Pathogen-on-a-Chip: Impedance-Based Detection of Biofilm Formation of Staphylococcus aureus and Staphylococcus epidermidis
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.01.01/00/22_008/0004596
Ministry of Education of Czech Republic
PubMed
41002336
PubMed Central
PMC12467558
DOI
10.3390/bios15090596
PII: bios15090596
Knihovny.cz E-zdroje
- Klíčová slova
- atomic force microscopy, disposable printed circuit board gold electrode, electrochemical impedance spectroscopy, microbial biofilm,
- MeSH
- biofilmy * růst a vývoj MeSH
- biosenzitivní techniky * MeSH
- elektrická impedance MeSH
- elektrody MeSH
- impedanční spektroskopie MeSH
- laboratoř na čipu * MeSH
- mikroskopie atomárních sil MeSH
- Staphylococcus aureus * fyziologie MeSH
- Staphylococcus epidermidis * fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
Bacterial biofilms are complex microbial communities that contribute to the pathogenesis of chronic infections. Therefore, it is crucial to detect biofilm-associated infections in early stages as their delayed treatment becomes more complicated. Herein, we describe a label-free electrochemical impedance spectroscopy (EIS) method for detecting biofilm formation by Staphylococcus aureus and Staphylococcus epidermidis. Printed circuit board-based biamperometric gold electrodes were modified with poly-L-lysine to enhance bacterial attachment to the sensor surface. Formation and inhibition of biofilms were evaluated based on changes in charge transfer resistance (Rct). The control Rct value increased by ~90 kΩ for S. epidermidis biofilm and by ~60 kΩ for S. aureus biofilms. Antibiotic-treated samples exhibited similar values to those using the control. In addition, biofilm formation was evaluated through optical microscopy using safranin staining, and the micrographs suggest significant biomass on the electrodes, whereas the control appeared clear. Atomic force microscopy was used to visualize the biofilm on the electrode surface, obtain cross-sectional profiles, and evaluate its roughness. The roughness parameters indicate that S. aureus forms a rougher biofilm than S. epidermidis, while S. epidermidis forms a more compact biofilm. These findings suggest that the optimized EIS-based method effectively monitors changes related to biofilms and serves as a promising tool for evaluation of new anti-biofilm agents, such as antibiotics, phages or antibodies.
Zobrazit více v PubMed
Mahto K.U., Vandana, Priyadarshanee M., Samantaray D.P., Das S. Bacterial Biofilm and Extracellular Polymeric Substances in the Treatment of Environmental Pollutants: Beyond the Protective Role in Survivability. J. Clean. Prod. 2022;379:134759. doi: 10.1016/j.jclepro.2022.134759. DOI
Wang Y., Bian Z., Wang Y. Biofilm Formation and Inhibition Mediated by Bacterial Quorum Sensing. Appl. Microbiol. Biotechnol. 2022;106:6365–6381. doi: 10.1007/s00253-022-12150-3. PubMed DOI
Karygianni L., Ren Z., Koo H., Thurnheer T. Biofilm Matrixome: Extracellular Components in Structured Microbial Communities. Trends Microbiol. 2020;28:668–681. doi: 10.1016/j.tim.2020.03.016. PubMed DOI
Guzmán-Soto I., McTiernan C., Gonzalez-Gomez M., Ross A., Gupta K., Suuronen E.J., Mah T.-F., Griffith M., Alarcon E.I. Mimicking Biofilm Formation and Development: Recent Progress in in vitro and in vivo Biofilm Models. iScience. 2021;24:102443. doi: 10.1016/j.isci.2021.102443. PubMed DOI PMC
Kreve S., Reis A.C.D. Bacterial Adhesion to Biomaterials: What Regulates This Attachment? A Review. Jpn. Dent. Sci. Rev. 2021;57:85–96. doi: 10.1016/j.jdsr.2021.05.003. PubMed DOI PMC
Wang C., Hou J., van der Mei H.C., Busscher H.J., Ren Y. Emergent Properties in Streptococcus mutans Biofilms Are Controlled through Adhesion Force Sensing by Initial Colonizers. mBio. 2019;10:10-1128. doi: 10.1128/mBio.01908-19. PubMed DOI PMC
Palmer J., Flint S., Brooks J. Bacterial Cell Attachment, the Beginning of a Biofilm. J. Ind. Microbiol. Biotechnol. 2007;34:577–588. doi: 10.1007/s10295-007-0234-4. PubMed DOI
Theis T.J., Daubert T.A., Kluthe K.E., Brodd K.L., Nuxoll A.S. Staphylococcus aureus Persisters Are Associated with Reduced Clearance in a Catheter-Associated Biofilm Infection. Front. Cell Infect. Microbiol. 2023;13:1178526. doi: 10.3389/fcimb.2023.1178526. PubMed DOI PMC
Conlon B.P. Staphylococcus aureus Chronic and Relapsing Infections: Evidence of a Role for Persister Cells: An Investigation of Persister Cells, Their Formation and Their Role in S. aureus Disease. BioEssays. 2014;36:991–996. doi: 10.1002/bies.201400080. PubMed DOI
Lewis K. Persister Cells, Dormancy and Infectious Disease. Nat. Rev. Microbiol. 2007;5:48–56. doi: 10.1038/nrmicro1557. PubMed DOI
Zhao A., Sun J., Liu Y. Understanding Bacterial Biofilms: From Definition to Treatment Strategies. Front. Cell Infect. Microbiol. 2023;13:1137947. doi: 10.3389/fcimb.2023.1137947. PubMed DOI PMC
Rather M.A., Gupta K., Mandal M. Microbial Biofilm: Formation, Architecture, Antibiotic Resistance, and Control Strategies. Braz. J. Microbiol. 2021;52:1701–1718. doi: 10.1007/s42770-021-00624-x. PubMed DOI PMC
Del Pozo J.L. Biofilm-Related Disease. Expert. Rev. Anti Infect. Ther. 2018;16:51–65. doi: 10.1080/14787210.2018.1417036. PubMed DOI
Severn M.M., Horswill A.R. Staphylococcus epidermidis and Its Dual Lifestyle in Skin Health and Infection. Nat. Rev. Microbiol. 2023;21:97–111. doi: 10.1038/s41579-022-00780-3. PubMed DOI PMC
Idrees M., Sawant S., Karodia N., Rahman A. Staphylococcus aureus Biofilm: Morphology, Genetics, Pathogenesis and Treatment Strategies. Int. J. Environ. Res. Public Health. 2021;18:7602. doi: 10.3390/ijerph18147602. PubMed DOI PMC
Diepoltová A., Konečná K., Janďourek O., Nachtigal P. Study of the Impact of Cultivation Conditions and Peg Surface Modification on the in vitro Biofilm Formation of Staphylococcus aureus and Staphylococcus epidermidis in a System Analogous to the Calgary Biofilm Device. J. Med. Microbiol. 2021;70:001371. doi: 10.1099/jmm.0.001371. PubMed DOI
Arciola C.R., Campoccia D., Montanaro L. Detection of Biofilm-Forming Strains of Staphylococcus epidermidis and S. aureus. Expert. Rev. Mol. Diagn. 2002;2:478–484. doi: 10.1586/14737159.2.5.478. PubMed DOI
Khatoon Z., McTiernan C.D., Suuronen E.J., Mah T.-F., Alarcon E.I., Alarcon Bacterial E.I. Bacterial Biofilm Formation on Implantable Devices and Approaches to Its Treatment and Prevention. Heliyon. 2018;4:1067. doi: 10.1016/j.heliyon.2018.e01067. PubMed DOI PMC
Li G., Wu Y., Li Y., Hong Y., Zhao X., Reyes P.I., Lu Y. Early Stage Detection of Staphylococcus epidermidis Biofilm Formation Using MgZnO Dual-Gate TFT Biosensor. Biosens. Bioelectron. 2020;151:111993. doi: 10.1016/j.bios.2019.111993. PubMed DOI
Guła G., Szymanowska P., Piasecki T., Góras S., Gotszalk T., Drulis-Kawa Z. The Application of Impedance Spectroscopy for Pseudomonas Biofilm Monitoring during Phage Infection. Viruses. 2020;12:407. doi: 10.3390/v12040407. PubMed DOI PMC
Achinas S., Yska S.K., Charalampogiannis N., Krooneman J., Euverink G.J.W. A Technological Understanding of Biofilm Detection Techniques: A Review. Materials. 2020;13:3147. doi: 10.3390/ma13143147. PubMed DOI PMC
Ameer S., Ibrahim H., Yaseen M.U., Kulsoom F., Cinti S., Sher M. Electrochemical Impedance Spectroscopy-Based Sensing of Biofilms: A Comprehensive Review. Biosensors. 2023;13:777. doi: 10.3390/bios13080777. PubMed DOI PMC
Nag M., Lahiri D. Analytical Methodologies for Biofilm Research. 1st ed. Springer; New York, NY, USA: 2021.
Kretzschmar J., Harnisch F. Electrochemical Impedance Spectroscopy on Biofilm Electrodes—Conclusive or Euphonious? Curr. Opin. Electrochem. 2021;29:100757. doi: 10.1016/j.coelec.2021.100757. DOI
Romero M.C., Méndez-Tovar M. Impedance Analysis for the Study of Biofilm Formation on Electrodes: An Overview. J. Mex. Chem. Soc. 2023;67:547–565. doi: 10.29356/jmcs.v67i4.2005. DOI
Xu W., Ceylan Koydemir H. Non-Invasive Biomedical Sensors for Early Detection and Monitoring of Bacterial Biofilm Growth at the Point of Care. Lab. Chip. 2022;22:4758–4773. doi: 10.1039/D2LC00776B. PubMed DOI
Swami P., Anand S., Holani A., Gupta S. Impedance Spectroscopy for Bacterial Cell Monitoring, Analysis, and Antibiotic Susceptibility Testing. Langmuir. 2024;40:21907–21930. doi: 10.1021/acs.langmuir.4c01907. PubMed DOI
Paredes J., Becerro S., Arana S. Comparison of Real Time Impedance Monitoring of Bacterial Biofilm Cultures in Different Experimental Setups Mimicking Real Field Environments. Sens. Actuators B Chem. 2014;195:667–676. doi: 10.1016/j.snb.2014.01.098. DOI
McGlennen M., Dieser M., Foreman C.M., Warnat S. Monitoring Biofilm Growth and Dispersal in Real-Time with Impedance Biosensors. J. Ind. Microbiol. Biotechnol. 2023;50:kuad022. doi: 10.1093/jimb/kuad022. PubMed DOI PMC
Ward A.C., Hannah A.J., Kendrick S.L., Tucker N.P., MacGregor G., Connolly P. Identification and Characterisation of Staphylococcus aureus on Low Cost Screen Printed Carbon Electrodes Using Impedance Spectroscopy. Biosens. Bioelectron. 2018;110:65–70. doi: 10.1016/j.bios.2018.03.048. PubMed DOI
Kim T., Kang J., Lee J.H., Yoon J. Influence of Attached Bacteria and Biofilm on Double-Layer Capacitance during Biofilm Monitoring by Electrochemical Impedance Spectroscopy. Water Res. 2011;45:4615–4622. doi: 10.1016/j.watres.2011.06.010. PubMed DOI
Lacina K., Věžník J., Sopoušek J., Farka Z., Lacinová V., Skládal P. Concentration and Diffusion of the Redox Probe as Key Parameters for Label-Free Impedimetric Immunosensing. Bioelectrochemistry. 2023;149:108308. doi: 10.1016/j.bioelechem.2022.108308. PubMed DOI
Obořilová R., Šimečková H., Pastucha M., Klimovič Š., Víšová I., Přibyl J., Vaisocherová-Lísalová H., Pantůček R., Skládal P., Mašlaňová I., et al. Atomic Force Microscopy and Surface Plasmon Resonan Ce for Real-Time Single-Cell Monitoring of Bacteriophage-Mediated Lysis of Bacteria. Nanoscale. 2021;13:13538–13549. doi: 10.1039/D1NR02921E. PubMed DOI
Sopoušek J., Věžník J., Houser J., Skládal P., Lacina K. Crucial Factors Governing the Electrochemical Impedance on Protein-Modified Surfaces. Electrochim. Acta. 2021;388:138616. doi: 10.1016/j.electacta.2021.138616. DOI
Standar K., Kreikemeyer B., Redanz S., Münter W.L., Laue M., Podbielski A. Setup of an in vitro Test System for Basic Studies on Biofilm Behavior of Mixed-Species Cultures with Dental and Periodontal Pathogens. PLoS ONE. 2010;5:e13135. doi: 10.1371/journal.pone.0013135. PubMed DOI PMC
Obořilová R., Kučerová E., Botka T., Vaisocherová-Lísalová H., Skládal P., Farka Z. Piezoelectric Biosensor with Dissipation Monitoring Enables the Analysis of Bacterial Lytic Agent Activity. Sci. Rep. 2025;15:3419. doi: 10.1038/s41598-024-85064-x. PubMed DOI PMC
Deng M., Wang Y., Chen G., Liu J., Wang Z., Xu H. Poly-L-Lysine-Functionalized Magnetic Beads Combined with Polymerase Chain Reaction for the Detection of Staphylococcus aureus and Escherichia coli O157:H7 in Milk. J. Dairy Sci. 2021;104:12342–12352. doi: 10.3168/jds.2021-20612. PubMed DOI
Marka S., Zografaki M.E., Papaioannou G.M., Mavrikou S., Flemetakis E., Kintzios S. Impedance In vitro Assessment for the Detection of Salmonella typhimurium Infection in Intestinal Human Cancer Cells. Chemosensors. 2023;11:534. doi: 10.3390/chemosensors11100534. DOI
Kim B.R., Bae Y.M., Lee S.Y. Effect of Environmental Conditions on Biofilm Formation and Related Characteristics of Staphylococcus aureus. J. Food Saf. 2016;36:412–422. doi: 10.1111/jfs.12263. DOI
Oliver L.M., Dunlop P.S.M., Byrne J.A., Blair I.S., Boyle M., Mcguigan K.G., Mcadams E.T. An Impedimetric Sensor for Monitoring the Growth of Staphylococcus epidermidis; Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society; New York, NY, USA. 30 August–3 September 2006; pp. 535–538. PubMed
Lofrumento C., Arci F., Carlesi S., Ricci M., Castellucci E., Becucci M. Safranin-O Dye in the Ground State. A Study by Density Functional Theory, Raman, SERS and Infrared Spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2015;137:677–684. doi: 10.1016/j.saa.2014.07.051. PubMed DOI
Ommen P., Zobek N., Meyer R.L. Quantification of Biofilm Biomass by Staining: Non-Toxic Safranin Can Replace the Popular Crystal Violet. J. Microbiol. Methods. 2017;141:87–89. doi: 10.1016/j.mimet.2017.08.003. PubMed DOI
James S.A., Powell L.C., Wright C.J. Microbial Biofilms—Importance and Applications. InTech; Rijeka, Croatia: 2016. Atomic Force Microscopy of Biofilms—Imaging, Interactions, and Mechanics.
Tollersrud T., Berge T., Andersen S.R., Lund A. Imaging the Surface of Staphylococcus aureus by Atomic Force Microscopy. APMIS. 2001;109:541–545. doi: 10.1111/j.1600-0463.2001.907808.x. PubMed DOI
Chatterjee S., Biswas N., Datta A., Dey R., Maiti P. Atomic Force Microscopy in Biofilm Study. Microscopy. 2014;63:269–278. doi: 10.1093/jmicro/dfu013. PubMed DOI