Pulsed Electric Fields Reshape the Malting Barley Metabolome: Insights from UHPLC-HRMS/MS
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
20-14649S
Czech Science Foundation
MEYS Grant No: LM2023064
METROFOOD-CZ
Specific university research - grant No A1_FPBT_2024_006
UCT Prague
PubMed
41097373
PubMed Central
PMC12525893
DOI
10.3390/molecules30193953
PII: molecules30193953
Knihovny.cz E-zdroje
- Klíčová slova
- UHPLC-HRMS/MS, biomarkers, malting barley, metabolomics, pulsed electric field (PEF),
- MeSH
- elektřina * MeSH
- ječmen (rod) * metabolismus chemie MeSH
- manipulace s potravinami * metody MeSH
- metabolom * MeSH
- metabolomika * metody MeSH
- tandemová hmotnostní spektrometrie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
The Pulsed Electric Field (PEF) technique represents a modern technology for treating and processing food and agricultural raw materials. The application of high-voltage electric pulses has been shown to modify macrostructure, improve extractability, and enhance the microbial safety of the treated matrix. In this study, we investigated metabolomic changes occurring during the individual technological steps of malting following PEF treatment. Methanolic extracts of technological intermediates of malting barley were analyzed using metabolomic fingerprinting performed with UHPLC-HRMS/MS. For data processing and interpretation, the freely available MS-DIAL-MS-CleanR-MS-Finder software platform was used. The metabolomes of the treated and untreated barley samples revealed significant changes. Tentatively identified PEF-related biomarkers included 1,2-diacylglycerol-3-phosphates, triacylglycerols, linoleic acids and their derivatives, octadecanoids, N-acylserotonins, and very long-chain fatty acids, and probably reflect abiotic stress response. Monitoring of the profiles of selected biomarkers in PEF malting batch indirectly revealed a potential enhancement of enzymatic activity after the PEF treatment. These results contribute to fundamental knowledge regarding the influence of PEF on final malt from a metabolomic perspective.
Zobrazit více v PubMed
Ghoshal G. Comprehensive Review on Pulsed Electric Field in Food Preservation: Gaps in Current Studies for Potential Future Research. Heliyon. 2023;9:e17532. doi: 10.1016/j.heliyon.2023.e17532. PubMed DOI PMC
Kamboj A., Chopra R., Singh R., Saxena V., GV P.K. Effect of Pulsed Electric Field Parameters on the Alkaline Extraction of Valuable Compounds from Perilla Seed Meal and Optimization by Central Composite Design Approach. Appl. Food Res. 2022;2:100240. doi: 10.1016/j.afres.2022.100240. DOI
Ghazanfari N., Tabatabaei Yazdi F., Mortazavi S.A., Mohammadi M. Using Pulsed Electric Field Pre-Treatment to Optimize Coriander Seeds Essential Oil Extraction and Evaluate Antimicrobial Properties, Antioxidant Activity, and Essential Oil Compositions. LWT. 2023;182:114852. doi: 10.1016/j.lwt.2023.114852. DOI
Fan R., Wang L., Fan J., Sun W., Dong H. The Pulsed Electric Field Assisted-Extraction Enhanced the Yield and the Physicochemical Properties of Soluble Dietary Fiber From Orange Peel. Front. Nutr. 2022;9:925642. doi: 10.3389/fnut.2022.925642. PubMed DOI PMC
Bhat Z.F., Morton J.D., Mason S.L., Bekhit A.E.-D.A. Pulsed Electric Field Improved Protein Digestion of Beef during In-Vitro Gastrointestinal Simulation. LWT. 2019;102:45–51. doi: 10.1016/j.lwt.2018.12.013. DOI
Chian F.M., Kaur L., Oey I., Astruc T., Hodgkinson S., Boland M. Effects of Pulsed Electric Field Processing and Sous Vide Cooking on Muscle Structure and In Vitro Protein Digestibility of Beef Brisket. Foods. 2021;10:512. doi: 10.3390/foods10030512. PubMed DOI PMC
Lytras F., Psakis G., Gatt R., Cebrián G., Raso J., Valdramidis V. Exploring the Efficacy of Pulsed Electric Fields (PEF) in Microbial Inactivation during Food Processing: A Deep Dive into the Microbial Cellular and Molecular Mechanisms. Innov. Food Sci. Emerg. Technol. 2024;95:103732. doi: 10.1016/j.ifset.2024.103732. DOI
Karki R., Oey I., Bremer P., Silcock P. Understanding the Effect of Meat Electrical Conductivity on Pulsed Electric Field (PEF) Process Parameters and the Ability of PEF to Enhance the Quality and Shorten Sous Vide Processing for Beef Short Ribs. Food Res. Int. 2023;163:112251. doi: 10.1016/j.foodres.2022.112251. PubMed DOI
Maniglia B.C., Pataro G., Ferrari G., Augusto P.E.D., Le-Bail P., Le-Bail A. Pulsed Electric Fields (PEF) Treatment to Enhance Starch 3D Printing Application: Effect on Structure, Properties, and Functionality of Wheat and Cassava Starches. Innov. Food Sci. Emerg. Technol. 2021;68:102602. doi: 10.1016/j.ifset.2021.102602. DOI
Taha A., Casanova F., Šimonis P., Stankevič V., Gomaa M.A.E., Stirkė A. Pulsed Electric Field: Fundamentals and Effects on the Structural and Techno-Functional Properties of Dairy and Plant Proteins. Foods. 2022;11:1556. doi: 10.3390/foods11111556. PubMed DOI PMC
Giteru S.G., Oey I., Ali M.A. Feasibility of Using Pulsed Electric Fields to Modify Biomacromolecules: A Review. Trends Food Sci. Technol. 2018;72:91–113. doi: 10.1016/j.tifs.2017.12.009. DOI
Patras A., Choudhary P., Rawson A. Recovery of Primary and Secondary Plant Metabolites by Pulsed Electric Field Treatment In BT—Handbook of Electroporation. Springer; Berlin/Heidelberg, Germany: 2017. pp. 2517–2537. DOI
Neri L., Giancaterino M., Rocchi R., Tylewicz U., Valbonetti L., Faieta M., Pittia P. Pulsed Electric Fields (PEF) as Hot Air Drying Pre-Treatment: Effect on Quality and Functional Properties of Saffron (Crocus Sativus L.) Innov. Food Sci. Emerg. Technol. 2021;67:102592. doi: 10.1016/j.ifset.2020.102592. DOI
Stranska M., Prusova N., Behner A., Dzuman Z., Lazarek M., Tobolkova A., Chrpova J., Hajslova J. Influence of Pulsed Electric Field Treatment on the Fate of Fusarium and Alternaria Mycotoxins Present in Malting Barley. Food Control. 2023;145:109440. doi: 10.1016/j.foodcont.2022.109440. DOI
Li M., Niu M. New Technologies in Cereal Processing and Their Impact on the Physical Properties of Cereal Foods. Foods. 2023;12:4008. doi: 10.3390/foods12214008. PubMed DOI PMC
Bagarinao N.C., King J., Leong S.Y., Agyei D., Sutton K., Oey I. Effect of Germination on Seed Protein Quality and Secondary Metabolites and Potential Modulation by Pulsed Electric Field Treatment. Foods. 2024;13:1598. doi: 10.3390/foods13111598. PubMed DOI PMC
Colen L., Swinnen J. Economic Growth, Globalisation and Beer Consumption. J. Agric. Econ. 2016;67:186–207. doi: 10.1111/1477-9552.12128. DOI
Pascari X., Ramos A.J., Marín S., Sanchís V. Mycotoxins and Beer. Impact of Beer Production Process on Mycotoxin Contamination. A Review. Food Res. Int. 2018;103:121–129. doi: 10.1016/j.foodres.2017.07.038. PubMed DOI
Karabín M., Jelínek L., Průšová N., Ovesná J., Stránská M. Pulsed Electric Field Treatment Applied to Barley before Malting Reduces Fusarium Pathogens without Compromising the Quality of the Final Malt. LWT. 2024;206:116575. doi: 10.1016/j.lwt.2024.116575. DOI
Saxton R., Lahey C., Smith B., Hibberd E., Bevan J., Baumhoff C., Galant A., Young J., Meyer B., McDougal O.M. Impact of Pulsed Electric Field Treatment on Barley Germination for Malting. LWT. 2024;197:115882. doi: 10.1016/j.lwt.2024.115882. DOI
Zhang L., Li C.-Q., Jiang W., Wu M., Rao S.-Q., Qian J.-Y. Pulsed Electric Field as a Means to Elevate Activity and Expression of α-Amylase in Barley (Hordeum Vulgare, L.) Malting. Food Bioprocess Technol. 2019;12:1010–1020. doi: 10.1007/s11947-019-02274-2. DOI
Polachini T.C., Norwood E.-A., Le-Bail P., Le-Bail A., Cárcel J.A. Pulsed Electric Field (PEF) Application on Wheat Malting Process: Effect on Hydration Kinetics, Germination and Amylase Expression. Innov. Food Sci. Emerg. Technol. 2023;86:103375. doi: 10.1016/j.ifset.2023.103375. DOI
Vegi A., Schwarz P., Wolf-Hall C.E. Quantification of Tri5 Gene, Expression, and Deoxynivalenol Production during the Malting of Barley. Int. J. Food Microbiol. 2011;150:150–156. doi: 10.1016/j.ijfoodmicro.2011.07.032. PubMed DOI
Behner A., Palicova J., Tobolkova A.-H., Prusova N., Stranska M. Pulsed Electric Field Induces Significant Changes in the Metabolome of Fusarium Species and Decreases Their Viability and Toxigenicity. Toxins. 2025;17:33. doi: 10.3390/toxins17010033. PubMed DOI PMC
Puligundla P., Pyun Y.-R., Mok C. Pulsed Electric Field (PEF) Technology for Microbial Inactivation in Low-Alcohol Red Wine. Food Sci. Biotechnol. 2018;27:1691–1696. doi: 10.1007/s10068-018-0422-1. PubMed DOI PMC
Evrendilek G.A., Karatas B., Uzuner S., Tanasov I. Design and Effectiveness of Pulsed Electric Fields towards Seed Disinfection. J. Sci. Food Agric. 2019;99:3475–3480. doi: 10.1002/jsfa.9566. PubMed DOI
Rakusanova S., Cajka T. Tips and Tricks for LC–MS-Based Metabolomics and Lipidomics Analysis. TrAC Trends Anal. Chem. 2024;180:117940. doi: 10.1016/j.trac.2024.117940. DOI
Triba M.N., Le Moyec L., Amathieu R., Goossens C., Bouchemal N., Nahon P., Rutledge D.N., Savarin P. PLS/OPLS Models in Metabolomics: The Impact of Permutation of Dataset Rows on the K-Fold Cross-Validation Quality Parameters. Mol. Biosyst. 2015;11:13–19. doi: 10.1039/C4MB00414K. PubMed DOI
Zhao H., Liu Y., Huang Y., Liang Q., Cai S., Zhang G. Time-Course Comparative Metabolome Analysis of Different Barley Varieties during Malting. J. Agric. Food Chem. 2022;70:2051–2059. doi: 10.1021/acs.jafc.1c08346. PubMed DOI
Van Norman J.M., Benfey P.N. Arabidopsis Thaliana as a Model Organism in Systems Biology. WIREs Syst. Biol. Med. 2009;1:372–379. doi: 10.1002/wsbm.25. PubMed DOI PMC
Wu S., Tohge T., Cuadros-Inostroza Á., Tong H., Tenenboim H., Kooke R., Méret M., Keurentjes J.B., Nikoloski Z., Fernie A.R., et al. Mapping the Arabidopsis Metabolic Landscape by Untargeted Metabolomics at Different Environmental Conditions. Mol. Plant. 2018;11:118–134. doi: 10.1016/j.molp.2017.08.012. PubMed DOI
Beale M.H., Sussman M.R. Metabolomics of Arabidopsis Thaliana. Annu. Plant Rev. 2011;43:157–180. doi: 10.1002/9781444339956.ch6. DOI
Astorquiza P.L., Usorach J., Racagni G., Villasuso A.L. Diacylglycerol Pyrophosphate Binds and Inhibits the Glyceraldehyde-3-Phosphate Dehydrogenase in Barley Aleurone. Plant Physiol. Biochem. 2016;101:88–95. doi: 10.1016/j.plaphy.2016.01.012. PubMed DOI
Dubots E., Botté C., Boudière L., Yamaryo-Botté Y., Jouhet J., Maréchal E., Block M.A. Role of Phosphatidic Acid in Plant Galactolipid Synthesis. Biochimie. 2012;94:86–93. doi: 10.1016/j.biochi.2011.03.012. PubMed DOI
Kato T., Yamaguchi Y., Hirano T., Yokoyama T., Uyehara T., Namai T., Yamanaka S., Harada N. Unsaturated Hydroxy Fatty Acids, The Self Defensive Substances in Rice Plant Against Rice Blast Disease. Chem. Lett. 1984;13:409–412. doi: 10.1246/cl.1984.409. DOI
Naidu S.V., Gupta P., Kumar P. Enantioselective Syntheses of (−)-Pinellic Acid, α- and β-Dimorphecolic Acid. Tetrahedron. 2007;63:7624–7633. doi: 10.1016/j.tet.2007.05.047. DOI
Valent B. The Impact of Blast Disease: Past, Present, and Future. Methods Mol. Biol. 2021;2356:1–18. doi: 10.1007/978-1-0716-1613-0_1. PubMed DOI
Floerl S., Majcherczyk A., Possienke M., Feussner K., Tappe H., Gatz C., Feussner I., Kües U., Polle A. Verticillium Longisporum Infection Affects the Leaf Apoplastic Proteome, Metabolome, and Cell Wall Properties in Arabidopsis Thaliana. PLoS ONE. 2012;7:e31435. doi: 10.1371/journal.pone.0031435. PubMed DOI PMC
Strehmel N., Böttcher C., Schmidt S., Scheel D. Profiling of Secondary Metabolites in Root Exudates of Arabidopsis Thaliana. Phytochemistry. 2014;108:35–46. doi: 10.1016/j.phytochem.2014.10.003. PubMed DOI
Cowley T., Walters D. Local and Systemic Effects of Oxylipins on Powdery Mildew Infection in Barley. Pest Manag. Sci. 2005;61:572–576. doi: 10.1002/ps.1026. PubMed DOI
Navari-Izzo F., Quartacci M.F., Izzo R. Free Fatty Acids, Neutral and Polar Lipids in Hordeum Vulgare Exposed to Long-Term Fumigation with SO2. Physiol. Plant. 1991;81:467–472. doi: 10.1111/j.1399-3054.1991.tb05086.x. DOI
Guo H.-M., Li H.-C., Zhou S.-R., Xue H.-W., Miao X.-X. Cis-12-Oxo-Phytodienoic Acid Stimulates Rice Defense Response to a Piercing-Sucking Insect. Mol. Plant. 2014;7:1683–1692. doi: 10.1093/mp/ssu098. PubMed DOI
Cheng G., Chen M.-S., Zhu L. 12-Oxo-Phytodienoic Acid Enhances Wheat Resistance to Hessian Fly (Diptera: Cecidomyiidae) Under Heat Stress. J. Econ. Entomol. 2018;111:917–922. doi: 10.1093/jee/tox374. PubMed DOI
Varsani S., Grover S., Zhou S., Koch K.G., Huang P.-C., Kolomiets M.V., Williams W.P., Heng-Moss T., Sarath G., Luthe D.S., et al. 12-Oxo-Phytodienoic Acid Acts as a Regulator of Maize Defense against Corn Leaf Aphid. Plant Physiol. 2019;179:1402–1415. doi: 10.1104/pp.18.01472. PubMed DOI PMC
Stintzi A., Weber H., Reymond P., Browse J., Farmer E.E. Plant Defense in the Absence of Jasmonic Acid: The Role of Cyclopentenones. Proc. Natl. Acad. Sci. USA. 2001;98:12837–12842. doi: 10.1073/pnas.211311098. PubMed DOI PMC
Maucher H., Stenzel I., Miersch O., Stein N., Prasad M., Zierold U., Schweizer P., Dorer C., Hause B., Wasternack C. The Allene Oxide Cyclase of Barley (Hordeum Vulgare L.)—Cloning and Organ-Specific Expression. Phytochemistry. 2004;65:801–811. doi: 10.1016/j.phytochem.2004.01.009. PubMed DOI
Hamany Djande C.Y., Steenkamp P.A., Piater L.A., Tugizimana F., Dubery I.A. Hordatines and Associated Precursors Dominate Metabolite Profiles of Barley (Hordeum Vulgare L.) Seedlings: A Metabolomics Study of Five Cultivars. Metabolites. 2022;12:310. doi: 10.3390/metabo12040310. PubMed DOI PMC
Dehghanian Z., Ahmadabadi M., Asgari Lajayer B., Bagheri N., Chamani M., Gougerdchi V., Hamedpour-Darabi M., Shu W., Price G.W., Dell B. Role of Neurotransmitters (Biomediators) in Plant Responses to Stress. Plants. 2024;13:3134. doi: 10.3390/plants13223134. PubMed DOI PMC
Wang W., Snooks H.D., Sang S. The Chemistry and Health Benefits of Dietary Phenolamides. J. Agric. Food Chem. 2020;68:6248–6267. doi: 10.1021/acs.jafc.0c02605. PubMed DOI
Park J.-S., Kim D.-E., Hong S.-C., Kim S.-Y., Kwon H.C., Hyun C.-G., Choi J. Genome Analysis of Streptomyces Nojiriensis JCM 3382 and Distribution of Gene Clusters for Three Antibiotics and an Azasugar across the Genus Streptomyces. Microorganisms. 2021;9:1802. doi: 10.3390/microorganisms9091802. PubMed DOI PMC
Ruparelia J., Rabari A., Mitra D., Panneerselvam P., Das-mohapatra P.K., Jha C.K. Efficient Applications of Bacterial Secondary Metabolites for Management of Biotic Stress in Plants. Plant Stress. 2022;6:100125. doi: 10.1016/j.stress.2022.100125. DOI
de Araújo Silva M.M., dos Santos D.Y.A.C., Melo-de-Pinna G.F.A., Câmara T.d.J.R., Oliveira A.F.M. Chemical Composition and Ultrastructure of the Foliar Cuticular Wax of Two Brazilian Cultivars of Castor Bean (Ricinus Communis L.) Ind. Crops Prod. 2017;95:558–563. doi: 10.1016/j.indcrop.2016.11.010. DOI
González A., Ayerbe L. Effect of Terminal Water Stress on Leaf Epicuticular Wax Load, Residual Transpiration and Grain Yield in Barley. Euphytica. 2010;172:341–349. doi: 10.1007/s10681-009-0027-0. DOI
Seo P.J., Park C.-M. Cuticular Wax Biosynthesis as a Way of Inducing Drought Resistance. Plant Signal. Behav. 2011;6:1043–1045. doi: 10.4161/psb.6.7.15606. PubMed DOI PMC
Guo Y., He Y., Guo N., Gao J., Ni Y. Variations of the Composition of the Leaf Cuticular Wax among Chinese Populations of Plantago Major. Chem. Biodivers. 2015;12:627–636. doi: 10.1002/cbdv.201400216. PubMed DOI
Batsale M., Bahammou D., Fouillen L., Mongrand S., Joubès J., Domergue F. Biosynthesis and Functions of Very-Long-Chain Fatty Acids in the Responses of Plants to Abiotic and Biotic Stresses. Cells. 2021;10:1284. doi: 10.3390/cells10061284. PubMed DOI PMC
Ludwig R.A., Spencer E.Y., Unwin C.H. An Antifungal Factor from Barley of Possible Significance in Disease Resistance. Can. J. Bot. 1960;38:21–29. doi: 10.1139/b60-003. DOI
Pihlava J.-M. Identification of Hordatines and Other Phenolamides in Barley (Hordeum Vulgare) and Beer by UPLC-QTOF-MS. J. Cereal Sci. 2014;60:645–652. doi: 10.1016/j.jcs.2014.07.002. DOI
Stoessl A., Unwin C.H. The Antifungal Factors in Barley. V. Antifungal Activity of the Hordatines. Can. J. Bot. 2011;48:465–470. doi: 10.1139/b70-066. DOI
Prusova N., Karabin M., Jelinek L., Chrpova J., Ovesna J., Svoboda P., Dolezalova T., Behner A., Hajslova J., Stranska M. Application of Pulsed Electric Field During Malting: Impact on Fusarium Species Growth and Mycotoxin Production. Toxins. 2024;16:537. doi: 10.3390/toxins16120537. PubMed DOI PMC
Paznocht L., Kotíková Z., Šulc M., Lachman J., Orsák M., Eliášová M., Martinek P. Free and Esterified Carotenoids in Pigmented Wheat, Tritordeum and Barley Grains. Food Chem. 2018;240:670–678. doi: 10.1016/j.foodchem.2017.07.151. PubMed DOI
Shi M.F., Fan J.J., Li S.J., Yu X.L., Liang X.M. The Influence of High Voltage Electric Field for Barley Seed Germination and Its Mechanism. Appl. Mech. Mater. 2014;675–677:1142–1145. doi: 10.4028/www.scientific.net/AMM.675-677.1142. DOI
Lynikiene S., Pozeliene A. Effect of Electrical Field on Barley Seed Germination Stimulation. [(accessed on 8 September 2025)]. Available online: https://cigrjournal.org/index.php/Ejounral/article/view/408/403.
Heistek J.C., Douma A.C. Plant Lipid Metabolism. Springer; Dordrecht, The Netherlands: 1995. Induction of Lipase Activity in Germinating Barley; pp. 301–303. DOI
Al-Taher F., Nemzer B. Effect of Germination on Fatty Acid Composition in Cereal Grains. Foods. 2023;12:3306. doi: 10.3390/foods12173306. PubMed DOI PMC
Zhang N., Jones B.L. Development of Proteolytic Activities during Barley Malting and Their Localization in the Green Malt Kernel. J. Cereal Sci. 1995;22:147–155. doi: 10.1016/0733-5210(95)90044-6. DOI
Guzmán-Ortiz F.A., Castro-Rosas J., Gómez-Aldapa C.A., Mora-Escobedo R., Rojas-León A., Rodríguez-Marín M.L., Falfán-Cortés R.N., Román-Gutiérrez A.D. Enzyme Activity during Germination of Different Cereals: A Review. Food Rev. Int. 2019;35:177–200. doi: 10.1080/87559129.2018.1514623. DOI
Mannochio-Russo H., de Almeida R.F., Nunes W.D.G., Bueno P.C.P., Caraballo-Rodríguez A.M., Bauermeister A., Dorrestein P.C., Bolzani V.S. Untargeted Metabolomics Sheds Light on the Diversity of Major Classes of Secondary Metabolites in the Malpighiaceae Botanical Family. Front. Plant Sci. 2022;13:854842. doi: 10.3389/fpls.2022.854842. PubMed DOI PMC
Alseekh S., Fernie A.R. Expanding Our Coverage: Strategies to Detect a Greater Range of Metabolites. Curr. Opin. Plant Biol. 2023;73:102335. doi: 10.1016/j.pbi.2022.102335. PubMed DOI
Stranska M., Behner A., Ovesna J., Svoboda P., Hajslova J. What Happens Inside the Germinating Grain After Microbial Decontamination by Pulsed Electric Field? Data-Driven Multi-Omics Helps Find the Answer. Molecules. 2025;30:924. doi: 10.3390/molecules30040924. PubMed DOI PMC