EDX Spectroscopy. Ultramicroscopy. 2018;193:111–117. doi: 10.1016/j.ultramic.2018.06.013. PubMed DOI
Barwick B., Zewail A. H.. Photonics and Plasmonics in 4D Ultrafast Electron Microscopy. ACS Photonics. 2015;2:1391–1402. doi: 10.1021/acsphotonics.5b00427. DOI
Meng Y., Zhou Y., Wang X., Wei W., Hu Y., Chen B., Zhong D.. Direct Nanosecond Multiframe Imaging of Irreversible Dynamics in 4D Electron Microscopy. Nano Lett. 2024;24:7219–7226. doi: 10.1021/acs.nanolett.4c01025. PubMed DOI
Atre A. C., Brenny J. M. B., Coenen Y., García-Etxarri A., Polman A., Dionne J. A.. Nanoscale Optical Tomography with Cathodoluminescence Spectroscopy. Nat. Nanotechnol. 2015;10:429–436. doi: 10.1038/nnano.2015.39. PubMed DOI
Collins S. M., Midgley P. A.. Progress and Opportunities in EELS and EDS Tomography. Ultramicroscopy. 2017;180:133–141. doi: 10.1016/j.ultramic.2017.01.003. PubMed DOI
Li C., Tardajos A. P., Wang D., Choukroun D., Van Daele K., Breugelmans T., Bals S.. A Simple Method to Clean Ligand Contamination on TEM Grids. Ultramicroscopy. 2021;221:113195. doi: 10.1016/j.ultramic.2020.113195. PubMed DOI
Gault B., Schweinar K., Zhang S., Lahn L., Scheu C., Kim S.-H., Kasian O.. Correlating Atom Probe Tomography with X-Ray and Electron Spectroscopies to Understand Microstructure-Activity Relationships in Electrocatalysis. MRS Bulletin Rev. 2022;47:718–726. doi: 10.1557/s43577-022-00373-8. DOI
Dieperink M., Scalerandi F., Albrecht W.. Correlating Structure, Morphology and Properties of Metal Nanostructures by Combining Single-Particle Optical Spectroscopy and Electron Microscopy. Nanoscale. 2022;14:7460–7472. doi: 10.1039/D1NR08130F. PubMed DOI
Dieperink M., Skorikov A., Claes N., Bals S., Albrecht W.. Considerations for Electromagnetic Simulations for a Quantitative Correlation of Optical Spectroscopy and Electron Tomography of Plasmonic Nanoparticles. Nanophotonics. 2024;13:4647–4665. doi: 10.1515/nanoph-2024-0238. DOI
Chao H. Y., Venkatraman K., Moniri S., Jiang Y., Tang X., Dai S., Gao W., Miao J., Chi M.. In Situ Emerging Transmission Electron Microscopy for Catalysis Research. Chem. Rev. 2023;123(12):8347–8394. doi: 10.1021/acs.chemrev.2c00880. PubMed DOI
Ibáñez F. V., Verbeeck J.. Retrieval of Phase Information from Low-Dose Electron Microscopy Experiments: Are We at the Limit Yet? Microsc. Microanal. 2025;31:ozae125. doi: 10.1093/mam/ozae125. PubMed DOI
Hoppe W.. Beugung im Inhomogenen Primärstrahlwellenfeld. I. Prinzip einer Phasenmessung von Elektronenbeungungsinterferenzen. Acta Crystallogr. A. 1969;25:495–501. doi: 10.1107/S0567739469001045. DOI
Hoppe W., Strube G.. Beugung in Inhomogenen Primärstrahlenwellenfeld. II. Lichtoptische Analogieversuche zur Phasenmessung von Gitterinterferenzen. Acta Crystallogr. A. 1969;25:502–507. doi: 10.1107/S0567739469001057. DOI
Hoppe W.. Beugung im Inhomogenen Primärstrahlwellenfeld. III. Amplituden- und Phasenbestimmung bei Unperiodischen Objekten. Acta Crystallogr. A. 1969;25:508–514. doi: 10.1107/S0567739469001069. DOI
Miao J., Sayre D., Chapman H. N.. Phase Retrieval from the Magnitude of the Fourier Transforms of Nonperiodic Objects. J. Opt. Soc. Am. A. 1998;15:1662–1669. doi: 10.1364/JOSAA.15.001662. DOI
McCallum B., Rodenburg J.. Two-Dimensional Demonstration of Wigner Phase-Retrieval Microscopy in the STEM Configuration. Ultramicroscopy. 1992;45:371–380. doi: 10.1016/0304-3991(92)90149-E. DOI
Nellist P. D., McCallum B. C., Rodenburg J. M.. Resolution beyond the ’Information Limit’ in Transmission Electron Microscopy. Nature. 1995;374:630–632. doi: 10.1038/374630a0. DOI
Chapman H. N.. Phase-Retrieval X-ray Microscopy by Wigner-Distribution Deconvolution. Ultramicroscopy. 1996;66:153–172. doi: 10.1016/S0304-3991(96)00084-8. DOI
Hao B., Ding Z., Tao X., Nellist P. D., Assender H. E.. Atomic-Scale Imaging of Polyvinyl Alcohol Crystallinity Using Electron Ptychography. Polymer. 2023;284:126305. doi: 10.1016/j.polymer.2023.126305. DOI
Dong Z., Zhang E., Jiang Y., Zhang Q., Mayoral A., Jiang H., Ma Y.. Atomic-Level Imaging of Zeolite Local Structures Using Electron Ptychography. J. Am. Chem. Soc. 2023;145:6628–6632. doi: 10.1021/jacs.2c12673. PubMed DOI
Zhou L., Song J., Kim J. S., Pei X., Huang C., Boyce M., Mendonca L., Clare D., Siebert A., Allen C. S., Liberti E., Stuart D., Pan X., Nellist P. D., Zhang P., Kirkland A. I., Wang P.. Low-Dose Phase Retrieval of Biological Specimens Using Cryo-Electron Ptychography. Nat. Commun. 2020;11:2773. doi: 10.1038/s41467-020-16391-6. PubMed DOI PMC
Scheid A., Wang Y., Jung M., Heil T., Moia D., Maier J., van Aken P. A.. Electron Ptychographic Phase Imaging of Beam-Sensitive All-Inorganic Halide Perovskites Using Four-Dimensional Scanning Transmission Electron Microscopy. Microsc. Microanal. 2023;29:869–878. doi: 10.1093/micmic/ozad017. PubMed DOI
Eschen W., Loetgering L., Schuster V., Klas R., Kirsche A., Berthold L., Steinert M., Pertsch T., Gross H., Krause M., Limpert J., Rothhardt J.. Material-specific High-resolution Table-top Extreme Ultraviolet Microscopy. Light: Sci. Appl. 2022;11:117. doi: 10.1038/s41377-022-00797-6. PubMed DOI PMC
Stockmar M., Cloetens P., Zanette I., Enders B., Dierolf M., Pfeiffer F., Thibault P.. Near-field ptychography: Phase retrieval for Inline Holography Using a Structured Illumination. Sci. Rep. 2013;3:1927. doi: 10.1038/srep01927. PubMed DOI PMC
Dierolf M., Menzel A., Thibault P., Schneider P., Kewish C. M., Wepf R., Bunk O., Pfeiffer F.. Ptychographic X-ray Computed Tomography at the Nanoscale. Nature. 2010;467:436–439. doi: 10.1038/nature09419. PubMed DOI
Batey D. J., Cipiccia S., Van Assche F., Vanheule S., Vanmechelen J., Boone M. N., Rau C.. Spectroscopic Imaging with Single Acquisition Ptychography and a Hyperspectral Detector. Sci. Rep. 2019;9:12278. doi: 10.1038/s41598-019-48642-y. PubMed DOI PMC
Rodenburg J. M., Bates R. H. T.. The Theory of Super-resolution Electron Microscopy via Wigner-distribution Deconvolution. Philos. Trans. R. Soc. London. Series A: Phys. Eng. Sci. 1992;339:521–553.
Rodenburg J., McCallum B., Nellist P.. Experimental Tests on Double-resolution Coherent Imaging via STEM. Ultramicroscopy. 1993;48:304–314. doi: 10.1016/0304-3991(93)90105-7. DOI
Faulkner H. M., Rodenburg J. M.. Movable Aperture Lensless Transmission Microscopy: A Novel Phase Retrieval Algorithm. Phys. Rev. Lett. 2004;93:023903. doi: 10.1103/PhysRevLett.93.023903. PubMed DOI
Maiden A. M., Rodenburg J. M.. An Improved Ptychographical Phase Retrieval Algorithm for Diffractive Imaging. Ultramicroscopy. 2009;109:1256–1262. doi: 10.1016/j.ultramic.2009.05.012. PubMed DOI
Guizar-Sicairos M., Fienup J. R.. Phase Retrieval with Transverse Translation Diversity: a Nonlinear Optimization Approach. Opt. Exp. 2008;16:7264–7278. doi: 10.1364/OE.16.007264. PubMed DOI
Wei X., Urbach H. P., Coene W. M.. Cramér-Rao Lower Bound and Maximum-likelihood Estimation in Ptychography with Poisson noise. Phys. Rev. A. 2020;102:043516. doi: 10.1103/PhysRevA.102.043516. DOI
Bouchet D., Dong J., Maestre D., Juffmann T.. Fundamental Bounds on the Precision of Classical Phase Microscopes. Phys. Rev. Appl. 2021;15:024047. doi: 10.1103/PhysRevApplied.15.024047. DOI
Koppell S., Kasevich M.. Information Transfer as a Framework for Optimized Phase Imaging. Optica. 2021;8:493. doi: 10.1364/OPTICA.412129. DOI
Dwyer C., Paganin D. M.. Quantum and Classical Fisher Information in Four-dimensional Scanning Transmission Electron Microscopy. Phys. Rev. B. 2024;110:024110. doi: 10.1103/PhysRevB.110.024110. DOI
Godard P., Allain M., Chamard V., Rodenburg J.. Noise Models for Low Counting Rate Coherent Diffraction Imaging. Opt. Exp. 2012;20:25914–25934. doi: 10.1364/OE.20.025914. PubMed DOI
Katkovnik V., Astola J.. Sparse Ptychographical Coherent Diffractive Imaging from Noisy Measurements. J. Opt. Soc. Am. A. 2013;30:367–379. doi: 10.1364/JOSAA.30.000367. PubMed DOI
Jannis D., Hofer C., Gao C., Xie X., Béché A., Pennycook T., Verbeeck J.. Event Driven 4D STEM Acquisition with a Timepix3 Detector: Microsecond Dwell Time and Faster Scans for High Precision and Low Dose Applications. Ultramicroscopy. 2022;233:113423. doi: 10.1016/j.ultramic.2021.113423. PubMed DOI
Humphry M., Kraus B., Hurst A., Maiden A., Rodenburg J.. Ptychographic Electron Microscopy Using High-angle Dark-field Scattering for Sub-nanometre Resolution Imaging. Nat. Commun. 2012;3:730. doi: 10.1038/ncomms1733. PubMed DOI PMC
Strauch A., Weber D., Clausen A., Lesnichaia A., Bangun A., März B., Lyu F. J., Chen Q., Rosenauer A., Dunin-Borkowski R., Müller-Caspary K.. Live Processing of Momentum-resolved STEM Data for First Moment Imaging and Ptychography. Microsc. Microanal. 2021;27:1078–1092. doi: 10.1017/S1431927621012423. DOI
Pei X., Zhou L., Huang C., Boyce M., Kim J. S., Liberti E., Hu Y., Sasaki T., Nellist P. D., Zhang P., Stuart D. I., Kirkland A. I., Wang P.. Cryogenic Electron Ptychographic Single Particle Analysis with Wide Bandwidth Information Transfer. Nat. Commun. 2023;14:3027. doi: 10.1038/s41467-023-38268-0. PubMed DOI PMC
Ruska E.. The Development of the Electron Microscopy and of Electron Microscopy (Nobel Lecture) Rev. Mod. Phys. 1987;59:627–684. doi: 10.1103/RevModPhys.59.627. DOI
Osorio C. I., Coenen T., Brenny B. J. M., Polman A., Koenderink F.. Angle-Resolved Cathodoluminescence Imaging Polarimetry. ACS Photonics. 2016;3:147–154. doi: 10.1021/acsphotonics.5b00596. DOI
Honda M., Yamamoto N.. Size Dependence of Surface Plasmon Modes in One-Dimensional Plasmonic Crystal Cavities. Opt. Express. 2013;21:11973–11983. doi: 10.1364/OE.21.011973. PubMed DOI
Mignuzzi S.. et al. Energy-Momentum Cathodoluminescence Spectroscopy of Dielectric Nanostructures. ACS Photonics. 2018;5:1381–1387. doi: 10.1021/acsphotonics.7b01404. DOI
Moerland R. J., Weppelman I. G. C., Garming M. W. H., Kruit P., Hoogenboom J. P.. Time-Resolved Cathodoluminescence Microscopy with Sub-Nanosecond Beam Blanking for Direct Evaluation of the Local Density of States. Opt. Express. 2016;24:24760. doi: 10.1364/OE.24.024760. PubMed DOI
Ando T., Bhamidimarri S. P., Brending N., Colin-York H., Collinson L., De Jonge N., de Pablo P. J., Debroye E., Eggeling C., Franck C.. et al. The 2018 correlative microscopy techniques roadmap. J. Phys. D: Appl. Phys. 2018;51:443001. doi: 10.1088/1361-6463/aad055. PubMed DOI PMC
Ura K., Morimura N.. Generation of Picosecond Pulse Electron Beams. J. Vac. Sci. Technol. 1973;10:948–950. doi: 10.1116/1.1318522. DOI
Oldfield L. C.. A Rotationally Symmetric Electron Beam Chopper for Picosecond pulses. J. Phys. E: Sci. Instrum. 1976;9:455. doi: 10.1088/0022-3735/9/6/011. DOI
Bostanjoglo O., Rosin T.. Stroboscopic Study on Ultrasonic Activity in Electron-Microscope. Mikroskopie. 1976;32:190.
Bostanjoglo O., Elschner R., Mao Z., Nink T., Weingärtner M.. Nanosecond Electron Microscopes. Ultramicroscopy. 2000;81:141–147. doi: 10.1016/S0304-3991(99)00180-1. PubMed DOI
LaGrange T., Campbell G. H., Colvin J. D., Reed B., King W. E.. Nanosecond Time Resolved Electron Diffraction Studies of the α→β in Pure Ti Thin Films Using the Dynamic Transmission Electron Microscope (DTEM) J. Mater. Sci. 2006;41:4440–4444. doi: 10.1007/s10853-006-0090-z. DOI
May P., Halbout J.-M., Chiu G.. Picosecond Photoelectron Scanning Electron Microscope for Noncontact Testing of Integrated Circuits. Appl. Phys. Lett. 1987;51:145–147. doi: 10.1063/1.98596. DOI
Yang D.-S., Mohammed O. F., Zewail A. H.. Scanning Ultrafast Electron Microscopy. Proc. Natl. Acad. Sci. U.S.A. 2010;107:14993–14998. doi: 10.1073/pnas.1009321107. PubMed DOI PMC
van Rens J. F. M, Verhoeven W., Kieft E. R., Mutsaers P. H. A., Luiten O. J.. Dual Mode Microwave Deflection Cavities for Ultrafast Electron Microscopy. Appl. Phys. Lett. 2018;113:163104. doi: 10.1063/1.5049806. DOI
Kieft E., Shánl O., Bongiovanni G., Van Cappellen E.. Reaching Sub-picosecond Time Resolution in Ultrafast TEM Without Photoemission. Microsc. Microanal. 2024;30:1446.
Market Research Community. Electron Microscope Market Insights. https://marketresearchcommunity.com/electron-microscope-market/ (accessed 2024−10−10).
Weng S., Li Y., Wang X.. Cryo-EM for Battery Materials and Interfaces: Workflow, Achievements, and Perspectives. iScience. 2021;24:103402. doi: 10.1016/j.isci.2021.103402. PubMed DOI PMC
Faruqi A. R., McMullan G.. Direct Imaging Detectors for Electron Microscopy. Nucl. Instrum. Methods Phys. Res. 2018;878:180–190. doi: 10.1016/j.nima.2017.07.037. DOI
Yücelen E., Lazić I., Bosch E. G. T.. Phase Contrast Scanning Transmission Electron Microscopy Imaging of Light and Heavy Atoms at the Limit of Contrast and Resolution. Sci. Rep. 2018;8:2676. doi: 10.1038/s41598-018-20377-2. PubMed DOI PMC
Li G., Zhang H., Han Y.. 4D-STEM Ptychography for Electron-Beam-Sensitive Materials. ACS Cent. Sci. 2022;8:1579–1588. doi: 10.1021/acscentsci.2c01137. PubMed DOI PMC
Velazco A., Béché A., Jannis D., Verbeeck J.. Reducing Electron Beam Damage through Alternative STEM Scanning Strategies, Part I: Experimental Findings. Ultramicroscopy. 2022;232:113398. doi: 10.1016/j.ultramic.2021.113398. PubMed DOI
Axelrod J. J., Zhang J. T., Petrov P. N., Glaeser R. M., Müller H.. Modern Approaches to Improving Phase Contrast Electron Microscopy. Curr. Opin. Struct. Biol. 2024;86:102805. doi: 10.1016/j.sbi.2024.102805. PubMed DOI
Rezus Y. L. Z., Walt S. G., Lettow R., Renn A., Zumofen G., Götzinger S., Sandoghdar V.. Single-Photon Spectroscopy of a Single Molecule. Phys. Rev. Lett. 2012;108:093601. doi: 10.1103/PhysRevLett.108.093601. PubMed DOI
Powell C. J., Swan J. B.. Origin of the Characteristic Electron Energy Losses in Aluminum. Phys. Rev. 1959;115:869–875. doi: 10.1103/PhysRev.115.869. DOI
García de Abajo F. J.. et al. Roadmap for Quantum Nanophotonics with Free Electrons. arXiv:2503.14678 [cond-mat.mes-hall] 2025:na. doi: 10.48550/arXiv.2503.14678. DOI